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Natural killer T (NKT) cells are specialized CD1d-restricted T cells that recognize lipid 
antigens. Following stimulation, NKT cells lead to downstream activation of both innate 
and adaptive immune cells in the tumor microenvironment. This has impelled the devel-
opment of NKT  cell-targeted immunotherapies for treating cancer. In this review, we 
provide a brief overview of the stimulatory and regulatory functions of NKT cells in tumor 
immunity as well as highlight preclinical and clinical studies based on NKT cells. Finally, 
we discuss future perspectives to better harness the potential of NKT cells for cancer 
therapy.
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iNTRODUCTiON

Both innate and adaptive immune systems respond to tumor cells and participate in immune-
surveillance against tumor (1). Defined immune interactions in the context of cancer include rec-
ognition of tumor-associated antigens or cues by innate cell populations such as antigen-presenting 
cells (APCs) [macrophages and dendritic cells (DCs), neutrophils, and natural killer (NK) cells (2)]. 
Innate immune cells rely on germline encoded pattern recognition receptors to recognize and elicit 
prompt response against cancer-associated danger signals, and also augment components of the 
adaptive immune system, composed of antigen-specific B and T cells (1). One of the key players that 
link the innate and adaptive immune systems is the natural killer T (NKT) cells (3–5). NKT cells are 
innate-like T lymphocytes that possess ability to quickly respond to antigenic stimulation and rapidly 
produce copious amounts of cytokines and chemokines (6). This rapid effect can modulate both 
innate and adaptive immunity and is important in influencing host immune responses to cancer (7).

Natural killer T  cells are a heterogeneous subset of specialized T  cells (8). These cells exhibit 
innate cell-like feature of quick response to antigenic exposure in combination with adaptive cell’s 
precision of antigenic recognition and diverse effector responses (9). Like conventional T  cells, 
NKT cells undergo thymic development and selection and possess T cell receptor (TCR) to recognize 
antigens (10). However, unlike conventional T cells, TCR expressed by NKT cells recognize lipid 
antigens presented by the conserved and non-polymorphic MHC class 1 like molecule CD1d (11). 
In addition to TCRs, NKT cells also possess receptors for cytokines such as IL-12, IL-18, IL-25, and 
IL-23 similar to innate cells such as NK and innate lymphoid cells (12). These cytokine receptors 
can be activated by steady state expression of these inflammatory cytokines even in the absence of 
TCR signals. Thus, NKT cells can amalgamate signals from both TCR-mediated stimulations and 
inflammatory cytokines to manifest prompt release of an array of cytokines (13). These cytokines 
can in turn modulate different immune cells present in the tumor microenvironment (TME) thus 
influencing host immune responses to cancer. Their predominant tissue localization and ability to 
sense cancer-mediated changes in host lipid metabolism or breach in tissue integrity via recognition 
of endogenous lipids, makes NKT cells an ideal candidate for cancer immunotherapy (14).
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TYPe i NKT CeLLS

Broadly, CD1d-restricted NKT cells can be divided into two main 
subsets based on their TCR diversity and antigen specificities. 
Type I (invariant) NKT cells, so named because of their limited 
TCR repertoire, express a semi-invariant TCR (iTCR) α chain 
(Vα14-Jα18 in mice, Vα24-Jα18 in humans) paired with a het-
erogeneous Vβ chain repertoire (V β 2,7 or 8.2 in mice and V β 
11 in humans) (8, 9). The prototypic antigen for type I NKT cells 
is galactosylceramide (α-GalCer or KRN 7000), which was 
isolated from a marine sponge as part of an antitumor screen 
(15). α-GalCer is a potent activator of type I NKT cells, inducing 
them to release large amounts of interferon-γ (IFN-γ), which 
helps activate both CD8+ T cells and APCs (16, 17). The primary 
techniques used to study type I NKT cells include staining and 
identification of type I NKT cells using CD1d-loaded α-GalCer 
tetramers, administering α-GalCer to activate and study the func-
tions of type I NKT cells and finally using CD1d deficient mice 
(that lack both type I and type II NKT) or Jα18-deficient mice 
(lacking only type I NKT) (10). Recent published study reported 
that Jα18-deficient mice in addition to having deletion in the 
Traj18 gene segment (essential for type I NKT cell development), 
also exhibited overall lower TCR repertoire caused by influence 
of the transgene on rearrangements of several Jα segments 
upstream Traj18, complicating interpretations of data obtained 
from the Jα18-deficient mice (18). To overcome this drawback, a 
new strain of Jα18-deficient mice lacking type I NKT cells while 
maintaining the overall TCR repertoire has been generated, 
which should facilitate future studies on type I NKT cells (19). 
Type I NKT cells can be further subdivided based on the surface 
expression of CD4 and CD8 into CD4+ and CD4−CD8− (DN) 
subsets and a small fraction of CD8+ cells found in humans  
(6, 20–24). Type I NKT  cells are present in different tissues in 
both mice and humans but at higher frequency in mice (25, 26). 
Two very unique characteristics of type I NKT cells are that they 
possess dual reactivity to both self and foreign lipids, and that 
even at steady state type I NKT cell have an activated/memory 
phenotype (6, 27, 28). Functionally distinct subsets of NKT cells 
analogous to Th1, Th2, Th17, and TFH subsets of conventional 
T  cells have been described. These subsets express the corre-
sponding cytokines, transcription factors and surface markers of 
their conventional T cell counterparts (29–31). Type I NKT cells 
have a unique developmental program that is regulated by a 
number of transcription factors (32). Transcriptionally, one of 
the key regulators of type I NKT cell development and activated 
memory phenotype is the transcription factor promyelocytic 
leukemia zinc finger (PLZF). In fact, PLZF deficient mice show 
profound deficiency of type I NKT cells and cytokine production 
(33, 34). Other transcription factors that are known to impact 
type I NKT cell differentiation are c-Myc (35, 36), RORγt (37), 
c-Myb (38), Elf-1 (39), and Runx1 (40). Furthermore, transcrip-
tion factors that control conventional T cell differentiation such 
as Th1 lineage specific transcription factor T-bet and Th2 specific 
transcription factor GATA-3 can also affect type I NKT  cell 
development (41–43). Aside from transcription factors, SLAM-
associated protein (SAP) signaling pathway can also selectively 
control expansion and differentiation of type I NKT cell (44, 45).  

Type I NKT cells have been shown to respond to both self and 
foreign α and β linked glycosphingolipids (GSL), ceramides, 
and phospholipids (46). Type I NKT cells have been reported to 
mostly aid in mounting an effective immune response against 
tumor (3, 5, 47–49).

TYPe ii NKT CeLLS

Type II NKT cells also called diverse or variant NKT cells, are 
CD1d-restricted T  cells that express more diverse alpha-beta 
TCRs and do not recognize α-GalCer (50). Type II NKT cells are 
major subset in humans with higher frequency as compared to 
type I NKT  cells (51). Due to absence of specific markers and 
agonistic antigens to identify all type II NKT cells, characteriza-
tion of these cells has been challenging. Different methodologies 
employed to characterize type II NKT cells include, comparing 
immune responses between Jα18−/− (lacking only type I NKT) 
and CD1d−/− (lacking both type I and type II NKT) mice, using 
24 αβ TCR transgenic mice (that overexpresses Vα3.2/Vβ9 TCR 
from type II NKT cell hybridoma VIII24), using a Jα18-deficient 
IL-4 reporter mouse model, staining with antigen-loaded CD1d 
tetramer and asses binding to type II NKT hybridomas [reviewed 
in Ref. (46)]. The first major antigen identified for self-glycolipid 
reactive type II NKT cells in mice was myelin derived glycolipid 
sulfatide (25, 26, 52). Subsequently, sulfatide and lysosulfatide 
reactive CD1d-restricted human type II NKT  cells have been 
reported (53, 54). Sulfatide specific type II NKT cells predomi-
nantly exhibit an oligoclonal TCR repertoire (V α 3/V α 1-J α 
7/J α 9 and V β 8.1/V β 3.1-J β 2.7) (25). Other self-glycolipids 
such as β GlcCer and β GalCer have been shown to activate 
murine type II NKT cells (55–57). Our group recently reported 
that two major sphingolipids accumulated in Gaucher disease 
(GD), β-glucosylceramide (β GlcCer) and its deacylated product 
glucosylsphingosine, are recognized by murine and human type 
II NKT cells (57). In an earlier study, we have also shown that 
lysophosphatidylcholine (LPC), lysophospholipid markedly 
upregulated in myeloma patients was an antigen for human 
type II NKT cells (58). Type II NKT cells can be distinguished 
from type I NKT cells by their predominance in humans versus 
mice, TCR binding and distinct antigen specificities (59). Crystal 
structures of type II NKT TCR-sulfatide/CD1d complex and type 
I NKT TCR-α-GalCer/CD1d complex provided insights into the 
mechanisms by which NKT TCRs recognize antigen (60). The 
type I NKT TCR was found to bind α-GalCer/CD1d complex 
in a rigid, parallel configuration mainly involving the α-chain. 
The key residues within the CDR2β, CDR3α, and CDR1α loops 
of the semi-iTCR of type I NKT  cells were determined to be 
involved in the detection of the α-GalCer/CD1d complex (61). 
On the other hand, type II NKT TCRs contact their ligands 
primarily via their CDR3β loop rather than CDR3 α loops in an 
antiparallel fashion very similar to binding observed in some of 
the conventional MHC-restricted T cells (62). Ternary structure 
of sulfatide-reactive TCR molecules revealed that CDR3 α loop 
primarily contacted CD1d and the CDR3β determined the speci-
ficity of sulfatide antigen (63). The flexibility in binding of type 
II NKT TCR to its antigens akin to TCR–peptide–MHC complex 
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resonates with its greater TCR diversity and ability to respond 
to wide range of ligands. However, despite striking difference 
between the two subsets, similarities among the two subsets have 
also been reported. For example, both type I and type II NKT cells 
are autoreactive and depend on the transcriptional regulator PLZF 
and SAP for their development (55, 64, 65). Although, many type 
II NKT cells seem to have activated/memory phenotype like type 
I NKT cells, in other studies including ours, a subset of type II 
NKT  cells also displayed naïve T  cell phenotype (CD45RA+, 
CD45RO−, CD62high, and CD69−/low) (66, 67). Type II NKT cell is 
activated mainly by TCR signaling following recognition of lipid/
CD1d complex (56, 68) independent of either TLR signaling or 
presence of IL-12 (65, 69).

In tumor and autoimmune disease models, type II NKT cells 
are typically associated with immunosuppression (70–72).

HOw DO NKT CeLL TARGeT TUMOR 
CeLLS?

Several clues exist attributing a significant role of type I NKT cells 
in mediating protective immune response against tumors. 
Decreased frequency and function of type I NKT  cells in the 
peripheral blood of different cancer patients is suggestive of their 
role in effective antitumor immunity (73–78). Increased frequency 
of peripheral blood type I NKT cells in cancer patients predicts a 
more favorable response to therapy (79, 80). Furthermore, recent 
studies found an association between number of tumor-infiltrating 
NKTs with better clinical outcome (79, 81). Notably, α-GalCer, 
the prototypic NKT ligand, was first discovered in a screen for 
antitumor agents (82). Many studies using genetic knockouts and 
murine models of tumor have been useful to discern the role of 
NKT cells in malignancy (83, 84). Type I NKT cells can lead to 
effective antitumor immunity by three mechanisms: (a) direct 
tumor lysis, (b) recruitment and activation of other innate and 
adaptive immune cells by initiating Th1 cytokine cascade, and  
(c) regulating immunosuppressive cells in TME (Figure 1).

DiReCT CYTOTOXiCiTY AGAiNST TUMOR 
CeLLS

Natural killer T cells can eliminate CD1d-expressing transformed 
cells by direct cytolysis using either perforin (85, 86), granzyme B, 
Fas ligand (FasL) (87, 88), or TNF-α-mediated cytotoxic pathways 
(89). Tumor cells expressing CD1d are mainly of myelomonocytic 
and B-cell lineages origin (90), and very few solid tumors have 
also been found to be CD1d-positive (91–95). Surface expres-
sion of CD1d on tumor cells is assumed to directly correlate 
with NKT cell-mediated cytotoxicity (96). With higher expres-
sion of CD1d, resulting in higher tumor cell lysis and thereby 
lower metastasis rates (92, 97), while lack of CD1d expression 
in tumors leads to their escape from recognition by NKT cells, 
and tumor progression in some models (90, 98, 99). These stud-
ies postulate that loss or downregulation of surface expression 
of CD1d favors tumor survival and permits tumor escape from 
NKT cell-mediated immunosurveillance. This concept is further 
strengthened by observations that downregulation of CD1d in 

human breast cancer and multiple Myeloma correlated with 
increased metastatic potential and disease progression (92, 99). 
Similarly, downregulation of CD1d by human papillomavirus in 
infected cervical epithelial cells was linked to their progression to 
cervical carcinoma (100). Another means by which tumor cells 
escape NKT cell-mediated antitumor response was shown in a 
mouse model of lymphoma, where shedding of tumor-associated 
glycolipids was shown to inhibit CD1-mediated presentation to 
NKT cells (101). Interestingly, in chronic lymphocytic leukemia 
(CLL), CD1d expression was found to increase during disease 
progression, counteracting the suggested role of CD1d as an 
anti-survival factor in cancer (102, 103). However, a recent study 
has shown that higher CD1d expression on CLL cells associated 
with disease progression actually led to impairment in both func-
tion and numbers of type I NKT cells (104). CD1d independent 
cytotoxic effect of NKT  cells on various hematopoietic tumor 
cell lines have also been reported (98, 105, 106). Although, the 
mechanisms or tumor specific CD1d—glycolipid complex that 
helps NKT  cells recognize and kill only CD1d-positive tumor 
cells and not normal cells is still enigmatic. Membrane glycolipids 
especially GSL such as globotriaosyl-ceramide (Gb3Cer/CD77), 
gangliosides (GD2, GD3, and GM2) have been shown to be over-
expressed and altered in a range of cancers compared to normal 
tissue (107, 108). Shedding of some of the gangliosides and GSL 
into the TME have also been reported. Recognition of these 
overexpressed GSL and gangliosides on the surface of tumor cells 
may lead to differential recognition and killing of tumor cells by 
NKT cells.

CYTOKiNe-MeDiATeD MODULATiONS  
OF eFFeCTOR CeLLS

In addition to direct tumor lysis, type I NKT cells can activate 
and recruit both innate and adaptive immune cells, such as 
DCs, NK  cells, B  cells, and T  cells through rapid secretion 
of cytokines on activation (109). This is underscored by the 
observed increase in NK cells, CD8+ T cells and macrophages 
among tumor-infiltrating leukocytes brought about by α-GalCer 
injection (110). Owing to partially activated state and the pres-
ence of preformed cytosolic mRNA for various cytokines, type 
I NKT cells can rapidly produce broad spectrum of Th1 and Th2 
cytokines on activation (111–113). The nature and magnitude 
of the type I NKT  cell cytokine response is contingent on a 
number of variables that include the glycolipid antigen, subsets 
of NKT, and tissue location. For example, while α-GalCer-
activated type I NKT cell primarily elicits an IFN-γ, a synthetic 
analog of α-GalCer with a truncated lipid chain OCH elicits 
majorly elicits IL-4 production (114). Further, DN liver subset 
of type I NKT was found to confer protection as compared to 
CD4+ liver subset or IL-4 inducing thymic type I NKT cells in 
MCA-induced fibrosarcoma model (115). Type I NKT cells play 
a crucial role in induction of early immune responses to tumor 
by influencing DC maturation (116). Mostly DCs found in 
TME are immature and inept at activating specific T cells (117). 
Maturation and differentiation of DCs is important in shaping 
the magnitude and polarization of T cell-mediated response (118). 
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FiGURe 1 | Interactions and cross talk between different subsets of natural killer T (NKT) cells and other immune cells in tumor microenvironment (TME). Antigenic 
activated type I NKT cells can promote antitumor immunity by directly killing tumor cells in a CD1d-dependent and -independent mechanism. Type I NKT cells can 
recognize self or foreign lipid antigens presented by different CD1d-expressing antigen-presenting cells (APCs) in TME such as dendritic cells (DCs), TAMs, B cells, 
and neutrophils. On activation type I NKT cells can produce various Th1 and Th2 cytokines leading to reciprocal activation and or modulation of the APCs as well as 
other effector lymphocytes. Major type I NKT cytokine that helps activate DCs and CD8+ T cells is interferon-γ (IFN-γ). Type I NKT cells and DCs reciprocally activate 
each other via CD1d-TCR/lipid antigen and CD40–CD40L interactions. IL-12 produced by type I NKT cell matured DCs stimulates natural killer (NK), NKT, and 
MHC-restricted T cells to produce more IFN-γ which can secondarily activate other antitumor-promoting effector lymphocytes. Mature DCs derived factors as well 
as costimulatory receptors can activate CD8+ T cells to promote adaptive immunity. Type I NKT cells enhance tumor immunity by subduing the actions of tumor 
supporting cells such as TAMs, MDSCs, and suppressive neutrophils. In some instances, type II NKT cells have been shown to suppress the activation of type I 
NKT cells, T cells, NK cells and enhance development of tumor-associated MDSCs, aiding in tumor growth. iTCR, invariant TCR; IL-12, interleukin 12; IL-12R, IL-12 
receptor; CXCL16, chemokine ligand 16; CXCR6, chemokine receptor 6; MDSCs, myeloid-derived suppressor cell; TAM, tumor-associated macrophages; ARG1, 
arginase 1; NOS, nitrous oxide synthase; SAA-1, serum amyloid A1; TCR, T cell receptor.
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A mutually costimulatory interaction between DC and type I 
NKT cells ensues following encounter with CD1d/antigen com-
plexes displayed by immature DCs. Ligation of APC-expressed 
CD40 with upregulated CD40L on type I NKT  cells induces 
DCs’ maturation with higher surface expression of MHC class 
II, the costimulatory molecules CD40, CD80, CD86, CD70 and 
the endocytic receptor DEC205 and potent IL-12 production 
(119, 120). Sustained IL-12 secretion by mature DCs induces 
IFN-γ production by NKT cells (121–126). Mature DCs recip-
rocally enhance expression of CD40L and IL-12 receptor on 
type I NKT  cells providing a strong feed forward signal that 
amplifies IFN-γ responses (119, 127). Ligation of chemokine 
receptor CXCR6 on the surface of type I NKT cells by its ligand 
CXCL16 expressed on APCs can also provide costimulatory 
signal resulting in robust α-GalCer-induced type I NKT activa-
tion (128, 129). α-GalCer-induced type I NKT cells can provide 
cognate licensing for cross-priming CD8 alpha + DCs to produce 

CCL17, which attracts CCR4+CD8+ T cells for subsequent acti-
vation (130, 131). Presence of phenotypic maturation ligands, 
suitable cytokines (IFN-γ), other functional immunostimula-
tory factors on type I NKT licensed DC can induce activation 
of CD8 T cells and their polarization toward antitumor effector 
function (119, 132–134). Release of various cytokines such as 
IL-2, IL-12, and IFN-γ by type I NKT cells leads to activation 
and expansion of NK  cells into lymphokine-activated killer 
(LAK) cells. These LAK cells upregulate the effectors or adhe-
sion molecules such as perforin, NKp44, granzymes, FasL, 
and TRAIL and secrete IFN-γ to adhere and lyse tumor cells 
(135, 136). Type I NKT  cells can form bidirectional interac-
tions with B  cells, wherein B  cells can present lipid antigens 
to type I NKT  cells through CD1d (137) and NKT  cells can 
license B cells to effectively prime and activate antitumor CTL 
responses (138, 139) and can also directly provide B cell help to 
enhance and sustain humoral response (57, 140–143).
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ALTeRiNG THe eFFeCTS OF 
iMMUNOSUPPReSSive CeLLS iN TMe

Tumor-associated macrophages (TAMs) are prominent immu-
nosuppressive immune cells present in the TME (144). TAMs 
contribute to tumor progression by enhancing angiogenesis, 
tumor cell invasion, suppression of NK, and T  cell responses 
(145, 146). Type I NKT  cells were found to co-localize with 
CD1d-expressing TAMs in neuroblastoma and kill TAMs in an 
IL-15 and CD1d-restricted manner (90, 147). Besides TAMs, type 
I NKTs can alter the effects of CD1d+ myeloid-derived suppres-
sor cells (MDSCs)-mediated immune suppression. MDSCs are 
heterogeneous population of cells of myeloid origin, which often 
accumulate during tumor growth and contribute to immune 
escape and tumor progression (148). In a model of influenza A 
viral infection, adoptive transfer of type I NKTs inhibited argin-
ase 1 and nitrous oxide synthase-mediated suppressive activity of 
MDSCs. The ability of type I NKT cells to abolish the suppressive 
activity of MDSCs was found to be dependent on CD1d and 
CD40 interactions (149). In a tumor model, α-GalCer-loaded 
MDSCs facilitate conversion of immature MDSCs to mature 
APCs capable of eliciting cytotoxic NK and T  cell immune 
response against cancer cells (150). De Santo et al. reported type 
I NKT cell-mediated reversal of immunosuppressive activity of 
neutrophils in melanoma, serum amyloid A1 (SAA-1) derived 
as consequence of tumor-associated inflammation induced dif-
ferentiation of IL-10-producing neutrophils causing suppression 
of antigen-specific T  cell responses. Conversely, SAA-1 also 
enhanced CD1d-CD40 dependent interaction between the sup-
pressive neutrophils and type I NKT cells. This crosstalk lead to 
dephosphorylation of Erk, p38, and phosphatidylinositol-3-OH 
kinase, which in turn lead to inhibition of IL-10 secretion and 
promotion of IL-12 production by neutrophils, reinstating the 
proliferation of antigen-specific CD8+ T cells (151).

SUPPReSSiON OF TUMOR iMMUNiTY  
BY TYPe ii NKT CeLLS

In contrast to the established protective role of type I NKT 
in most murine tumor models, type II NKT  cells have been 
shown to possess a more suppressive/regulatory role in tumor 
immunity (4, 59, 65, 152). Comparison of antitumor response 
in Jα18-deficient mice (which lack only type I NKT) with CD1d 
deficient mice (which lack both type I and II NKT cell) revealed 
that type II NKT cells were responsible for suppression of anti-
tumor responses in several murine tumor models (152–154). 
Furthermore, sulfatide-reactive type II NKT cells was shown to 
antagonize the protective antitumor immune responses mounted 
by α-GalCer-stimulated type I NKT cells (47). Sulfatide activated 
murine type II NKT  cells were reported to inhibit proinflam-
matory functions of type I NKT cells, conventional T cells and 
DCs and also induce tolerization of myeloid DCs (155). A major  
attribute of type II NKT-mediated suppression of tumor immu-
nity is elevated production of IL-13 and IL-4 cytokines capable 
of skewing the cytokine response predominantly toward 
tumor-promoting Th2 type. In a mouse model of transformed 
recurrent fibrosarcoma, type II NKT cells was shown to suppress 

cytotoxic T cells through IL-13 production via IL4R and STAT6 
axis and also induce MDSCs producing immunosuppressive 
cytokine TGF-β (71). Similarly, LPC reactive type II NKT cells 
have been shown to preferentially produce IL-13 and exhibit 
immunoregulatory role in myeloma patients (58). Concentration 
of LPC, a phospholipid associated with inflammation, was found 
to be elevated in myeloma sera. Progressive myeloma disease is 
associated with a decline as well as dysfunctional activation of 
type I NKT cells and increased frequency of type II NKT cells  
(58, 78). The preferential production of IL-13, a cytokine implicated 
in promoting tumor growth, by LPC specific type II NKT cells 
suggests their role in disease progression (58). Recently, we have 
shown a possible implication of type II NKT cells in the develop-
ment of B-cell malignancies associated with GD. GD is uniquely 
associated with increased cancer risk particularly with multiple 
myeloma (156). GD is a lysosomal storage disorder caused due 
to an inherited deficiency of the acidic β-glucosidase enzyme, 
resulting in marked accumulation of β-glucosylceramide  
(β GlcCer) and its deacylated product, glucosylsphingosine (LGL1).  
Increased frequency of LGL1-specific type II NKT  cells with 
reduced frequency of type I NKT cells was observed in murine 
model and patients of GD. Interestingly, LGL1 reactive type II 
NKT  cells demonstrated follicular helper T  cell phenotype and 
were able to provide help to germinal center B  cells to produce 
lipid-reactive antibodies (57). In both patients and mice with 
GD having monoclonal gammopathy, the monoclonal immuno-
globulin was found to be reactive to Gaucher lipids (157). Though 
studies described earlier hint to pro- and antitumor functional 
dichotomy between type I and type II NKT, respectively, there are 
several emerging evidences challenging this paradigm, and the 
pro/antitumor roles of these cells may be context or activation-
dependent. While type I NKT cells have been shown to assume 
immune-suppressive role in several tumor settings (158–161), 
a recent study showed that CpG-activated type II NKT  cells 
secreted IFN-γ rather than IL-13, which in turn enhanced the 
activation and function of CD8+ T cells and contributed to the 
antitumor effect of CpG in the B16 melanoma model (162).

PReCLiNiCAL STUDieS

There are several theoretical advantages for harnessing type I 
NKT  cells against cancer. NKT  cell can simultaneously target 
both MHC positive and negative tumor cells due to ability to 
activate both antigen-specific CD8+ T cells and NK cells. Second, 
type I NKT cells show strong adjuvant activity thereby activating 
both innate and adaptive immune cells. Finally, NKT cells have 
the ability to convert immature and or tolerogenic DCs found in 
tumor bed into mature DCs capable of initiating tumor specific 
CD8+ T  cell response. However, major limitations in targeting 
NKT cell for tumor treatment are the cancer-mediated reversible 
defect in the number and function of type I NKT cells (73, 74,  
76–78, 80, 163, 164). Circulating type I NKT  cell deficiency 
leads to decreased proliferation and IFN-γ production by type 
I NKT cells, consequently skewing immune response to a pro-
tumor Th2 cytokine profile (73, 74, 76–78, 80, 163, 164). In line 
with this observation, reduced type I NKT  cell frequency was 
shown to correlate with poor survival, while increased type I 
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NKT cell numbers capable of making IFN-γ have positive prog-
nostic value for survival in cancer patients (74, 80, 163–167). To 
restore the numbers and function of type I NKT cells in cancer 
patients and murine models, several approaches like administra-
tion of α-GalCer either alone or with IL-12, administration of 
APCs (DC or irradiated tumor cells) with α-GalCer, adoptive 
transfer of ex vivo expanded and/or activated type I NKT cells, 
and finally a combination of α-GalCer with antibodies or fusion 
proteins have been exploited. Data from numerous studies on 
variety of experimental and spontaneous murine tumor models 
have shown significant role for NKT cells in launching of power-
ful antitumor immune responses (Table 1).

Type I NKT cells were shown to be indispensable in mediat-
ing IL-12-mediated antitumor effects in low- and moderate-
dose IL-12 treatment models (91, 169, 204). IL-12 was found 
to activate the NKT  cell-mediated lysis of tumor cells and also 
induce IFN-γ production by type I NKT  cells. Administration 
of soluble α-GalCer leads to activation and expansion of type I 
NKT  cells, creating a milieu of immune-stimulatory cytokines 
including IFN-γ and costimulatory molecules, resulting in matu-
ration of host APC thus enhancing antitumor T  cell response. 
IFN-γ production by type I NKT cell was found to be pivotal in 
inducing NK cell activation, proliferation of memory CD4+ and 
CD8+ T  cell effector functions, and inhibiting angiogenesis, all 
contributing to effective immune response against tumor. One of 
the major drawbacks of administering soluble free α-GalCer is 
that it causes type I NKT cell to adopt an anergic state causing 
unresponsiveness to sequential stimulation with α-GalCer (205). 
To circumvent this problem, mice were administrated DCs loaded 
with either α-GalCer alone or in combination with tumor anti-
gens (180, 182, 187, 190, 206). α-GalCer-pulsed APCs induced a 
more prolonged cytokine response as well as powerful antitumor 
immune response than α-Galcer alone (180, 207). Another recent 
immunotherapeutic approach has been to load autologous irradi-
ated tumors, which act as source of tumor antigens with α-GalCer 
(121, 182, 187, 188). A big improvement of this approach is 
CD1d-mediated cross-presentation of endogenous glycolipids 
and or α-GalCer from tumor cells to NKT cells, leading to DC 
maturation and consequently effective long-term T cell resistance 
to the tumor (128). Another approach involved adoptive transfer 
of ex vivo expanded and or activated type I NKT cells to restore 
type I NKT cell numbers in preclinical models of melanoma and 
lymphoid neoplasms (194, 196, 208). This approach has been 
shown to be more effective compared to the i.v. administration of 
α-GalCer (194). Finally, combination therapy using monoclonal 
Abs targeting CD1d alone or in combination with tumor cell 
death inducing and immunomodulating mAbs has emerged as 
promising immunotherapeutic candidate against CD1d-negative 
cancers (199). Stirnemann and Corgnac et al. attempted to target 
α-GalCer to tumor site by using constructs consisting of either 
α-GalCer/CD1d molecules alone or fused to tumor Ag specific 
scFv fragments in a colon carcinoma and murine melanoma model, 
respectively, and reported specific tumor localization of type I 
NKT activating potent antitumor responses compared to α-GalCer 
alone (200, 201). Preclinical studies obtained using chimeric 
antigen receptors (CARs) with engineered type I NKT cells have 
yielded promising result. CAR-bearing type I NKT cells effectively 

localized to the tumor sites, eliminating tumor cells, and exhibited 
potent and specific cytotoxicity against TAMs without producing 
graft-versus-host disease (202). Recently, CD62L+CD19−specific 
CAR-engineered NKT cells have been shown to possess superior 
therapeutic activity in a B-cell lymphoma model (203).

CLiNiCAL TRiALS OF NKT CeLLS

Based on the preponderance of data from preclinical mice 
models, showing that activation of type I NKT cells plays a sub-
stantial role in providing protection against tumor growth and 
metastasis of several tumors, different clinical trials have been 
initiated to harness NKT  cell’s antitumor potential (Table  2). 
However, while direct administration of soluble α-GalCer in 
cancer patients was well tolerated, it failed to yield any clinical 
response (209). Potential reasons for the low efficacy in human 
trials could be attributed to insufficient drug delivery, inter-
individual variability and very low type I NKT cell numbers at 
baseline, induction of anergy or regulatory IL-10-producing 
type I NKT cells (205, 210, 211). To overcome these limitations 
of soluble α-GalCer administration and improve NKT-mediated 
antitumor responses, multiple clinical trials were performed using 
autologous α-GalCer-pulsed APCs in patients with advanced and 
recurrent non-small cell lung cancer, head and neck squamous 
cell carcinoma (Table 2). Different types of APCs and alternative 
routes to efficiently target activated NKT cells directly to cancer 
region were optimized to achieve objective antitumor responses. 
Though promising, this strategy too suffers from certain caveats 
like the treatment is again dependent on the baseline NKT levels, 
which are inevitably low in most cancer patients. Second, it is 
difficult to obtain large number of autologous monocyte-derived 
DCs (moDCs) from immune suppressed cancer patients and 
also cumbersome for ex vivo generation of DCs in compliance 
with good manufacturing practices regulations. Another strategy 
involves adoptive transfer of in vitro-expanded autologous type I  
NKT populations. Clinical trials using this approach in non-
small cell lung cancer and advanced melanoma do show increase 
in type I NKT expansion and elevated serum IFN-γ levels in vivo; 
however, further optimization of the protocols and perhaps com-
bination approaches such as combining with immune checkpoint 
blockade may be needed to obtain a significant clinical response. 
Remarkably, combining activated type I NKT cells and α-GalCer-
pulsed APCs has been reported to enhance the low antitumor 
response observed with monotherapy employing either NKT or 
APCs alone in head and neck squamous cell carcinoma patients 
(212, 213). Similarly, combining regimen of α-GalCer-pulsed 
DCs and the immune-modulatory drug lenalidomide in treating 
multiple myeloma patients leads to type I NKT expansion with 
downstream activation of NK, monocytes and decrease in tumor-
associated M spikes (214).

eMeRGiNG APPROACHeS

Adoptive Transfer of Type i NKT Cells
Advanced cancer patients with low NKT cell numbers may bene-
fit from development of in vitro methods for generation of large 
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TABLe 1 | Preclinical studies on natural killer T (NKT) cell-targeted immunotherapeutics.

Therapy regimen Murine model/
cancer type

Outcome immunological response Reference

injection of α-GalCer/iL-12

IL-12 injection FBL-3 
erythroleukemia, B16 
melanoma

Inhibition of tumor growth and 
metastasis

 1. NKT cell produced IL-12-mediated tumor rejection
 2. NKT cell-mediated direct cytotoxicity

(168)

α-GalCer (i.v.) Colon 26 hepatic 
metastasis 
adenocarcinoma 
model

 1. Regression of Colon 26 nodules
 2. Inhibition of tumor growth in liver

Activation of natural killer (NK) cells, T cells, and NK1+ T cells (169)

α-GalCer (i.p.) B16 melanoma cells Prevented liver metastasis NK cell-mediated killing (170)

α-GalCer (i.v.) Spontaneous 
liver metastasis of 
reticulum cell sarcoma 
(M5076)

Suppressed growth of established 
liver metastases, prolonged survival 
time

Increased IFN-γ and IL-12 production by liver NKT cells (171)

α-GalCer + OVA (i.v.) or 
OCH + OVA (i.v.)

C57BL/6 mice s.c. 
injected with murine 
thymoma that express 
OVA

Slower growth of tumor up 
until 10 days followed by rapid 
regression

Induction of cytotoxic effector cells with potent antitumor 
activity

(172)

α-GalCer (i.v.) + IL-12 i.p. BL6-B16 melanoma Effective against metastatic tumor NKT activation with induction of Th1 immunity and CD4+, 
CD8+ T cells, and B cells activation

(173)

α-GalCer (i.v.) + IL-12 i.p. BL6-B16-HM 
melanoma

Prevention of tumor at early stages NKT and NK activation (174)

α-GalCer (i.p.) 2 μg  
single dose

B16-BL6 melanoma 
cells

Subcutaneous tumor growth and 
tumor-induced angiogenesis at 
early time points

 1. IFN-γ-dependent inhibition of tumor angiogenesis by 
α-GalCer

 2. α-GalCer-activated NKT cells and secondarily activated 
NK cells contributed to the inhibition of endothelial cell 
proliferation via their IFN-γ production

(175)

α-GalCer (i.p.) MCA induced 
sarcoma, mammary 
carcinomas in  
Her-2/neu transgenic 
mice, spontaneous 
sarcomas in 
p53−/−mice

Inhibition of primary tumor 
formation

 1. NK cell and T cell activation
 2. Higher serum levels of IFN-γ and IL-4
 3. TRAIL-dependent antimetastatic activity

(176)

α-GalCer (i.p.) + IL-12 i.p. TRAMP prostate 
tumor

Reversion of prostrate tumor-
mediated IFN-γ secretion by type I 
NKT cells

α-GalCer and IL-12 bypasses tumor cell-induced block of 
IFN-γ production

(91)

α-GalCer (i.v.) single dose Mantle cell lymphoma  1. Inhibition of disease 
development

 2. Delayed disease progression

NKT activation (177)

α-GalCer (i.p.) 2 μg 5T33 multiple 
myeloma

Significant reduction in micro vessel 
density

Possible role of IFN-γ from stimulated type I NKT cells in the 
antiangiogenic process

(178)

Priming with DNA vaccine 
expressing human 
papillomavirus type 16 E7+

α-GalCer and boosting with 
E7-pulsed DC-1

E7-expressing tumor 
model TC-1

Prolonged survival of vaccinated 
animals

E7-specific CD8+ T-cell responses (179)

Ex vivo-generated dendritic cell (DC) loaded with α-GalCer/dying tumor cells

α-GalCer-loaded DC B16 melanoma cells, 
LLC (lung metastatic 
model)

 1. Inhibition of tumor metastasis in 
liver and lung

 2. Eradication of established tumor 
metastasis

Activation of NKT cells (180)

α-GalCer-loaded ES DC 
genetically engineered to 
express a model antigen 
OVA + SLC/CCL21

MO4 (ova expressing 
melanoma)

 1. Protection against tumor
 2. Enhanced antitumor activity, 

rejection of tumor cell

Synergic activation of antigen reactive CTL and α-GalCer-
activated NKT cells

(181)
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Therapy regimen Murine model/
cancer type

Outcome immunological response Reference

α-GalCer + CD4-hepatic NKT MCA-induced 
sarcoma

Tumor regression NA (115)

α-GalCer-loaded irradiated 
tumor cells

A20 lymphoma, Meth 
A sarcoma, J558

Long-lived tumor immunity 1.  Type I NKT, CD8+ T cells, CD4+ T cells contribute to 
tumor resistance

 2. Activation and proliferation of antigenic specific T cells
 3. Secretion of IFN-γ and IL-2

(182)

α-GalCer-loaded DC Ductal pancreatic 
adenocarcinoma

Decrease in tumor growth and 
prolonged survival

Expansion of IFN-γ-producing NKT (183)

α-GalCer-loaded tumor cell A20 lymphoma Tumor regression, resistance to 
tumor challenge

CD4+ T cells mediate antitumor activity (184)

α-GalCer-loaded tumor cell B16 melanoma 
cells, WEHI-3B 
myelomonocytic 
leukemia, EL4 
thymoma tumor cells 
transfected with 
CD1d

Better survival with metastatic 
development thwarted

NKT and NK cell activation with induction of IFN-γ and 
IL-12p70 secretion

(185)

BM DC loaded with 
combination of tumor Ag and 
α-GalCer and anti-CD25 Ab

B16 melanoma cells Delayed onset of tumor growth Prolonged proliferative burst of responding CD8+ T cells (186)

α-GalCer-loaded irradiated 
tumor cells

VK*Myc mice, AML-
ET09G, Eu-myc 
lymphoma

Reduction in tumor load, resistance 
to rechallenge

 1. Expansion NKT and NK cells
 2. IL-12-dependent IFN-γ production by NKT and NK cells

(187)

α-GalCer-loaded mature DC 5T33 multiple 
myeloma

Increased survival Increased IFN-γ and Th1 response that tapers off at the end 
of disease

(178)

α-GalCer-loaded irradiated 
tumor cells

Multiple myeloma 
(MOPC315BM)

 1. Retarded tumor growth
 2. Regression of established 

tumors
 3. Protection of surviving mice from 

tumor rechallenge

 1. Expansion and activation of NKT cell in vivo
 2. Induction of strong myeloma specific antibodies and 

CD8+ CTL and memory T cells
 3. Decreased Treg frequency

(188)

α-GalCer delivery to CD8a+ 
DCs with anti-DEC205 
decorated nanoparticles

B16 F10 melanoma 
cells expressing Ova

Potent antitumor responses Type I NKT-mediated transactivation of NK cells, DCs, and 
gDT cells

(189)

α-GalCer-loaded irradiated 
tumor cells

C1498 leukemia 
model

 1. Prevention of new leukemia 
development however no 
protective benefit in established 
leukemia

NKT cells are activated by langerin+CD8+ DC leading to 
generation of CD4+CD8+ T cells

(190)

α-GalCer loaded in CXCL16hi 
BMDCs

B16 melanoma model Inhibition of metastasis Increased IFN-γ+ and Tbet+ type I NKT cells, enhanced 
serum IFN-γ levels

(191)

α-GalCer-loaded tumor 
cell + TLR9 agonist 
(CpG1826)

Colon cancer  1. Inhibition of established tumor
 2. Prolonged survival of tumor 

bearing mice
 3. Resistance to tumor rechallenge

 1. Type I NKT activation and DC maturation
 2. IFN-γ secretion by type I NKT and NK cells
 3. Redirection of Th2 response toward Th1 immune 

response by DC produced IL-12

(192)

α-GalCer-loaded 
DCs + tumor cells

B-cell lymphoma Potent long-lasting tumor-specific 
antitumor immune response

 1. Type I NKT cells secreting IFN-γ
 2. T cells and NK cell-mediated antitumor effect

(193)

Adoptive transfer of ex vivo-expanded NKT cells

IL-12-activated NKT i.v. 
injection (4 times)

B16 melanoma cells Inhibition of tumor metastasis Strong cytotoxic activity by activated NKT on metastasized 
tumor cells in liver

(194)

In vitro-expanded CD8+ 
NKT cells redirected with 
humanized bispecific 
antibody F(ab′)2HER2xCD3

HER2-expressing 
ovarian carcinoma

Rapid tumor regression with 
prolonged survival

High efficacy of target cell killing by CD8+ NKT (195)

α-GalCer + ex vivo-expanded 
NKT

C1R B-cell 
lymphoblasts

Reduced growth of CD1d+ 
leukemic cells and eradication of 
neoplastic clone

 1. NKT cell-mediated cytotoxicity on CD1d+ nodules
 2. Presence of NKT cells infiltrating lymphoid nodules

(196)
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Therapy regimen Murine model/
cancer type

Outcome immunological response Reference

Tumor-sensitive 
T cells + CD25+ 
NKT cells + epigenetic drug 
decitabine

Carcinoma Prolonged survival of animals 
bearing metastatic tumor cells

 1. Decitabine functioned to induce the expression of 
highly immunogenic cancer testis antigens in the tumor, 
while also reducing the frequency of myeloid-derived 
suppressor cells (MDSCs)

 2. The presence of CD25+ NKT cells rendered T cells 
resistant to remaining MDSCs

(197)

Monoclonal antibodies stimulating NKT and α-GalCer with fusion proteins

Anti-CD1d mAbs 4T1 mammary 
carcinoma, R331 
renal carcinoma 
and CT26L5 colon 
adenocarcinoma

Suppression of established tumor 
growth

 1. Activation of CD1d+ antigen-presenting cell to produce 
tumor inhibiting IFN-γ and IL-12

 2. Blocking of type II NKT cells activity in these models

(198)

Combination mAbs anti-DR5+ 
CD137+CD1d (1DMab)

4T1 mammary 
carcinoma, R331 
renal carcinoma, 
and CT26L5 colon 
adenocarcinoma

Suppression and or eradication of 
established tumors

Tumor rejection was dependent on CD8+ T cells, IFN-γ, and 
CD1d and partially dependent on NK cells and IL-12

(199)

α-GalCer-loaded recombinant 
soluble (sCD1d) + HER2-
specific scFv antibody 
fragment

HER2-expressing B16 
melanoma model

Potent inhibition of lung metastasis Specific localization to tumor site and accumulation of type I 
NKT, NK, and T cells at tumor site

(200)

α-GalCer-loaded sCD1d 
fusion proteins

MC38 colon 
carcinoma transfected 
with human CEA

Inhibition of tumor growth  1. Strong and prolonged reactivity of type I NKT cells
 2. IFN-γ production by NK and NKT cells
 3. Direct lysis by NKT cells

(201)

Type i NKT chimeric antigen receptor (CAR)

CAR.GD2 NKT with CD28, 
4-1BB

Metastatic 
neuroblastoma

Potent antitumor activity and long-
term survival

 1. Potent dose dependent cytotoxicity against GD2-positive 
neuroblasts

 2. Enhanced in vivo persistence of NKT cells with systemic 
elevation of Th1 cytokines

 3. Effective localization to tumor site without inducing GVHD

(202)

CD62L+ CAR.CD19 NKT B-cell lymphoma Prolonged survival of tumor 
bearing mice and sustained tumor 
regression

CD62L+ NKTs have prolonged persistence in vivo (203)
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numbers of functional NKT cells which can be further used for 
adoptive transfers. NKT cells have been generated from CD34+ 
cells isolated from cord blood using IL-15 and stem cell factor 
(flt-3 ligand) in liquid culture system. Watarai et al. successfully 
differentiated murine induced pluripotent stem cells (iPSCs) 
into functional NKT  cells in  vitro that secreted large amounts 
of Th1 cytokine IFN-γ acting as adjuvant and antitumor agent 
(223). Recently, protocol to generate human type I NKT  cells 
in  vitro from iPSC that are competent in eliciting antitumor 
activity has been generated (224). Human type I NKT cells can 
also be reprogrammed to pluripotency followed by redifferentia-
tion back to type I NKT cells in vitro using an IL-7/IL-15-based 
cytokine combination (225). The immunological features of re- 
differentiated type I NKT cells and their unlimited availability from 
iPSCs offer a potentially effective immunotherapy against cancer. 
Functionally mature human NKT cells have been also generated 
from bone marrow-derived adult hematopoietic stem-progenitor 
cells by expansion with CD1d-Ig-based artificial-presenting cells 
(226). Owing to the feasibility of producing large quantities of 
competent NKT cells, stem cell-derived type I NKT cells offer a 
promising strategy for effective anticancer immunotherapy.

ALTeRNATe LiGANDS

As discussed earlier, while α-GalCer is a potent activator of type I 
NKT cells, α-GalCer suffers from few drawback that limits its use 
as effective cancer immunotherapeutic. For example, α-GalCer 
induces anergy in type I NKT  cells. This has led to preclinical 
exploration of several alternate ligands that are now poised to enter 
the clinic. Synthetic glycolipids or α-GalCer analogs chemically 
modified to induce more precise and predictable cytokine profile 
than α-GalCer have been synthesized and tested. These analogs as 
compared α-GalCer, show superior anticancer immunity in tumor 
mouse models and therefore hold great potential as an alternative 
vaccine adjuvant (227–229). As compared to α-GalCer, alterna-
tive non-glycosidic type I NKT-cell agonist threitol ceramide pro-
moted stronger activation of human and mouse type I NKT cells 
and stronger antitumor responses in comparison to α-GalCer, 
making it potential candidate for NKT cell-based clinical trials 
(230). Another interesting prospect is encapsulating α-GalCer or 
other lipids in nanoparticle carriers or liposomes decorated with 
Abs or ligands to target specific APCs. These approaches have sev-
eral advantages like slower release of α-GalCer, specific targeting 
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TABLe 2 | Clinical studies using natural killer T (NKT) cell-targeted immunotherapeutics.

Treatment injection site, number of 
injections/cycles

Tumor 
type

Number 
of 

patients

Safety Clinical outcome immunological response Reference

Direct α-GalCer injection

α-GalCer i.v., 50–4,800 µg/m2; 3 days  
4 weekly cycle

Solid 
tumors

24 No dose 
limiting 
toxicity

 1. 7/24 patient stable disease for 
123 days

 2. No clinical response

 1. Transient decrease in type I NKT and natural killer (NK) cells 
from circulation

 2. Increased serum cytokine levels of IFN-γ and GM-CSF in 5/24 
patients

 3. Cytotoxicity in 7/24 patients.
 4. The effect was dependent on pretreatment type I NKT cell 

numbers.

(209)

Ex vivo-generated dendritic cell (DC) pulsed with α-GalCer

α-GalCer-pulsed CD1d-
expressing immature 
monocyte-derived DCs 
(moDCs)

i.v., 2 doses over 2-week cycle Metastatic 
malignancy

12 No 
severe 
toxicity

 1. 2/12 patients had decreased 
serum tumor markers

 2. 1 subject developed extensive 
necrosis of tumor-infiltrating bone 
marrow

 3. 2 patients with hepatic infiltration 
had reduction in serum 
hepatocellular enzyme levels.

 4. Clinically apparent treatment 
specific inflammatory response at 
tumor sites

 1. NKT cell, T cell activation
 2. Increase in NK cell numbers, activation and enhanced 

cytotoxicity
 3. Increased IFN-γ (10/10) and IL-12 (6/9) levels in serum

(215)

α-GalCer-pulsed IL-2/
GM-CSF cultured 
PBMCs

i.v., 4 doses, 5 × 107 cells (level 1) 
5 patients, 2.5 × 108 cells (level 2) 
3 patients, 3 × 109 cells (level 3) 
3 patients

Non-small 
cell lung 
cancer

11 No 
severe 
toxicity

Stable disease in 3 patients  1. Expansion of type I NKT cells in 3/11 patients
 2. Elevated IFN-γ mRNA levels in 1/11 patients

(216)

α-GalCer-pulsed 
immature moDCs

i.v., 4 injections of 1 × 109 cells Non-small 
cell lung 
cancer

17 No 
severe 
toxicity

Stable disease in 5 patients, median 
survival time 18.6 months

 1. Expansion of type I NKT cells in 16/17 patients
 2. Elevated IFN-γ-producing cells by ELISPOT in 10/17 patients

(217)

α-GalCer-pulsed 
immature moDCs

4 treatments total with iv., 2 
treatments, and intradermal (i.d.) 
2 treatments, doses ranging from 
5 × 105, 5 × 106, and 2–5 × 107 
cells

Metastatic 
solid tumor

12 Safe 
and well 
tolerated

 1. Stable disease in 6/10 patients
 2. 3 patients show minor objective 

defined as reduction in tumor 
mass/marker

 3. 9/12 had transient therapy related 
tumor inflammation

Dose of 5 × 106 via i.v. route gave the most reproducible result of 
NKT activation resulting in increased circulating type I NKT cells 
levels with NK and T cell activation and increased serum IFN-γ 
levels

(218)

α-GalCer-pulsed IL-2/
GM-CSF cultured 
PBMCs

i.v., 1 injection Non-small 
cell lung 
cancer

4 No 
serious 
toxicity

NA  1. Increased mobilization of type I NKT cells into primary site of 
the lung cancer

 2. Augmented IFN-γ-producing ability of tumor-infiltrating type I 
NKT cells

(219)

α-GalCer-pulsed 
antigen-presenting cell 
(APCs)

Nasal sub-mucosal injections, 2 
treatments with 1-week interval

Head 
and neck 
squamous 
cell 
carcinoma

9 Safe 
and well 
tolerated

1 patient showed partial response, 7 
patients showed stable disease

 1. Increase in circulating type I NKT numbers (4/9)
 2. Expansion of α-GalCer reactive IFN-γ-producing cells in 

PBMCs (8/9)

(220)
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Treatment injection site, number of 
injections/cycles

Tumor 
type

Number 
of 

patients

Safety Clinical outcome immunological response Reference

α-GalCer-pulsed mature 
moDCs

i.v. 2 injections Advanced 
cancer

5 Safe 
and well 
tolerated

Patients had stable disease. 3 
patients had decreased M spike 
levels in serum and urine

 1. >100-fold expansion of type I NKT cell subsets sustained up 
to 5 months after vaccination

 2. Type I NKT cell activation was associated with increased 
serum levels of IL-12p40, IP-10, and MIP-1β

(221)

Adoptive transfer of autologous ex vivo-expanded NKT cells

Ex vivo-expanded 
NKT cells with 
autologous α-GalCer-
pulsed PBMCs

i.v., 2 doses, 1 × 107 cells (level 1) 
6 patients, 2.5 × 107 cells (level 2) 
3 patients

Non-small 
cell lung 
cancer

9 No 
adverse 
effects

 1. No tumor regression
 2. Stable disease in 2/9 patients

 1. Absolute number of circulating type I NKT cells increased in 
2/3 case receiving level 2 dose

 2. IFN-γ production augmented in all 3 cases receiving level 2 
dose

(222)

Ex vivo-expanded 
NKT cells

i.v., 3 infusions of 25 × 107 cells/
infusion spaced 2 weeks apart 
with pretreatment of GM-CSF 
before cycle 2 and 3 to enhance 
DC functions

Advanced 
melanoma

9 No 
adverse 
effects

 1. Patients deceased (3/9)
 2. Patients progressed (3/9). Median 

follow-up for 63 months

 1. Type I NKT infusions appeared to cause transient peak of 
circulating type I NKT cells that were enhanced by GM-CSF 
pretreatment

 2. Increased number of activated monocytes
 3. Elevated IFN-γ production (5/8)

(208)

Combination therapies

Ex vivo-expanded 
NKT cells (intra-arterial) 
and autologous 
α-GalCer-pulsed 
PBMCs (via nasal 
submucosal)

1 × 108 α-GalCer-loaded 
APCs submucosal injections (2 
injections) followed by in vitro 
activated type I NKT cells (i.a) into 
tumor feeding artery (1 injection)

Head 
and neck 
squamous 
cell 
carcinoma

8 Serious 
adverse 
event 
(1). Mild 
adverse 
events (7)

 1. Partial response (3/8)
 2. Stable disease (4/8)
 3. Progressive disease (1/8)

 1. Increase in circulating type I NKT numbers (6/8)
 2. Expansion of α-GalCer reactive IFN-γ-producing cells in 

PBMCs (7/8)

(212)

Ex vivo-expanded 
NKT cells (intra-arterial) 
and autologous 
α-GalCer-pulsed 
PBMCs (via nasal 
submucosal)

1 × 108 α-GalCer-loaded APCs 
submucosal injections (1 injection) 
followed by in vitro activated type 
I NKT cells (i.a) into tumor feeding 
artery (1 injection)

Head 
and neck 
squamous 
cell 
carcinoma

10 No 
adverse 
effects

 1. Objective tumor regression (5/10)
 2. Stable disease (5/10)
 3. Antitumor effects (8/10)

 1. Expansion of type I NKT in PBMC (7/10) and TIL correlating 
with partial response (6/6)

 2. Elevated expansion of IFN-γ spot forming cells in PBMCs 
(8/10) and in tumor tissue

(213)

α-GalCer-pulsed mature 
moDCs + LEN

i.v., LEN (oral 10 mg/day), 28 day 
×3 cycles

Multiple 
myeloma

6 Safe 
and well 
tolerated

3/4 patients show reduction in 
tumor-associated M spike after 
therapy

Activation of NKT, NK, monocyte, and eosinophils (214)

TABLe 2 | Continued

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


12

Nair and Dhodapkar NKT Immunotherapy

Frontiers in Immunology | www.frontiersin.org September 2017 | Volume 8 | Article 1178

of APC subset, lower amounts of α-GalCer required to activate 
NKT  cells than soluble α-GalCer (231). Positive therapeutic 
effect of α-GalCer-loaded octa-arginine modified liposomes was 
reported in melanoma murine model (232). Administration of 
α-GalCer and ovalbumin coencapsulated PLGA nanoparticles 
provided significant prophylactic and therapeutic responses in 
mouse melanoma model by enhancing activation and tumor 
infiltration of the antigen-specific CD8+ T cell (233).

COMBiNATiON APPROACHeS

A major limitation of the initial studies targeting NKT  cells 
in cancer is that these studies were conducted using single 
agent strategies and did not account for blockade of immune 
checkpoints or other immune-suppressive factors. PD-1:PD-L 
pathway has been shown to play an important role in mediat-
ing αGalCer-induced anergy in NKT cells. Antibody-mediated 
blockade of PD-1:PD-L interactions at the time of α-GalCer 
treatment prevent the induction of type I NKT anergy and also 
enhance the antitumor activities of αGalCer. Therefore, com-
bination of NKT-targeted therapies with PD-1:PD-L blockade 
should be considered (234). Synthetic lipopeptide vaccines based 
on conjugation of MHC-binding peptide epitopes to α-GalCer 
displayed promising antitumor activity in a melanoma model. 
The principle behind these vaccines is to simultaneously provide 
both adjuvant and antigen to the same cell in a controlled fash-
ion. Application of this vaccine technology using different tumor 
antigens might serve as a novel strategy for diverse malignancies 
(235). Combination of type I NKT-targeted DC vaccine with 

low dose of lenalidomide led to promising clinical activity in 
myeloma (214). Therefore, there is an unmet need to pursue 
combination approaches targeting type I NKT  cells to better 
harness the antitumor properties of type I NKT cells in the clinic.

CONCLUDiNG ReMARKS

Natural killer T cells are an important component of the TME 
and play key roles in regulating antitumor immunity. Although 
preclinical studies with NKT  cell-targeted therapies in murine 
tumor models have been positive, clinical translation of these 
results has proven challenging. Translational challenge could 
be attributed to incomplete knowledge of human NKT subsets. 
Generation of improved preclinical models that replicate human 
NKT cell response is needed to gain insights into the cross talk 
between APCs and NKT subsets and to improve the efficacy of 
NKT cell-targeting therapies.
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