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ABSTRACT

Most complex disease-associated loci mapped by
genome-wide association studies (GWAS) are lo-
cated in non-coding regions. It remains elusive which
genes the associated loci regulate and in which
tissues/cell types the regulation occurs. Here, we
present PCGA (https://pmglab.top/pcga), a compre-
hensive web server for jointly estimating both as-
sociated tissues/cell types and susceptibility genes
for complex phenotypes by GWAS summary statis-
tics. The web server is built on our published method,
DESE, which represents an effective method to mutu-
ally estimate driver tissues and genes by integrating
GWAS summary statistics and transcriptome data.
By collecting and processing extensive bulk and
single-cell RNA sequencing datasets, PCGA has in-
cluded expression profiles of 54 human tissues,
2,214 human cell types and 4,384 mouse cell types,
which provide the basis for estimating associated
tissues/cell types and genes for complex pheno-
types. We develop a framework to sequentially es-
timate associated tissues and cell types of a com-
plex phenotype according to their hierarchical re-
lationships we curated. Meanwhile, we construct a
phenotype-cell-gene association landscape by esti-
mating the associated tissues/cell types and genes
of 1,871 public GWASs. The association landscape is
generally consistent with biological knowledge and
can be searched and browsed at the PCGA website.

GRAPHICAL ABSTRACT

INTRODUCTION

Genome-wide association studies (GWAS) have identified
many variants associated with complex diseases, providing
insights into the pathogenesis. However, the major (∼90%)
disease-associated variants lie in the non-coding regions
of the genome (1), making it challenging to translate the
associated variants into the molecular mechanism under-
lying complex diseases. Identifying critical cell types and
genes regulated by the disease-associated variants may be
a primary step to elucidate etiology of complex diseases
and further develope precision therapy (2). Several ap-
proaches have been developed to estimate tissues/cell types
or genes associated with complex diseases by GWAS re-
sults. The methods typically integrated other omics data
with GWAS results. For example, Ongen et al. estimated
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disease-associated tissues by enriching tissue-based eQTL
in associated variants of GWAS (3). Finucane et al. esti-
mated tissue-specific heritability enrichment of complex dis-
eases by integrating epigenetic annotation (4). By integrat-
ing gene expression profiles of different tissues/cell types
and GWAS summary statistics, deTS (5), LDSC-SEG (6),
RolyPloy (7), FUMA (Cell Type function) (8) and DESE
(driver tissue estimation by selective expression) (9) were de-
veloped to estimate associated tissues or cell types. In con-
trast to other methods, DESE can not only correctly esti-
mate disease-associated tissues but also facilitate the prior-
itization of susceptibility genes (9).

The single-cell RNA sequencing (scRNA-seq) technol-
ogy provides tremendous advantages for precisely profiling
genes’ expression in cell types and deeply understanding cell
lineage. Nowadays, scRNA-seq technology has been widely
used to detect heterogeneity among tumor cells (10,11), to
reveal developmental processes and cell fate decisions (12),
and to profile lineages and cell types in the vertebrate brain
(13). In addition, a human cell atlas project has recently pro-
vided a comprehensive human cell landscape that released
gene expression profiles and cell hierarchy for over a half
million cells (14). Meanwhile, several comprehensive public
resources are also available to query gene expression in sin-
gle cells. For instance, the PanglaoDB has collected gene ex-
pression profiles for over 1 million human cells and around
4.5 million mouse cells (15). These resources may provide a
unique opportunity for deciphering the critical cell types in
the development of complex diseases and traits.

Here, we expanded DESE to integrate single-cell tran-
scriptome data and built a web server named PCGA (https:
//pmglab.top/pcga) to provide service for conveniently es-
timating associated tissues, cell types and genes by GWAS
summary statistics. We collected extensive bulk RNA-seq
and scRNA-seq datasets and generated gene expression
profiles of 54 human tissues, 2,214 human cell types and
4,384 mouse cell types. These expression profiles provide
the basis for estimating associated tissues, cell types and
genes for complex phenotypes. We also analyzed 1,871 pub-
lic GWASs of complex phenotypes by the PCGA analysis
framework and put the association results on the PCGA
web server. The associated tissues and cell types of the com-
plex phenotypes were consistent with biological knowledge
overall. We expect the web application and precomputed as-
sociation resource will be widely used in deciphering the ge-
netic mechanisms of complex diseases.

MATERIAL AND METHODS

Collection and process of bulk and single-cell RNA-seq
dataset

We collected bulk RNA-seq datasets from GTEx projects
(version 8) (16) and single-cell RNA-seq datasets from
PanglaoDB (15), Human Cell Landscape (17), Allen Brain
Atlas (18). For bulk RNA-seq datasets, we normalized ex-
pression values by CPM (count per million) within samples
and removed batch effects by TMM (trimmed mean of M
values) (19) across all samples. Then we averaged the ex-
pression values of samples in the same tissues. For single-
cell RNA-seq datasets, we collected UMI (unique molec-
ular identifier) counts matrix of single cells, cell clustering

results and inferred cell-type labels for cell clusters. We fil-
tered out the cells with < 300 UMI counts. Due to low
gene abundance in single cells, we averaged UMI counts of
the top 10% highly expressed cells within each cell cluster.
Cell clusters with < 15 cells or unknown cell-type labels or
from abnormal samples (cancer or other diseases) were re-
moved. Cell clusters identified as the same cell types within
a scRNA-seq dataset were merged. Here, we refer to each
cell cluster in each dataset as a cell type. We normalized cell-
type expression values by CPM. In the mouse scRNA-seq
datasets, genes were mapped to their homologous human
genes by the R package ‘biomaRt’ (version 2.34.2) (20).
The genes were assigned with HGNC gene symbols, and
genes without known HGNC gene symbols were removed.
Finally, we obtained expression profiles of 54 human tis-
sues, 2,214 human cell types and 4,384 mouse cell types. We
also unified the inferred cell-type’s labels and the sampling
tissue/organ names of all cell types from different datasets
(Supplementary Table S1).

Collection and process of public GWAS summary statistics

We collected summary statistics of 1,871 GWASs with a
large sample size (n > 10,000) and full variant records from
Gene Atlas (21), GWAS Atlas (22) and Neale Lab UKBB v3
(http://www.nealelab.is/uk-biobank) according to the col-
lection rules of CAUSALdb (23). The population infor-
mation, sample size, and mapped MeSH terms were ex-
acted from CAUSALdb. It should be noted that GWAS At-
las also collected GWAS summary statistics from the non-
UKBB cohort, while these datasets actually were provided
by other websites, such as GRASP (24) and PGC (https://
www.med.unc.edu/pgc). Here these datasets were regarded
as the GWAS datasets from GWAS Atlas. The collection
details of the GWAS datasets are shown in Supplementary
Table S2. We exacted the P-values and chromosome coor-
dinates of all available variants. Non-GRCh37 coordinates
were converted to GRCh37 coordinates, and the variants
that couldn’t be converted were removed.

PCGA analysis workflow and association landscape con-
struction

The core method of PCGA to estimate associated
tissues/cell types and genes is based on DESE (9) (driver
tissue estimation by selective expression), which was pro-
posed by our group in 2019. DESE estimates driver tissues
and susceptibility genes by integrating GWAS summary
statistics and tissue expression profiles. The underlying
assumption is that phenotype-associated genes tend to be
selectively expressed in driver tissues of phenotype. The
driver tissues are estimated by testing the higher selective
expression of phenotype-associated genes in a tissue or cell
type. Meanwhile, the estimation of phenotype-associated
genes can be promoted by adding selective expression
information in an iterative procedure. The main steps in
estimation are described below (Figure 1A). First, the as-
sociated genes are estimated by ECS (effective chi-square)
(25) with GWAS P-values of phenotype. In this step, the
genotypes of the ancestrally matched panel of the 1000
Genomes Project (26) with the input GWAS samples are
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Figure 1. Workflow of PCGA web server. (A) Workflow of DESE framework (9). REZ, robust regression Z-score, a method to calculate tissue selective
expression (9). ECS, effective chi-square, a gene-based analysis method (25). (B) Workflow of PCGA analysis framework. (C) Workflow to construct PCGA
association landscape.

used to calculate linkage disequilibrium (LD) coefficients,
which are then employed to remove redundant associations
among variants by the ECS (25). Second, the selective
expression profiles of tissues/cell types are calculated by
REZ (robust regression Z-score) (9). Thirdly, the associated
genes and selective expression profiles were inputted into
a model, where the conditional gene-based analysis and
associated tissues/cell-types estimation were iteratively
carried out to output converged results. The associated
tissues/cell types are estimated according to selective
expression enrichment of phenotype-associated genes by
the Wilcoxon rank-sum test. The conditional gene-based
analysis was guided by the selective expression of genes in
the associated tissues/cell types.

PCGA uses a hierarchical estimation strategy to estimate
associated tissues and cell types sequentially. Firstly, the
associated tissues are detected by DESE with bulk RNA-
seq based reference expression profiles. Then PCGA ex-
tracts scRNA-seq based reference expression profile of cell
types belonging to associated tissues to estimate associated
cell types by DESE again (Figure 1B). We mapped the cell
types of scRNA-seq datasets and tissues of bulk RNA-seq
datasets to 43 unified organs/tissues according to their sam-
pling tissues/organs (Supplementary Table S1). Therefore,
PCGA can automatically extract the expression profiles of
cell types belonging to the associated tissues. Meanwhile,
PCGA also allows users to manually select expression pro-
files of cell types by the unified organs/tissues based on
their prior knowledge of the target phenotypes. The as-
sociated genes are also prioritized in two estimation steps
above.

We estimated associated tissues, cell types and genes of
1,871 public GWASs by the above workflow to construct a

phenotype-cell-gene association landscape. The association
landscape can be searched and visualized in the PCGA web
server (Figure 1C).

Input

In the PCGA analysis function, users should upload a
GWAS summary statistics file firstly (Figure 2). The file
should be a tab- or comma-delimited text file containing
at least three columns, i.e. chromosome number, base pair
position (based on hg19/38) and P-value. Each line repre-
sents a variant, and the header line is required. It should
be noted that the variants in the GWAS summary file must
be full because the gene-based association test in PCGA
cannot use the pre-selected variants according to a P-value
threshold. The usage of significant variants will inflate the
false-positive rates of the gene-based test and lead to an un-
reliable inference of associated cell types. After the file is
uploaded successfully, users should fill in several job op-
tions. In this step, the users can select reference expres-
sion profiles of tissues/cell types. In addition, users should
select an ancestrally matched panel of the 1000 Genomes
Project with the input GWAS sample to ensure that the
gene-based association analysis can be performed correctly.
The details of the options are explained on the webpage.
Once the job is submitted successfully, the user will be as-
signed a unique link to check the progress and results of the
job.

PCGA also allows users to access precomputed
phenotype-cell-gene association landscape by search-
ing keywords of phenotypes, tissues/cell types and genes or
browsing the categories’ tree of phenotypes and tissue/cell
types (Figure 2).
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Figure 2. Input and output of PCGA web server. PCGA allows analyzing the user’s uploaded GWAS summary statistics file and searching the precomputed
association landscape.

Output

In the PCGA analysis function, the associated tissues, cell
types and genes are returned to users. The strength of the
association is mainly measured by the P-values. The results
are presented in interactive figures and tables, which can be
downloaded directly. In addition, PCGA provides the ge-
netic similarities between the user’s phenotype and 1,871
precomputed phenotypes. The genetic similarity is mea-
sured by the Jaccard similarity coefficient of significantly
associated genes. The genetic similarity can help users rec-
ognize the genetic relationship and pathogenic mechanism
similarity between uploaded GWAS and public GWASs
(Figure 2).

A similar output will be returned if the user retrieves pre-
computed association landscape. The associated tissues/cell
types and genes will be returned when searching for a phe-
notype. The selective expression profiles of tissues/cell types
and associated phenotypes will be returned when searching
for a gene. When searching for a tissue/cell type, the selec-
tively expressed genes and associated phenotypes will be re-
turned.

Web server implementation

The PCGA web server adopts the Representational State
Transfer (REST) (27) design style to separate the front-
end and back-end designs. The front-end is responsible for
friendly interface display, and the back-end is responsible
for business logic (Figure 3). We use a web user interface

Figure 3. Web server implementation.

(UI) framework on the front-end called Vue (version: 2,
https://vuejs.org) for development, and most of the web-
pages are developed with the Element UI library (version:
2.15.7, https://element.eleme.io/). The vxe-table library (ver-
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sion: 3.4.10, https://github.com/x-extends/vxe-table) is used
to render tables, and the ECharts library (Version: 4.8.0,
https://echarts.apache.org) is used to generate figures. In the
back-end, we use PHP (version: 7.3.23, https://www.php.
net) to write the web application programming interface
(API). We use a non-relational database MongoDB (ver-
sion 4.4.10, https://www.mongodb.com) to store data re-
sources and job information. We run a program on a high-
performance computing cluster (HPC) to monitor the un-
running jobs in the queue database. The main program
for calculating phenotype-associated tissues, cell types and
genes in the back-end is in KGGSEE (https://pmglab.top/
kggsee). The container of the web server is Nginx (version:
1.18.0, https://www.nginx.com).

Global analysis of phenome associated tissues and cell-types

To explore the associated tissues and cell types of 1,871 phe-
notypes globally, we test the enrichment between pheno-
type category and tissue/cell-type category. According to
the clinical characters, the phenotypes are manually classi-
fied into 19 categories (see details in Supplementary Table
S2). The tissues are classified into 12 categories, and the cell
types are classified into six categories (see details in Supple-
mentary Table S1). Then we calculated enrichment P-values
between phenotype categories and tissue/cell-type cate-
gories by hypergeometric test. Assumed that we obtained
a total of N association P-values, of which M association
P-values are significant (FDR-adjusted P-value < 0.05).
There are n association P-values between phenotype cate-
gory H and tissue/cell-type category T, of which k reach
the significance level. Then the enrichment P-value for phe-
notype category H and tissue/cell-type category T is:

PHT = 1 −
k−1∑

x = 0

(
M
x

)
×

(
N − M
n − x

)
(

N
n

)

Comparison to FUMA Cell Type

Watanabe et al. proposed a similar approach to estimate
associated cell types by GWAS summary statistics and
expression profiles of cell types, implemented in the
web server FUMA Cell Type (a subfunction of FUMA,
https://fuma.ctglab.nl) (8). For simplicity, FUMA Cell
Type is hereinafter referred to as FUMA. We compared
PCGA with FUMA in terms of method principle, data
resources, and web server characteristics. We also com-
pared their performance in estimating associated cell
types of three representative complex diseases, i.e. coro-
nary artery disease, major depression and rheumatoid
arthritis. The GWAS summary statistics of three complex
diseases are up-to-date (see details in Supplementary
Table S3). In the first comparison, we used the same
expression dataset to compare the performance of core
methods underlying PCGA and FUMA. We select a
dataset generated by FUMA, i.e. the Tabula Muris FACS
(28) expression dataset, including 119 cell types (https:
//github.com/Kyoko-wtnb/FUMA scRNA data/blob/
master/processed data/TabulaMuris FACS all.txt.gz),

which was used for comparing to other methods in the
FUMA Cell Type paper (8). In the second comparison,
we used respective expression datasets included in PCGA
and FUMA web servers for comparison. For PCGA, the
expression profiles of cell types are automatically selected
based on associated tissues results. All of the unique
cell-type expression datasets are selected to run for FUMA.
Bonferroni-adjusted P < 0.05 is used to define significant
association.

RESULTS

Global analysis of phenome associated tissues and cell-types

We overviewed the phenome-associated tissues and cell
types globally by testing the enrichment between pheno-
type category and tissue/cell-type category (Figure 4, Sup-
plementary Table S4). Most of the associations are con-
sistent with known biology. At the tissue level, psychia-
try and psychology phenotypes are significantly (Bonfer-
roni corrected P < 0.05) associated with nervous system
tissues (P = 2.24 × 10–242). The most significantly associ-
ated tissues of cardiovascular phenotypes are cardiovascu-
lar system tissues (P = 4.70 × 10–23). Immune/blood phe-
notypes are significantly associated with immune/blood tis-
sues (P = 1.95 × 10–62). In addition, body measurement
(including height, BMI, etc.) and metabolism-related phe-
notypes were significantly associated with a wide range
of tissues, including adipose tissue, cardiovascular system,
connective tissue and nervous system. Respiratory system
phenotypes are significantly associated not only with res-
piratory system tissues (P = 8.89 × 10–10) but also with
immune/blood tissues (P = 4.90 × 10–10), which may be
because a good part of respiratory phenotype is related to
immunity (e.g. asthma and rhinitis). At the human cell-
type level, 15 phenotype category-cell type category asso-
ciations are significant, of which 12 are also significant in
the mouse cell-type dataset. Similar to the tissue-level as-
sociation results, most phenotype-cell type associations are
consistent with known biology. For example, in both hu-
man and mouse datasets, psychiatry and psychology phe-
notypes are significantly associated with nerve cells (P = 0).
The cardiovascular phenotypes are significantly associated
with endothelial cells (human P = 3.96 × 10–4, mouse
P = 1.21 × 10–14) and muscle cells (human P = 1.47 × 10–16,
mouse P = 1.70 × 10–36). Immune/blood phenotypes are
significantly associated with immune/blood cells (human
P = 4.35 × 10–7, mouse P = 7.22 × 10–168). Constant with
tissue-level results, body measurement-related phenotypes
are significantly associated with multiple categories of cell
types, i.e. nerve cells (P = 0 in both human and mouse
datasets), connectivity tissue cells (human P = 4.68 × 10–17,
mouse P = 0) and muscle cells (human P = 1.07 × 10–5,
mouse P = 3.39 × 10–36). In addition, respiratory pheno-
types are significantly associated with immune/blood cells
(human P = 1.64 × 10–23, mouse P = 1.78 × 10–107), which
is consistent with the tissue-level findings, suggesting the key
role of immunity in most respiratory phenotypes. In sum-
mary, the above results suggested PCGA analysis frame-
work could effectively estimate the associated tissues and
cell types for complex phenotypes overall.

https://github.com/x-extends/vxe-table
https://echarts.apache.org
https://www.php.net
https://www.mongodb.com
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https://github.com/Kyoko-wtnb/FUMA_scRNA_data/blob/master/processed_data/TabulaMuris_FACS_all.txt.gz
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Figure 4. Enrichment P-values between phenotype categories and tissue/cell-type categories. The horizontal axis of the heatmap represents tissue/cell-type
categories. The color bars above the heatmap represent transcriptome data types (the red bar represents human tissues, the green bar represents human
cell types, and the blue bar represents mouse cell types). The vertical axis represents the phenotype categories. The heatmap colors indicate -log10(P-value),
and asterisks indicate Bonferroni-adjusted P < 0.05. To improve visualization, P-values are thresholded at 10–20.

Case studies

We use the GWAS of asthma (22) as an example to
show the analysis function of PCGA (see results
in https://pmglab.top/pcga/#/results/phenotype task?
task id=edd59e0b827974dc64a755d46dc1c59f). Whole
blood (P = 4.8 × 10–10), spleen (P = 2 × 10–7) and lung
(P = 8.3 × 10–6) are estimated as the top three significant
tissues associated with asthma. T cell is estimated to be the
most significant cell type associated with asthma in both
human (P = 6.6 × 10–9) and mouse (P = 5 × 10–6) datasets.
Many studies have shown that asthma is related to various
T cell types (29,30). PCGA estimated 118 genes as the
significant susceptibility genes of asthma (FDR corrected
P < 0.05). The top 50 similar phenotypes of asthma
mainly include asthma from other GWASs, allergic rhinitis,
rheumatoid arthritis, type 1 diabetes, thyrotoxicosis, etc.
Although these diseases occur in different parts of the
human body, they are all related to immunity (31–35).

We show an example of accessing the PCGA associ-
ation landscape by searching the gene PTPN22 (see the
searching results in https://pmglab.top/pcga/#/results/gene?
id=PTPN22). The top three significant tissues selectively ex-
pressing PTPN22 are immune, i.e. EBV-transformed lym-
phocytes, whole blood and spleen. At the cell type level,
PTPN22 is selectively expressed in T cells and NK cells
in both human and mouse datasets. The associated pheno-
types of PTPN22 mainly include thyroid diseases, rheuma-
toid arthritis and diabetes, which are relevant to immune
abnormalities (34,35). The above association results suggest
PTPN22 plays an important role in maintaining normal im-
munity.

Compare to FUMA

FUMA web server also allows estimating associated cell-
types of complex diseases by GWAS summary statistics, but
PCGA and FUMA are different (Table 1). In the principle
of the method, PCGA is based on an iterative estimation
framework DESE, which subtly allows the estimation of as-
sociated cell types and prioritization of susceptibility genes
to help each other. FUMA estimates associated cell types
by a regression model with associated genes produced by
MAGMA (36). In terms of expression resources, the PCGA
web server includes more cell types (6,598) than FUMA
(2,679). PCGA also integrates bulk RNA-seq datasets of
54 human tissues to estimate associated tissues. Moreover,
the cell type labels and sampling tissue/organ labels of ex-
pression profiles in PCGA are manually unified, making
it easy for users to understand the meaning of cell types.
In contrast, the expression profiles in FUMA are based on
raw cell type labels provided by corresponding studies with
different naming standards, making it difficult to under-
stand the meaning of the cell type labels in some cases. Re-
garding the selection of cell-type expression profiles, PCGA
allows automatically selecting cell types by associated tis-
sues results or manually selecting by unified tissues/organs.
FUMA only allows selecting datasets manually. Most im-
portantly, PCGA provides an association landscape among
phenotypes, tissues/cell types and genes by analyzing 1,871
public GWASs. Below we also compared the performance
of PCGA and FUMA in estimating associated cell types of
three complex diseases.

In the comparison using the same expression dataset,
although the estimation results of PCGA and FUMA

https://pmglab.top/pcga/#/results/phenotype_task?task_id=edd59e0b827974dc64a755d46dc1c59f
https://pmglab.top/pcga/#/results/gene?id=PTPN22
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Table 1. General comparison of PCGA and FUMA

PCGA FUMA

Core Method DESE, subtly allows the estimation of associated
cell types and prioritization of susceptibility genes
to help each other

Regression model based on associated genes
of MAGMA and expression profile

Expression Dataset 6,598 cell types (human and mouse) and 54 human
tissues
Manually unified cell type labels and sampling
tissue/organ labels

2,679 cell types (human and mouse)
Raw cell type labels

Selection of cell types’
expression profile

(1) Automatically select by associated tissues results
(2) Manually select by unified tissues/organs

Manually select by datasets

Phenotype-cell-gene
association landscape

Associated tissues, cell types and genes of 1,871
public GWASs

No

Figure 5. P-values of associated cell-types estimated by PCGA and
FUMA with same expression dataset in three complex diseases. CAD,
coronary artery disease. MDD, major depression. RA, rheumatoid arthri-
tis. The horizontal axis represents -log10(P) of FUMA and the vertical
axis represents -log10(P) of PCGA. Each dot represents a cell type, and
the dot’s color indicates the cell type category. The solid black line rep-
resents y = x. The dashed grey lines represent the significance threshold
(Bonferroni-adjusted P < 0.05). The correlation of the P-values between
PCGA and FUMA is measured by Spearman’s correlation coefficient.

are similar overall (Figure 5, Supplementary Table S5-7),
PCGA shows greater sensitivity and specificity in some
cases. The Spearman’s correlation coefficients of P-values
of associated cell types between PCGA and FUMA are
0.67, 0.21, 0.85 in coronary artery disease (CAD), major
depression (MDD) and rheumatoid arthritis (RA), respec-
tively, and the correlations are significant (P < 0.05). PCGA
estimated 13 significantly (Bonferroni adjusted P < 0.05)
associated cell types for CAD, of which nine cell types
are endothelial cells. Similarly, FUMA estimated 12 signif-
icantly associated cell types for CAD, with nine endothe-
lial cells. Six endothelial cell types are significant in both

PCGA and FUMA. Many studies have reported the impor-
tant roles of endothelial cells in the occurrence and devel-
opment of CAD (37,38). Interestingly, the most significant
cell type estimated by PCGA is endothelial cells of the heart
(P = 1.64 × 10–8, Supplementary Table S5). The most sig-
nificant cell type estimated by FUMA is endothelial cells
of the trachea (P = 1.014 × 10–5). Based on prior knowl-
edge, endothelial cells of the heart may be more relevant
to CAD than endothelial cells of the trachea. For MDD,
both PCGA and FUMA estimated brain neurons as the
most significantly associated cell type with similar P-values
(PPCGA = 2.20 × 10–6, PFUMA = 1.57 × 10–6). In addition,
PCGA specifically estimated two neuroglia cell types as the
significant cell types, i.e. astrocyte (P = 1.21 × 10–4) and
oligodendrocyte precursor cell (P = 2.35 × 10–4). Several lit-
eratures also indicate the important role of neuroglia cells in
the development of MDD (39,40). These studies highlight
the involvement of neuroglia cells in the process of neuro-
plasticity through signaling and immunity, suggesting the
important role of glial cells in the pathophysiology of de-
pression and the development of antidepressants. For RA,
both PCGA and FUMA estimated 12 significant immune
cell types, mainly including B cells, T cells and NK cells
from different body regions. Many studies have indicated
the role of B cells, T cells and NK cells in the development
of RA (41–44). Marrow B cell is estimated as the most sig-
nificant cell type by PCGA (P = 1.06 × 10–9), and marrow
immature T cell is estimated as the most significant cell type
by FUMA (P = 4.66 × 10–6).

In the comparison using respective expression datasets of
PCGA and FUMA, the main estimation results are consis-
tent (Table 2, Supplementary Table S8-9). However, the as-
sociated cell types estimated by PCGA were more refined
in some cases. Both two web servers estimated endothelial
cells and smooth muscle cells as significantly associated cell
types of CAD (Bonferroni adjusted P < 0.05), which are
proved by many kinds of literature (37,38,45). Interestingly,
PCGA also estimated fibroblasts as the associated cell type
for CAD, which is reported to play an important role in
atherosclerosis (46). For MDD, both PCGA and FUMA
estimated neurons as associated cell types. PCGA estimated
three glial cell types, i.e. astrocytes, microglias and oligo-
dendrocytes, as associated cell types of MDD. FUMA esti-
mated one glial cell type, ependymal cells, as an associated
cell type of MDD. Associated cell types of RA estimated by
both PCGA and FUMA are immune/blood cells. However,
the associated cell types estimated by FUMA are relatively
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Table 2. Significantly associated cell types of three complex diseases es-
timated by PCGA and FUMA with respective expression datasets (Bon-
ferroni adjusted P < 0.05). CAD, coronary artery disease. MDD, major
depression. RA, rheumatoid arthritis

PCGA FUMA

CAD Endothelial cells, smooth
muscle cells, fibroblasts,
stellate cells (quiescent
fibroblasts)

Endothelial cells, mural cells
(containing vascular smooth
muscle cells), leukocytes

MDD Neurons, astrocytes,
microglias, oligodendrocytes

Neurons, ependymal cells

RA Lymphocytes, T cells, B cells,
NK cells, dendritic cells,
monocytes, mast cells,
macrophages

Professional
antigen-presenting cells,
leukocytes, blood cells,
macrophages, microglias

rough, such as professional antigen-presenting cells, leuko-
cytes, and blood cells. By contrast, PCGA estimated more
refined immune cell types as associated cell types for RA,
such as B cells, T cells, NK cells, dendritic cells, monocytes,
mast cells and macrophages.

DISCUSSION

The PCGA web server provides a unified framework for
jointly estimating associated tissues, cell types, and genes of
complex diseases and traits by GWAS summary statistics.
It has extensive expression profiles of 54 tissues and 6,598
cell types to support efficiently estimating associated tissues
and cell types for complex phenotypes. By analyzing 1,871
public GWASs, we build a comprehensive phenotype-cell-
gene association landscape and put it on the PCGA web-
server to share with researchers. We also showed that the
associations are consistent with known biology overall, sug-
gesting that the PCGA framework is robust and reason-
able. As far as we know, the association landscape is a re-
source for presenting phenome-associated cell types for the
first time. We expect the association landscape to be use-
ful for annotating complex phenotypes, tissues/cell types,
and genes. Compared to a similar web server FUMA (8) in
estimating associated cell types for three complex diseases,
we showed that PCGA is generally consistent with it. At
the same time, we noticed that PCGA could keenly find
more reasonable phenotype-associated cell types. For ex-
ample, PCGA specifically estimated endothelial cells from
the heart rather than other organs as the most significant
cell type associated with coronary artery disease. More-
over, PCGA uniquely estimated two types of neuroglia cells
as significant cell types associated with major depression,
which was supported by several works of literature (39,40).
This may be because the core method of PCGA, DESE,
performs selective expression-guided conditional gene asso-
ciation analysis to remove the redundant associated genes.
Regarding expression resources, PCGA also provides more
cell types than FUMA and offers unified cell type labels to
make it easier for users to understand the meaning of cell
types.

The basic assumption of PCGA’s core method, DESE,
is that the phenotype-associated genes (regardless of their
directions) tend to be high-selectively expressed in driver
tissues/cell types in normal (or healthy) samples. PCGA

only requires the input of GWAS P-values of variants,
making the analyses of associated genes and associated
tissue/cell types very convenient. Although PCGA does not
consider the direction of the associated genes, our analysis
results show that it can accurately estimate the associated
genes and tissue/cell types of complex phenotypes.

In summary, the PCGA web server provides an online
tool and a comprehensive resource to easily explore associ-
ations between complex phenotypes, tissues/cell types, and
genes. We will continue to expand the PCGA web server to
provide more functions to parse GWAS signals of complex
phenotypes. For example, we can use Mendelian random-
ization methods to recognize the causal gene by integrat-
ing multiple levels of molecular traits quantitative loci data,
such as eQTL and sQTL.
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