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Immune analytes have been widely tested in efforts to understand the heterogeneity of

disease progression, risk, and therapeutic responses in type 1 diabetes (T1D). The future

clinical utility of such analytes as biomarkers depends on their technical and biological

variability, as well as their correlation with clinical outcomes. To assess the variability of a

panel of 91 immune analytes, we conducted a prospective study of adults with T1D (<3

years from diagnosis), at 9–10 visits over 1 year. Autoantibodies and frequencies of T-cell,

natural killer cell, andmyeloid subsets were evaluated; autoreactive T-cell frequencies and

function were also measured. We calculated an intraclass correlation coefficient (ICC) for

each marker, which is a relative measure of between- and within-subject variability. Of the

91 analytes tested, we identified 35 with high between- and low within-subject variability,

indicating their potential ability to be used to stratify subjects. We also provide extensive

data regarding technical variability for 64 of the 91 analytes. To pilot the concept that

ICC can be used to identify analytes that reflect biological outcomes, the association

between each immune analyte and C-peptide was also evaluated using partial least

squares modeling. CD8 effector memory T-cell (CD8 EM) frequency exhibited a high

ICC and a positive correlation with C-peptide, which was also seen in an independent

dataset of recent-onset T1D subjects. More work is needed to better understand the

mechanisms underlying this relationship. Here we find that there are a limited number

of technically reproducible immune analytes that also have a high ICC. We propose

the use of ICC to define within- and between-subject variability and measurement of

technical variability for future biomarker identification studies. Employing such a method

is critical for selection of analytes to be tested in the context of future clinical trials aiming

to understand heterogeneity in disease progression and response to therapy.
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INTRODUCTION

The identification of highly effective disease-modifying therapies remains a critical gap in type 1
diabetes (T1D). While at least five different immunotherapies have been demonstrated to slow the
decline in insulin secretion after diagnosis (1–5), not all who received active drug had a measurable
therapeutic response. Improving the clinical success of immunotherapies is likely to require
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different strategies such as: use of combined or sequential
therapies, selection of dosing frequency guided by changes in
disease, and enrollment of cohorts most likely to respond.
Biomarkers that predict clinical course and response to therapy
may serve as stratification variables to understand disease
and personalize intervention strategies. Given the promise of
immunotherapy development in T1D, there is much interest in
using immune analytes as biomarkers to predict clinical course
and response to therapy. However, for such biomarkers to be
implemented, it is critical to understand the variability of each
marker between and within individuals as well as its relationship
to clinical outcomes.

Many immune markers have been associated with different
facets of T1D progression and response to therapy. For example,
autoantibodies, measured using highly reproducible assays in
multiple laboratories, have proven to be robust biomarkers. The
presence of autoantibodies aids in the diagnosis of autoimmune
diabetes in clinical settings, and, in asymptomatic individuals,
autoantibodies are highly predictive of disease progression.
However, to date, autoantibodies have not been useful in
predicting the likelihood of therapeutic response. As T-cells are
thought to play a role in T1D pathology, many aspects of T-
cell frequency, function, and phenotype have been tested as
potential biomarkers of disease or response to therapy. These
features have been measured in both global T-cell populations
(6–10) and antigen-specific subsets using a variety of methods
(e.g., multimer/tetramer, ELISpot, and FluoroSpot assays) (11–
14). Quantification, function, and phenotypes of B-cell, natural
killer (NK) cell, and monocyte subsets have also been tested in
T1D and proposed as biomarkers (15–19).

Previous efforts to evaluate biomarkers in T1D have focused
on reliability—for example, technical reproducibility within
or between laboratories (12, 20–22). Such reproducibility is
a necessary but not sufficient criteria for clinical utility,
as biomarkers should also be capable of explaining disease
heterogeneity if they are to predict clinical outcomes. To
our knowledge, evaluation of the utility of multiple immune
measures on the same sample set, in a study designed specifically
to evaluate variance within and between individuals, has not been
previously performed.

Here, we sought to identify immune markers with specific
characteristics that suggest they may provide insights into the
heterogeneity of disease progression or response to therapy—
namely, analytes with high between-subject and low within-
subject variability. We also performed a pilot study to determine
whether such analytes would demonstrate preliminary evidence
of clinical relevance as measured by associations with insulin
secretion. We designed a prospective longitudinal study to test
the variance of a broad panel of 91 markers from 8 commonly
used immune assays 9–10 times over a year, in a cohort of
T1D subjects within 3 years of diagnosis (NCT01900834). We
focused on three sources of variability: variability within subjects,
variability between subjects, and technical assay variability.
We rank-ordered each analyte tested according to intraclass
correlation (ICC). For those with an acceptable ICC, we
calculated a variable importance for the projection (VIP) score
using a partial least squares (PLS) model. The ICC and VIP

metrics served to quantify each biomarker’s relative degree of
within- and between-subject variability and its association with
C-peptide levels (a measure of endogenous insulin secretion),
respectively. Using this approach, we identified a panel of
markers with low within-subject and high between-subject
variability that associate with C-peptide levels shortly after T1D
diagnosis. The association of the marker with the highest VIP
score was then confirmed in an independent cohort of recent-
onset T1D subjects [T1DAL, NCT00965458 (4)].

MATERIALS AND METHODS

Study Design
Study Design—Prospective Observational Study
This was an observational study exploring the longitudinal
variation of immune markers. This study was carried out in
accordance with the recommendations of the ICH (ICH E6,
45CFR46) and FDA (21CFR sections 11, 50, 56, 312). The
protocol was approved by the Benaroya Research Institute (BRI)
Institutional Review Board (IRB) and all subjects gave written
informed consent in accordance with the Declaration of Helsinki.
Samples for this study were prospectively obtained from 15
healthy control subjects, 30 subjects with T1D, and 15 subjects
with type 2 diabetes (T2D); all were enrolled in the BRI Immune
Mediated Disease Registry and Repository Study. Key inclusion
criteria were: for subjects with T1D, diagnosis < 3 years, age 14–
40 years, autoantibody positive; for subjects with T2D, diagnosis
< 15 years from enrollment, age 18–65 years; for healthy subjects,
age 18–40 years. Medical history, concomitant illness and/or
medications, and fasting status were collected for each subject
at each visit. One T2D subject withdrew from the study after
visit 2 and was replaced with a new subject per study protocol.
Two other subjects (1 T2D, 1 control) withdrew from the study
at later time-points; all available data are included for these
two subjects. All available data are included in all analyses;
outliers were neither identified nor removed from this study.
Sample processing and preservation are described in detail in the
Supplementary Methods.

While observational in nature, this clinical study was
registered with clinicaltrials.gov (NCT01900834). The primary
objective of the study was to assess longitudinal variation
of immune markers in subjects with T1D over a 1 year
period; subjects with T2D and healthy subjects served as
controls. Primary and secondary endpoints specified variation of
individual markers (CD8 T-cells, CD4 T-cells, insulin secretion,
islet autoantibodies, and HbA1c). Each of these variables was
assessed in the PLS modeling described below, using appropriate
statistical methods as described.

Study Design—Replication
Technical reproducibility testing was conducted using 16 and
27 replicate aliquots from the same blood draw from up to
six separate subjects, who were independent of those subjects
enrolled in the natural history study (Data Sheet 2). Replicate
tests were run at the beginning and end of each assay day. The
range of the two replicate tests for each day was calculated, as well
as the mean value of the two replicates. Upper and lower control
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limits for each analyte were calculated using the range as the
variability estimate. The statistical control limits were calculated
per-subject and represent three times the variability estimate
divided by the square root of the sample size. Different subject
samples were used for testing reproducibility of different assays
and analytes, varying from 2 to 6 different subjects per analyte.

The natural history study was designed to understand
variation in immune markers over time. Thus, the same markers
were tested using samples from each of the 9–10 visits over 1 year.
CD8 effector memory T-cell (CD8 EM) associations with insulin
secretion were tested in two independent cohorts: the prospective
cohort described above and the clinical trial cohort [Immune
Tolerance Network (ITN) T1DAL cohort] described below. All
assays were conducted by technicians blinded to study group.

Study Design—Confirmation Cohort (TIDAL Study)
We obtained clinical data from subjects enrolled in the ITN
T1DAL trial (4, 23) via the TrialShare portal (24). Samples
were originally collected in this multi-site study under the
auspices of IRB-approved clinical trial protocols as described
in the original trial publication (23). The Qdot-Multimer flow
cytometry (QDM) assay was performed by Novo Nordisk
Research Center Seattle, Inc. (NNRCSI) using protocols as
described below and in Supplemental Materials, under the
auspices of an independent collaboration between Novo Nordisk
and the ITN. This independent study did not include other assays
due to sample limitations.

Study Design—Control Samples for Assay

Development and Implementation
For the ELISpot, FluoroSpot, and all flow cytometry assays
except the HLA class II multimers, anonymous whole blood
samples from subjects without diabetes, up to 100mL, were
purchased from Astarte Biologics (Bothell, WA, USA) and Puget
Sound Blood Center (now BloodWorksNW, Seattle, WA, USA).
Samples were processed to peripheral blood mononuclear cells
(PBMC) and cryopreserved at the NNRCSI as described in
Supplementary Methods.

Clinical and Laboratory Assessments
Clinical Tests
Mixed meal tolerance tests (MMTT) were performed at study
months 1, 5, and 9 for subjects with T1D using standard
methods (25) (Supplementary Table 1). C-peptide, glucose, and
HbA1c from all visits (including MMTT visits) were tested at
the University of Washington’s Northwest Lipid Metabolism
and Diabetes Research Laboratories (Seattle, WA, USA).
Serum samples for C-peptide were measured using a two-site
immunoenzymatic assay on the Tosoh II 600 autoanalyzer (26).
Complete blood count (CBC) measurements were performed
on the day of each blood draw by Quest Diagnostics (Seattle,
WA, USA).

HLA Typing
Presence of specific HLA DRB-1 and DQB1 genes were
assessed by RT-PCR as previously described (27, 28). Initial
low-resolution typing was performed to determine HLA-A

serotype, as previously described (29). High-resolution typing
was performed on the subset of subjects identified by low-
resolution typing as HLA-A2+ (BloodWorks NW, Seattle, WA,
USA) using isolated DNA and standard methods to further
distinguish HLA-A2:01 donors from non-HLA-A2:01.

Autoantibody Measurements
Presence/absence of diabetes autoantibodies (GAD65,
IA2, Insulin, and ZnT8) was determined in serum by the
Barbara Davis Center Autoantibody/HLA Service Center
using standardized radiobinding assays as previously
described (30–32).

Qdot-Multimer Flow Cytometry (QDM)
Antigen-specific CD8+ T-cells were evaluated using a modified
version of a previously described method (11). Peptide-HLA-
A02:01 complexes were generated as described by Hadrup
et al. (33) and in Supplementary Methods. pMHC and Qdot
combinations are shown in Supplementary Table 2. After
thawing, 1 × 106 PBMC were incubated with Live/Dead Aqua
dead cell stain (Molecular Probes, ThermoFisher, Waltham, MA,
USA) in PBS for 30min at room temperature. PBMC were then
incubated with 500 nM dasatinib (LC Laboratories, Woburn,
MA, USA) and multimers for 10min at 37◦C. Fluorescence
minus one (FMO) controls for all multimers were incubated with
PBS supplemented with 2% humanAB serum (Life Technologies,
ThermoFisher, Waltham, MA, USA) (FACS buffer) for 10min
at 37◦C without multimers. Subsequently, cells were incubated
in FACS buffer supplemented with additional fluorochrome-
conjugated antibodies for 20min at 4◦C. Antibodies and
cytometer filter set-up are listed in Supplementary Table 3. Data
were acquired on an LSRII (BD Biosciences, San Jose, CA, USA)
and analyzed using FlowJo software (Tree Star, Inc., Ashland,
OR, USA). Samples from all subjects, regardless of HLA-A2
positivity, were subjected to the Qdot-Multimer testing as this
enabled us to access the primary T cell flow cytometry data
as well. Data for all subjects are presented here. The gating
schema and representative flow cytometry data are shown in
Supplementary Figures 1, 2. Detailed methods are included in
the Supplementary Materials. Marker definitions and use are
presented in Supplementary Table 4.

NK/Monocyte Flow Cytometry
After thawing, 1 × 106 PBMC were incubated with
Live/Dead Aqua dead cell stain (Molecular Probes,
ThermoFisher, Waltham, MA, USA) in PBS for 30min at
room temperature. Cells were incubated in FACS buffer
with fluorochrome-conjugated antibodies for 30min at room
temperature; all antibodies and cytometer filters are listed in
Supplementary Table 5. Data were acquired on an LSRII (BD
Biosciences, San Jose, CA, USA) and analyzed using FlowJo
software (Tree Star, Inc; BD Biosciences, San Jose, CA, USA).
Additional details provided in the Supplementary Methods. The
gating schema and representative flow cytometry data are shown
in Supplementary Figure 3, and marker definitions and use are
shown in Supplementary Table 6.
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HLA Class II Tetramer Assay
CD4 tetramer staining was conducted as previously described
(34), on subjects that were HLA DR4+. In brief, cells were
first treated with dasatinib (50 nM) for 10min at 37◦C before
staining with a pool of PE-tetramer reagents (20µg/mL)
(Supplementary Table 7) for 2 h at room temperature. Cells
were then treated with anti-PE beads (Miltenyi Biotec, Bergisch
Gladbach, Germany) and enriched using a magnetic column.
Cells were stained with a panel of antibodies, including anti-CD4,
-CD45RO, -CD14 and -CD19, and further treated with Via-Probe
(BD Biosciences, San Jose, CA, USA) before flow analysis. The
gating schema and representative flow cytometry data are shown
in Supplementary Figure 4.

ELISpot and FluoroSpot Assays for IL-10, IFN-γ, and

IL-2 Detection
Pre-coated human IL-10 ELISpot kits and dual-color IFN-γ and
IL-2 FluoroSpot kits were purchased from Mabtech AB (3430-
4HPW-10 and FSP-0102-10, respectively; Stockholm, Sweden).
Plates were washed and blocked for non-specific binding with
PBS supplemented with 10% human HS-RPMI for 30min at
room temperature. Subsequently, thawed PBMC were added to
each well at a concentration of 2.5 × 106 cells/mL in 10% HS-
RPMI for ELISpot and 2.0 × 106 cells/mL for FluoroSpot assays.
All peptide pools are described in Supplementary Table 8 and
0.5 µg PHA/mL media and 0.01% cell culture-grade DMSO
were used as positive and negative stimuli, respectively. Cells
were plated in triplicate and incubated at 37◦C in 5% CO2

with humidity for 44–48 h. Plates were subsequently washed
five times using a Biotek plate washer prior to addition of
the detection antibody per the manufacturer’s instructions (IL-
10 ELISpot: 12-G8-biotin; IFN-γ/IL-2 FluoroSpot: 7-B6-1-FS-
FITC; and MT8G10-biotin). Plates were incubated for 2 h at
room temperature in the dark, washed to remove the detection
antibody, and then developed per detailed description in the
Supplementary Methods. After washing to remove development
reagents, the ELISpot and FluoroSpot plates were allowed to
air-dry fully (at least 60 h) in the dark. The number of spot-
forming cells (SFCs) in the ELISpot and FluoroSpot assays were
analyzed and counted using the AID multispot reader system
(AID ELISpot Reader version 7.0 build 14790, AID GmbH,
Strassberg, Germany). Detailed methods are included in the
Supplementary Materials.

Statistical Analysis
In order to quantify the proportion of immune analyte variation
within and between subjects, the ICC was calculated using a
linear mixed-effects model with a random effect for subject
(35). In brief, ICC equals variance between subjects divided by
the (variance between subjects + variance within subjects) and
represents the proportion of the total variance that is between
subjects. The code used to calculate ICC for this study is provided
in the Supplementary Materials. The per-subject mean of C-
peptide AUC, ng/mL/120min was used as the PLS outcome, and
markers with an ICC value above 70% were included in the PLS
analysis. VIP was used for analyte selection (36). In the initial
stage, the VIP was assessed in 35 analytes with an ICC value

above 70%. Twenty-one markers with a VIP below 1.0 were
dropped and 14 were retained. K-fold cross-validation with 7-
folds was used to prevent overfitting and the minimum root
mean predicted residual error sum of squares statistic was used
to determine the number of factors (37). A final, one-factor PLS
model was fit using all analytes above both the ICC threshold of
70% and the VIP threshold of 1.0. The code used to perform PLS
analysis is also provided in the Supplementary Materials.Within
each randomized arm of the confirmation cohort (T1DAL study)
a PLS model was run without cross-validation using the per-
subject mean values from the QDM assay as predictors and per-
subject mean of the 4 h C-peptide AUC as the outcome. Because
not all predictors with ICC above 70% in the original cohort
were available in the confirmation cohort, we were not able to
construct identical models. Instead, we used VIP to rank order
the relative importance in predicting the C-peptide outcome and
compared this metric across the cohorts.

RESULTS

Study Design and Subject Recruitment
We designed a prospective clinical study to explore immune
variability, enrolling 30 subjects within 3 years of T1D diagnosis,
as well as 15 healthy control subjects and 15 subjects with
T2D. Baseline subject characteristics are listed in Table 1. T1D
and healthy subjects were well-matched for age. Slightly fewer
female subjects were in the T1D group as compared to the
T2D and healthy subject groups. As expected, T2D subjects
were older and had higher BMI than both the T1D and the
healthy subjects. All individuals underwent nine visits over a
year, with visits separated by 1–3 months. Control and T1D
subjects had one additional visit to assess variability over a week
(Supplementary Table 1). Individuals in all groups maintained
a high rate of participation throughout the study; only 2 of 60
subjects did not complete the study. In total, subjects attended
573 of 585 (97.9%) possible visits over the course of the study.
CBC testing was done in a clinical laboratory using fresh samples.
Samples for all other assays were cryopreserved on the day of
collection. Assays were conducted in batch after clinical work was
complete to minimize assay run-associated variability.

The Variability of Immune Markers Differs
Within and Across Assays
We performed several commonly used assays to assess the
longitudinal variance of each analyte tested over 1 year and over
1 week.Markers measured included T1D-specific autoantibodies;
T-cell, monocyte, and NK cell subset frequencies and activation
status (using flow cytometry); frequencies of both CD4 and CD8
antigen-specific T-cells; antigen-specific T-cell function (using
ELISpot/FluoroSpot); and CBC. Variability analyses incorporated
data from all subjects, regardless of disease status.

ICC was used to compare within- and between-subject
variability of each analyte. Unlike coefficient of variation (CV)
measurements, ICC performs well with values that approach 0.
Since antigen-specific T-cells and other cell populations may be
infrequent in the blood, ICC was a more appropriate measure of
variability for this study. High ICC values represent analytes that
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TABLE 1 | Subject characteristics at enrollment.

Type 1 diabetes (n = 30) Type 2 diabetes (n = 15) Control (n = 15)

Age, years; median (range) 24.5 (15–39) 51 (38–63) 28 (20–36)

Disease duration, years; median (range) 1.15 (0.2–2.8) 9.85 (2–19.5) N/A

HbA1c, mmol/mol; median (range) 48 (26–121) 62 (49–80) 31 (26–34)

HbA1c, %; median (range) 6.5 (4.5–13.2) 7.8 (6.6–9.5) 5 (4.5–5.3)

C-peptide AUC, ng mL−1 120 min−1; median (range)a 1.36 (<0.05–4.39) N/A N/A

BMI; median (range) 23.1 (19.7–27.8) 35.4 (25.1–45.0) 25.7 (19.8–31.5)

Female; n (%) 10 (33%) 8 (53%) 8 (53%)

Family history of type 1 diabetes; n (%) 11 (38%) 0 (0%) 1 (7%)

HLA-A*02; n (%) 17 (57%) 7 (47%) 7 (47%)

HLA-DR*0401; n (%) 14 (46%) 2 (13%) 2 (13%)

aC-peptide data from first MMTT at visit 2 (1 month).

were both longitudinally stable within subjects and biologically
variable between subjects. For example, CD8 EM (defined as
% of CD8+ cells that are CD4-CCR7-CD45RA-) have a high
ICC of 0.88. This indicates that a given subject typically has
similar CD8 EM frequencies throughout the year, as evidenced
by the clustering of points for each subject [mean within-subject
range 10.7% (95% CI: 9.04, 12.43)], but that individual subjects
differ dramatically from each other (between-subject range
41.1%) (Figure 1A, top panel). In contrast, CD14 monocytes
(Figure 1A, middle panel) and NKP46+ NK cells (Figure 1A,
bottom panel) showed both less between-subject variability and
more within-subject variability, reflected by lower ICC values of
0.41 and 0.32, respectively.

ICC results are summarized in Figure 1B; each analyte is
represented as a dot and the assay in which it was measured is
displayed by column. ICC values for all analytes are listed in
Table 2. ICCs were uniformly high for the four autoantibodies.
In contrast, ICCs were uniformly low for analytes in the
ELISpot/FluoroSpot functional cellular assays. Islet-specific
CD4 and CD8 T-cells were also assessed using separate
flow cytometry-based multimer assays. Moderate ICCs were
achieved by both of these assays. Of note, total antigen-
specific cells (summed across all antigen reactivities) were
used for our analyses of both CD4 and CD8 multimer assays
to increase cell frequency for each population. The frequency
and ICC of non-antigen-specific T-cell subsets were also
evaluated. CD4+CD8– and CD4-CD8+ populations were
divided into: naïve (CD45RA+CCR7+), activated/Th1-like
(CXCR3+), effector memory (CD45RA-CCR7-), central
memory (CD45RA-CCR7+), and terminally differentiated
effector memory (CD45RA+CCR7–). All populations are
defined in Supplementary Tables 9–11. A separate flow
cytometry panel was used to evaluate the frequency of
monocyte and NK cell subsets. High ICCs were seen
for nearly all T-cell subsets evaluated and for many of
the monocyte and NK cell populations. To visualize the
longitudinal change in cell frequency over the course of
the year, the raw values for five example populations are
presented in Figure 2. Analytes may have low/moderate ICC
due to reduced between-subject variability, as exemplified
by CD14lo monocytes, with ICC of 0.38, or due to high

within-subject variability, represented by NK cells (%CD14–),
with ICC of 0.6. Week to week ICC values are also listed
in Supplementary Figure 5; these ICC tracked with the
annual values.

We also compared the ICC values for each assay across
disease groups (Supplementary Figure 6). In general, the
ICC was highly similar regardless of disease status, and
thus was very similar to the results presented in Figure 1,
which show the overall result of all subjects in the study.
An exception to this similarity is the islet autoantibody
measurements, where the difference in ICC is a result of the
healthy controls and T2D subjects having few to no positive
autoantibodies and therefore little variability to explain at the
subject level.

We also assessed the technical variability of all analytes in
the T-cell and NK/monocyte flow cytometry panels, as well as
the CD8 antigen-specific cell populations and analytes included
in the ELISpot/FluoroSpot assays (n = 64 total analytes). We
compared results from 2 PBMC aliquots per day tested on
multiple assay dates; all samples were processed from a single
blood draw collected from up to six control subjects. These
subjects were not participants in the clinical study described in
Table 1. For some analytes, technical variability, as represented
by the range of values detected within a subject over time, was
low. For example, the maximum range within a subject for CD8
EM was <10% over 6 months of measurements (Figure 3, top
panel). Other analytes such as CD14hi monocytes (Figure 3,
middle panel) also had good technical variability (limited ranges
on repeated measures from the same sample tested on different
dates). The moderate ICC value (ICC = 0.43) for the CD14hi
monocytes is therefore driven by limited variation between
subjects as evidenced in Figure 1A. A contrasting example is
the frequency of NK cells expressing NKP46. This population
had poor technical variability (range of values on same samples
tested over time and within an experiment between 20 and 30%;
Figure 3, bottom panel) and showed a reduced ICC (ICC= 0.32).
This increased technical variation leads to increased difficulty
in understanding the relative contribution of within-subject and
technical variability to low ICC. All available technical variability
data are plotted and made available online at the following link
(Data Sheet 2).
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FIGURE 1 | ICC identifies markers that are stable within an individual but vary between individuals. (A) Repeated assessments of CD8 EM, CD14HI Monocytes, and

NKP46+ NK cells are shown for each subject. Subject IDs are listed on the X-axis, are divided by subject type, and are rank-ordered by the mean value of each

immune marker within each subject type. The clustering of values by participant ID illustrates the relative amount of between- and within-subject variation. The total

variation that is between subjects is quantified by the ICC, which is 88% for CD8 EM, 43% for CD14HI Monocytes, and 32% for NKP46+ NK cells. (B) The ICC for all

measured markers is displayed by immune marker category. The reference line at 70% marks the threshold used to select markers for PLS modeling. ICC values are

listed by marker in Table 2.
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TABLE 2 | One year ICC estimates, rank-ordered according to ICC value and assay.

Autoantibodies T cell subset

frequencies

CBC NK subset

frequencies

Antigen specific

T cells (CD4)

Antigen specific

T cells (CD8)

Monocyte subset

frequencies

ELISpot/FluoroSpot

ZnT8 0.99 CD8N 0.94 MCV 0.86 CD2+ NK 0.96 CD4+TMR+

CD45RO+

0.62 AgSpc CD8

TEMRA

CXCR3+

0.57 CD14Hi

Mono HLA

Class II+

0.76 IL-2-AR Pool 0.41

IA2 0.96 CD4N 0.94 MCH 0.86 CD57+ NK 0.94 CD4+TMR+ 0.61 AgSpc CD8

TEMRA

0.57 CD14Lo

Mono PDL1+

0.73 IFNG-QDM 0.4

GAD 0.96 CD8

TEMRA

0.93 Platelet Count 0.84 CD2+ NKHI 0.9 CD4+TMR+

CD45RO+

0.55 AgSpc CD8

TEMRA

CXCR3+

0.53 CD14Hi

Mono PDL1+

0.68 IFNG-AR Pool 0.27

IAA 0.89 CD4

CXCR3+

0.89 Abs.

Lymphocytes

0.82 CD54+ NK 0.83 AgSpc CD8

TEMRA

0.49 CD 14Hi

Mono CD2+

0.63 IFNG/IL-2-AR

Pool

0.22

CD8 EM 0.88 Hemoglobin 0.81 NKG2D+

NKHI

0.78 AgSpc CD8

EM

0.48 CD14Lo

Monocytes

CD2+

0.6 IL-2-INS Pool 0.18

CD8CM 0.87 Red Blood

Cell Count

0.8 PDL1+ NKHI 0.76 AgSpc CD8

EM CXCR3+

0.44 CD14Hi

Mono CD57+

0.54 IL-10-INS Pool 0.15

CD8 0.85 Hematocrit 0.78 NKHI 0.73 AgSpc CD8

EM

0.44 CD14Lo

Mono CD57+

0.52 IL-10-AR Pool 0.14

CD4CM 0.85 % Eosinophils 0.73 CD57+ NKHI 0.72 AgSpc CD8

EM CXCR3+

0.44 CD14Lo

Mono HLA

Class II+

0.48 IL-10-QDM 0.12

CD4

TEMRA

0.82 Abs.

Eosinophils

0.72 PDL1+ NK 0.7 AgSpc

CD8CM

0.35 CD14Hi

Monocytes

0.43 IFNG-INS Pool 0.12

CD4 EM 0.82 WBC Count 0.69 CD54+ NKHI 0.65 AgSpc

CD8CM

CXCR3+

0.33 CD14Lo

Monocytes

0.38 IL-2-QDM Pool 0.11

CD8

CXCR3+

0.76 Abs.

Monocytes

0.67 NK 0.6 AgSpc

CD8CM

0.3 CD14Lo

Mono CD36+

0.25 IFNG/IL-2-INS

Pool

0.09

CD4 0.63 RDW 0.65 CD36+ NK 0.47 AgSpc

CD8CM

CXCR3+

0.25 CD14Hi

Mono CD36+

0.13 IFNG/IL-2-

QDM

0.07

% Monocytes 0.58 NKG2D+ NK 0.47

%

Lymphocytes

0.56 NKP46+

NKHI

0.36

Abs.

Neutrophils

0.54 CD36+ NKHI 0.34

% Neutrophils 0.53 NKP46+ NK 0.32

% Basophils 0.43

Abs.

Basophils

0.4

MCHC 0.39
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FIGURE 2 | Longitudinal variability of selected immune cell populations.

Spaghetti plots show the longitudinal variability of five selected immune

populations. Individual lines correspond to T1D participants and the lines are

colored according to the standard deviation of each participant’s repeated

assessments during the study.

Multivariate Modeling Identifies CD8 EM
Association With C-Peptide in Subjects
With T1D
Thirty-five analytes from five sets of assays had an annual ICC
> 0.7 (Figure 1B), and were therefore included as candidates
for multivariate modeling of insulin secretion assessed by
C-peptide. Numerous studies have highlighted heterogeneity
between individuals with respect to insulin secretion over time,
and preservation of insulin secretion post-diagnosis is associated
with reduced complications (38). The subjects enrolled in this
study were diagnosed primarily as adults (Table 1); thus, their
rate of fall in insulin secretion was, as expected, low over the
course of the 1 year of follow-up (Supplementary Figure 7). For
this reason, it was feasible to use mean insulin secretion over the
year for each subject in the model. Similarly, because we selected
only markers with a high ICC (low longitudinal variability), we
also used the mean value of each immune marker in the model.
This reduces the noise of all parameters in the model, improving
statistical power.

We applied PLS analysis to our dataset to select markers
that were associated with C-peptide. PLS combines features of
principal component analysis and multivariate linear regression
to select variables associated with one or more outcomes.
Importantly, PLS incorporates a variable selection criteria (VIP)
that has been shown to be a reliable and parsimonious method
to filter analytes/features before implementing PLS regression
(39). Using a VIP threshold of 1.0, we selected a panel of
14 (out of 35) markers to evaluate their contribution to
C-peptide variation (Figure 4A). CD8 EM had both the highest
independent association with C-peptide and the highest PLS

FIGURE 3 | Variability charts of replicate control testing. Each chart displays

the frequency of each population detected in two replicate aliquots from a

single blood draw for a given control subject (top portion) measured on

multiple experiment dates (x-axis). Replicate tests were run at the beginning

and end of each day. The bottom portion of each control chart displays the

range of the two replicate tests for each day. Subject IDs (PTID) are labeled

A–F; these subjects are not the same as those included in the natural history

study. Green lines represent the mean cell frequency for the two replicate

measurements (top portion) and range (bottom portion) for each subject. The

red lines represent the upper and lower control limits calculated using the

range as the variability estimate. The statistical control limits are calculated

per-subject and represent three times the variability estimate divided by the

square root of the sample size.

VIP score; the bivariate correlation between %CD8 EM and C-
peptide was 0.52 (Rho p-value= 0.003). Independent association
between any particular marker and C-peptide was limited, but,
taken together, the PLS model explained 68% of the between-
subject variability in C-peptide (Figure 4B). The 14 markers
had varying individual associations with C-peptide, and were
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FIGURE 4 | PLS identifies composite model associated with insulin secretion.

(A) The mean levels of 35 immune markers with ICCs above 70% were used

to model mean C-peptide over 1 year using PLS. VIP scores for 14 markers

(red) had VIP scores above 1.0 and were retained in the PLS model. The other

21 markers (gray) were dropped from the multivariate model as their

importance to the PLS projection was minimal. (B) The final model explained

68% of the variability of the mean C-peptide over 1 year using a 1-factor

model created from weighted linear combinations of 14 markers. Y-axis

indicates the actual C-peptide mean values for each subject; each subject is a

dot. X-axis indicates the C-peptide values predicted by the PLS model.

similar in magnitude and direction to simple bivariate Pearson
correlation coefficients (Figure 5).

C-Peptide Association and CD8 EM
Stability in a Second Recent-Onset T1D
Cohort
PLS can help avoid overfitting with the use of cross-validation
techniques. Therefore, we used k-fold cross-validation in our

PLS analysis. We also aimed to determine whether our findings
could be seen in a second cohort; for this, we used data from
the T1DAL trial. T1DAL was a randomized placebo-controlled
trial conducted in new-onset T1D subjects that aimed to delay
C-peptide decline after T1D diagnosis by treating subjects with
the LFA-3Ig fusion protein, alefacept (4). The full panel of
assays used for our original study could not be conducted
using samples from this trial. However, the antigen-specific CD8
assay and assessment of T-cell subset frequencies were tested
against this sample set using the same QDM flow cytometry
assay protocol, same operators, and same flow cytometers. As
expected, CD8 EM levels dropped after alefacept treatment in the
majority of subjects (as evident in the comparison between open
circles representing the baseline time-point and closed circles
representing post-baseline time-points, Figure 6A). Subjects still
show similar within- and between-subject variability in this
independent dataset, with an ICC value of 75% when the baseline
value is included, or 82% when the value is removed from the
ICC calculation. When PLS modeling was performed on this
independent dataset, CD8 EM was again identified as the most
informative subset in its association with mean C-peptide levels
in the treatment arm, and was also above the PLS cut-off value in
the small placebo arm (Figure 6B).

DISCUSSION

High ICC values, low technical variability, and association with
biological measures of interest are desirable characteristics of
immune markers when aiming to address heterogeneity of
disease, either in the natural history of disease progression or
response to therapy. This systematic evaluation of 91 putative
biomarkers identified 35 with high ICC values. The combination
of analytes selected by PLS modeling accounted for 68% of
the variation in insulin secretion in our initial cohort. CD8
EM had the highest VIP score using PLS modeling, as well
as the highest bivariate Pearson correlation with C-peptide.
The high ICC value of CD8 EM cells and their association
with insulin secretion was confirmed in a separate cohort.
Not unexpectedly, in addition to CD8 EM, we also identified
autoantibodies as another marker with a high ICC and some
association with C-peptide. Autoantibodies against islet proteins
are currently used as biomarkers to define risk of progression
to T1D diagnosis. Autoantibodies were identified and validated
through a community effort, with shared sample sets distributed
to laboratories world-wide for assessments and a well-accepted
qualification process for each laboratory (40, 41), assuring a high
level of technical reproducibility.

Analytes with the lowest ICC in our study include many of the
antigen-specific measures. One challenge in detecting antigen-
specific cells is their low frequency in subjects with T1D, which
may be partially attributable to under detection (42). We assessed
the technical reproducibility of two antigen-specific measures,
the antigen-specific CD8 T-cell assay and ELISpot/Fluorospot
assays. Antigen-specific CD8 T-cells measured by flow cytometry
had adequate technical reproducibility and consistently detected
a very low frequency of antigen-specific cells in peripheral blood.
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FIGURE 5 | Independent and combined associations of each marker with insulin secretion. The standardized and scaled PLS coefficients (red) are multivariate

adjusted associations between each marker and insulin secretion. Blue indicates the bivariate, unadjusted Pearson correlation coefficients for the same association.

Coefficients above zero indicate a positive association; below zero indicates a negative association.

FIGURE 6 | CD8 EM and relationship with insulin secretion in T1DAL cohort. (A) ICC of CD8 EM is similar in a second cohort (ICC = 75% overall and 82% after

removing the baseline assessments in the alefacept group). Y-axis is frequency of CD8 EM; X-axis groups the repeated measures for each subject. The per-subject

mean is marked with the horizontal line and the shaded bar represents the 95% confidence interval of the mean. Open circles indicate first visit (prior to alefacept in

treatment arm); all other visits (closed circles) were post-baseline assessments. Figure is paneled by treatment group. (B) The variable importance measure (VIP) is

displayed on the x-axis from the PLS model associating insulin secretion with T-cell markers for each treatment group.

This translated into low between-subject variability; measuring
larger volumes of cells or looking in different populations could
in future show different results. The ELISpot/FluoroSpot assay
showed considerable technical variability as evidenced by high
within-subject ranges during technical replicate testing. We did
not test whether the use of frozen as compared to fresh samples
contributed to the relatively low technical reproducibility seen
here and in previous work (20). While other studies (43–45)
have shown relatively similar results in fresh compared to frozen

samples after background subtraction, this remains an open
question in the field. Our data suggests that the antigen-specific
analytes tested on frozen samples are unlikely to be useful in the
context of understanding the natural history of disease. However,
these assays could potentially be useful in the context of a clinical
trial evaluating a therapy expected to increase the frequency, or
modify the phenotype, of antigen-specific cells. In such a case,
these assays could serve as a pharmacodynamic marker of drug
administration or a marker of therapeutic efficacy.
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While specific populations of CD8 EM have been identified as
predictors of response to therapy (46) and C-peptide decline in
children (47), total levels of CD8 EM have not been previously
shown to be associated with C-peptide levels in the natural
history setting and were not identified in the original assessment
of the T1DAL study. This new finding may have been possible
due to the specifics of our analysis method. Our discovery
cohort included older subjects with relatively little decline in
insulin secretion, and we selected analytes with a high ICC,
enabling us to use mean insulin secretion and mean levels of
each immune marker for our analyses. This reduced the within-
subject variability for both insulin secretion and the immune
markers, increasing the power to detect associations. Also, PLS
works well in cases where multiple modest or noisy correlations
may predict an outcome when combined; this likely applies to
the T1D setting. One potential explanation for the association
observed between insulin secretion and CD8 EM is an increased
frequency of CD8 T-cells expressing an exhaustion phenotype in
subjects with increased CD8 EM. Cells expressing an exhaustion
phenotype have been associated with improved outcomes in T1D
(46, 48). However, the frequency of these cells was not assessed in
the context of this study. An alternate explanation can be found
in the “full” immune system hypothesis (49), which postulates
that higher total T-cell counts tend to prevent an increase in
homeostatic T-cell proliferation. Preventing this proliferation
may limit expansion of self-reactive T-cell populations. Of course,
follow-up studies to explore the possible immunological and
clinical implications of this association are needed to fully explain
this intriguing association.

Low technical variability, high ICC values, and association
with biological measures of interest are desirable characteristics
of an analyte when aiming to address heterogeneity in disease,
either in the natural history of disease progression or response
to therapy. The known heterogeneity in disease progression
and response to therapy in T1D and other autoimmune
and inflammatory diseases suggests that a more personalized
approach is needed for therapeutic selection and trial enrollment.
The flow cytometry data generated here are particularly useful
to understand and characterize the within- and between-
subject variability of immune markers. Analytes with high ICC
allow personalized ranges and deviations to be correlated with
biological events (such as loss of insulin secretion) or therapeutic
response. ICC, used in this context, measures the percent of
variability in a sample that can be explained by the subject.
It is, therefore, a metric quantifying the degree of marker
personalization. Immune markers with high ICC should be
more useful in personalizing therapies by blocking, stratifying,
or serving as baseline covariates, thereby increasing statistical
power and precision (50). Further studies, both retrospective
and prospective, are needed to determine the utility of the
markers tested here in T1D clinical trials, but the method
described is generalizable to studies in other settings. Such studies
should also ensure that feasibility of the biomarkers is assessed,
including considerations such as cost, wide transferability to
clinical laboratories, and ease of sample collection.

Through a systematic approach, we have identified multiple
immune markers that are stable in an individual but vary

within the population. While our discovery work was performed
almost solely in adult subjects, we note that the ICC of
CD8 EM was similar between our prospective cohort and the
T1DAL study, which enrolled pediatric subjects, suggesting
that the ICC findings here may be generalizable to the
pediatric setting. It is not known whether these ICC results
would differ if tested prior to clinical diagnosis of T1D, nor
whether the within- and between-subject variation for any given
analyte would apply equally well in other disease settings. As
mentioned, additional follow-up will be required to understand
the potential relationship between CD8 EM and insulin secretion.
In summary, we propose that this approach can be applied to
identify analytes worthy of consideration as biomarkers to dissect
heterogeneity in T1D and predict response to therapy.
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