
Enabling Training of Neural Networks
on Noisy Hardware
Tayfun Gokmen*

IBM Research AI, Yorktown Heights, NY, United States

Deep neural networks (DNNs) are typically trained using the conventional stochastic
gradient descent (SGD) algorithm. However, SGD performs poorly when applied to
train networks on non-ideal analog hardware composed of resistive device arrays with
non-symmetric conductance modulation characteristics. Recently we proposed a new
algorithm, the Tiki-Taka algorithm, that overcomes this stringent symmetry requirement.
Here we build on top of Tiki-Taka and describe a more robust algorithm that further relaxes
other stringent hardware requirements. This more robust second version of the Tiki-Taka
algorithm (referred to as TTv2) 1. decreases the number of device conductance states
requirement from 1000s of states to only 10s of states, 2. increases the noise tolerance to
the device conductance modulations by about 100x, and 3. increases the noise tolerance
to the matrix-vector multiplication performed by the analog arrays by about 10x. Empirical
simulation results show that TTv2 can train various neural networks close to their ideal
accuracy even at extremely noisy hardware settings. TTv2 achieves these capabilities by
complementing the original Tiki-Taka algorithm with lightweight and low computational
complexity digital filtering operations performed outside the analog arrays. Therefore, the
implementation cost of TTv2 compared to SGD and Tiki-Taka is minimal, and it maintains
the usual power and speed benefits of using analog hardware for training workloads. Here
we also show how to extract the neural network from the analog hardware once the
training is complete for further model deployment. Similar to Bayesian model averaging, we
form analog hardware compatible averages over the neural network weights derived from
TTv2 iterates. This model average then can be transferred to another analog or digital
hardware with notable improvements in test accuracy, transcending the trained model
itself. In short, we describe an end-to-end training and model extraction technique for
extremely noisy crossbar-based analog hardware that can be used to accelerate DNN
training workloads and match the performance of full-precision SGD.

Keywords: learning algorithms, training algorithms, neural network acceleration, Bayesian neural network, in-
memory computing, on-chip learning, crossbar arrays, memristor

INTRODUCTION

Deep neural networks (DNNs) (LeCun et al., 2015) have achieved tremendous success in multiple
domains outperforming other approaches and even humans (He et al., 2015) at many problems:
object recognition, video analysis, and natural language processing are only a few to mention.
However, this success was enabled mainly by scaling the DNNs and datasets to extreme sizes, and
therefore, it came at the expense of needing immense computation power and time. For instance, the
amount of compute required to train a single GPT-3 model composed of 175B parameters is

Edited by:
Oliver Rhodes,

The University of Manchester,
United Kingdom

Reviewed by:
Shimeng Yu,

Georgia Institute of Technology,
United States

Emre O. Neftci,
University of California, Irvine,

United States

*Correspondence:
Tayfun Gokmen

tgokmen@us.ibm.com

Specialty section:
This article was submitted to

Machine Learning and Artificial
Intelligence,

a section of the journal
Frontiers in Artificial Intelligence

Received: 22 April 2021
Accepted: 16 August 2021

Published: 09 September 2021

Citation:
Gokmen T (2021) Enabling Training of
Neural Networks on Noisy Hardware.

Front. Artif. Intell. 4:699148.
doi: 10.3389/frai.2021.699148

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991481

ORIGINAL RESEARCH
published: 09 September 2021
doi: 10.3389/frai.2021.699148

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.699148&domain=pdf&date_stamp=2021-09-09
https://www.frontiersin.org/articles/10.3389/frai.2021.699148/full
https://www.frontiersin.org/articles/10.3389/frai.2021.699148/full
http://creativecommons.org/licenses/by/4.0/
mailto:tgokmen@us.ibm.com
https://doi.org/10.3389/frai.2021.699148
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.699148

tremendous: 3,600 Petaflops/s-days (Brown et al., 2020),
equivalent to running 1,000 state-of-the-art NVIDIA A100
GPUs, each delivering 150 Teraflops/s performance for about
24 days. Hence, today’s and tomorrow’s large models are costly to
train both financially and environmentally on currently available
hardware (Strubell et al., 2019), begging for faster and more
energy-efficient solutions.

DNNs are typically trained using the conventional stochastic
gradient descent (SGD) and backpropagation (BP) algorithm
(Rumelhart et al., 1986). During DNN training, matrix-matrix
multiplications; hence repeated multiply and add operations
dominate the total workload. Therefore, regardless of the
underlying technology, realizing highly optimized multiply and
add units and sustaining many of these units with appropriate
data paths is practically the only game everybody plays while
proposing new hardware for DNN training workloads (Sze et al.,
2017).

One approach that has been quite successful in the past few
years is to design highly optimized digital circuits using the
conventional CMOS technology that leverages reduced-
precision arithmetic for the multiply and add operations.
These techniques are already employed to some extent by
current GPUs (Nvidia, 2021) and other application-specific-
integrated-circuits (ASIC) designs, such as TPUs (Cloud TPU,
2007) and IPUs (Graphcore, 2021). There are also many research
efforts extending the boundaries of the reduced precision
training, using hybrid 8-bit (Sun et al., 2019) and 4-bit (Sun
et al., 2020) floating-point and 5-bit logarithmically scaled
(Miyashita et al., 2016) number formats.

Alternative to digital CMOS, hardware architectures
composed of novel resistive cross-point device arrays have
been proposed that can deliver significant power and speed
benefits for DNN training (Gokmen and Vlasov, 2016;
Haensch et al., 2019; Burr et al., 2017; Burr et al., 2015; Yu,
2018).We refer to these cross-point devices as resistive processing
unit [RPU (Gokmen and Vlasov, 2016)] devices as they can
perform all the multiply and add operations needed for training
by relying on physics. Out of all multiply and add operations
during training, 1/3 are performed during forward propagation,
1/3 are performed during error backpropagation, and finally, 1/3
are performed during gradient computation. RPU devices use
Ohm’s law and Kirchhoff’s law (Steinbuch, 1961) to perform the
multiply and add needed for the forward propagation and error
backpropagation. However, more importantly, RPUs use the
device conductance modulation and memory characteristics to
perform the multiply and add needed during the gradient
computation (Gokmen and Vlasov, 2016).

Unfortunately, RPU based crossbar architectures have had
only minimal success so far. That is mainly because the training
accuracy on this imminent analog hardware strongly depends on
the cross-point elements’ conductance modulation characteristics
when the conventional SGD algorithm is used. One of the key
requirements is that these devices must symmetrically change
conductance when subjected to positive or negative pulse stimuli
(Gokmen and Vlasov, 2016; Agarwal et al., 2016). Theoretically, it
is shown that only symmetric devices provide an unbiased
gradient calculation and accumulation needed for the SGD

algorithm. Whereas any non-symmetric device characteristic
modifies the optimization objective and hampers the
convergence of SGD based training (Gokmen and Haensch,
2020; Onen et al., 2021).

Many different solutions are proposed to tackle the SGD’s
converge problem on crossbar arrays. First, widespread efforts to
engineer resistive devices with symmetric modulation
characteristics have been made (Fuller et al., 2019; Woo and
Yu, 2018; Grollier et al., 2020), but a mature device technology
with the desired behavior remains to be seen. Second, many high-
level mitigation techniques have been proposed to overcome the
device asymmetry problem. One critical issue with these
techniques is the serial access to cross-point elements either
one-by-one or row-by-row (Ambrogio et al., 2018; Agarwal
et al., 2017; Yu et al., 2015). Serial operations such as reading
conductance values individually, engineering update pulses to
force symmetric modulation artificially, and carrying or resetting
weights periodically come with a tremendous overhead for large
networks. Alternatively, there are approaches that perform the
gradient computation outside the arrays using digital processing
(Nandakumar et al., 2020). Note that irrespective of the DNN
architecture, 1/3 of the whole training workload is in the gradient
computation. For instance, for the GPT-3 network, 1,200
Petaflops/s-days are required solely for gradient computation
throughout the training. Consequently, these approaches
cannot deliver much more performance than the fully digital
reduced-precision alternatives mentioned above. In short, there
exist solutions possibly addressing the convergence issue of SGD
on non-symmetric device arrays. However, they all defeat the
purpose of performing the multiply and add operations on the
RPU device and lose the performance benefits.

In contrast to all previous approaches, we recently proposed a
new training algorithm, the so-called Tiki-Taka algorithm
(Gokmen and Haensch, 2020), that performs all three cycles
(forward propagation, error backpropagation, and gradient
computation) on the RPU arrays using the physics and
converges with non-symmetric device arrays. Tiki-Taka works
very differently from SGD, and we showed in another study that
non-symmetric device behavior plays a useful role in the
convergence of Tiki-Taka (Onen et al., 2021).

Here, we build on top of Tiki-Taka and present a more robust
second version that relaxes other stringent hardware issues by
orders of magnitude, namely the limited number of states of RPU
devices and noise. We refer to this more robust second version of
the Tiki-Taka algorithm as TTv2 for the rest of the paper. In the
first part of the paper, we focus on training and present TTv2
algorithm details and provide simulation results at various
hardware settings. We tested TTv2 on various network
architectures, including fully connected, convolutional, and
LSTMs, although the presented results focus on the more
challenging LSTM network. TTv2 shows significant
improvements in the training accuracy compared to Tiki-Taka,
even at much more challenging hardware settings. In the second
part of the paper, we show an analog-hardware-friendly
technique to extract the trained model from the noisy
hardware. We also generalize this technique and apply it over
TTv2 iterates and extract each weight’s time average from a

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991482

Gokmen Training Neural Networks on Noisy Hardware

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

particular training period. These weight averages provide a model
that approximates the Bayesian model average, and it
outperforms the trained model itself. With this new training
algorithm and accurate model extraction technique, we show
that the noisy analog hardware composed of RPU device arrays
can provide scalable training solutions that match the performance
of full-precision SGD.

PART I: Training
In this section, we first give an overview of the device arrays and
device update characteristics used for training. Then we present a
brief background on Tiki-Taka. Finally, we detail TTv2 and
provide comprehensive simulation results on an LSTM
network at various hardware settings.

Device Arrays and Conductance
Modulation Characteristics
Resistive crossbar array of devices performs efficient matrix-
vector multiply (y � Wx) using Ohm’s law and Kirchhoff’s
law. The device array’s stored conductance values form a
matrix (W), whereas the input vector (x) is transmitted as
voltage pulses through the columns, and the resulting vector
(y) is read as current signals from the rows. However, only
positive conductance values are allowed physically.
Therefore, to encode both positive and negative matrix
elements, a pair of devices is operated in differential mode.
With the help of the peripheral circuits supplying the voltage
inputs and reading out the differential current signals, logical
matrix elements (wij) are mapped to physical conductance
pairs as

wij � Κ(gij − gij,ref) (1)

where Κ is a global gain factor controlled by the periphery, and gij
and gij,ref are the conductance values stored at each pair
corresponding to the ith row and jth column. Moreover,
crossbar arrays can be easily operated in the transpose mode
by changing the periphery’s input and output directions. As a
result, a pair of arrays with the supporting peripheral circuits
provide a logical matrix (also referred to as a single tile) that any
algorithm can utilize to perform a series of matrix-vector
multiplications (mat-vec) using W and WT .

For training algorithms, the efficient update of the stored
matrix elements is also an essential component. Therefore, device
conductance modulation and memory characteristics are utilized
to implement a local and parallel update on RPU arrays. During
the update cycle, input signals are encoded as a series of voltage
pulses and simultaneously supplied to the array’s rows and
columns. Note that the voltage pulses are applied only to the
first set of RPU devices, and the reference devices are kept
constant. As a result of voltage pulse coincidence, the
corresponding RPU device changes its conductance by a small
amount bi-directionally, depending on the voltage polarity. This
incremental change in device conductance results in an
incremental change in the stored weight value, and the RPU
response is governed by Eq. 2.

wij ←wij ∓ Δwmin,ijFij(wij) − ∣∣∣∣Δwmin,ij

∣∣∣∣Gij(wij) (2)

In Eq. 2, ∓ sign is decided by the external voltage pulse
polarity, whereas Δwmin,ij is the incremental weight change due to
single pulse coincidence, and Fij(wij) and Gij(wij) are the
symmetric (additive) and antisymmetric (subtractive)
combinations of the positive and negative conductance
modulation characteristics (Gokmen and Haensch, 2020), all
of which are the properties of the updated device
corresponding to the ith row and jth column. Eq. 2 is very
general and governs the computation (hardware-induced update)
performed by the tile for all sorts of RPU device behaviors,
assuming the device conductance modulation characteristics
are some function of the device conductance state. If the
conductance modulations are much smaller than the whole
conductance range of operation, Eq. 3 can be derived from
Eq. 2.

wij ←wij + η[δi × xj]Fij(wij) − η
∣∣∣∣[δi × xj]∣∣∣∣Gij(wij) (3)

In Eq. 3, xj and δi represent the input values used for updates
for each column and row, respectively corresponding to
activations and errors calculated in the forward and
backward cycles, and η is a scalar controlling the strength of
the update, all of which are inputs to pulse generation circuitry
at the periphery. Here, we use the stochastic pulsing scheme
proposed in Ref Gokmen and Vlasov (2016), and during the
parallel update, the number of pulses generated by the periphery
is bounded by npulse � ⌈ηmax(|δi|)max(

∣∣∣∣xj∣∣∣∣)/μΔw⌉, where μΔw is
the mean of Δwmin,ij for the whole tile. Using npulse stochastic
translators generate pulses with the correct probability;
therefore, Eq. 3 is valid in expectation. Whereas in the limit
of a single pulse coincidence, the RPU response is governed
by Eq. 2.

Figure 1A illustrates a pulse response of a linear and
symmetric device, where F(w) � 1 and G(w) � 0, and the
hardware-induced update rule simplifies to the SGD update
rule of wij ←wij + η[δi × xj]. In the literature, this kind of
device behavior is usually referred to as the “ideal” device
required for SGD. For a non-linear but symmetric device,
F(w) deviates from unity and becomes a function of w, but
G(w) remains zero. For non-symmetric devices, G(w) also
deviates from zero and becomes a function of w, hence
differing from the form required by SGD. Figure 1B illustrates
an exponentially saturating non-symmetric device where
wij ←wij + η[δi × xj] − η

∣∣∣∣[δi × xj]
∣∣∣∣w provides the computation

performed by this device. Although this form of update
behavior causes convergence issues for SGD, Tiki-Taka trains
DNNs successfully with all sorts of non-symmetric devices
(Gokmen and Haensch, 2020). Therefore, in contrast to SGD,
all sorts of non-symmetric device behaviors can be considered
“ideal” for Tiki-Taka.

Tiki-Taka’s training performance depends on the successful
application of the symmetry point shifting technique (Kim et al.,
2019), which guarantees G(w � 0) � 0 for all elements in the tile.
This behavior is illustrated for the device in Figure 1B, where the
strengths of the positive and negative weight increments are equal

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991483

Gokmen Training Neural Networks on Noisy Hardware

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

in size at w � 0. The symmetry point shifting is achieved by
programming the reference device conductance to a value
corresponding to the updated device’s symmetry point. For
the rest of the paper, we assume the symmetry point shifting
is also applied in the context of TTv2. Although we developed
techniques to eliminate this requirement, it is beyond the scope of
this paper and will be published elsewhere.

Algorithms
SGD, Tiki-Taka, and TTv2 all use the error backpropagation, but
they process the gradient information differently and hence are
fundamentally distinct algorithms. Figures 2A,B show
schematics of SGD and Tiki-Taka dynamics (iterations),
respectively. Tiki-Taka replaces each weight matrix W of SGD
with two matrices (referred to as matrix A and C) and creates a
coupled dynamical system by exchanging information between

the two. As shown in Ref Onen et al. (2021), the non-symmetric
behavior is a valuable and required property of the device in the
Tiki-Taka dynamics. During the information exchange between
the two systems, device asymmetry creates a dissipation
mechanism, resulting in minimization of the system’s total
energy (Hamiltonian); hence Tiki-Taka is also called Stochastic
Hamiltonian Descent (Onen et al., 2021). However, the noise
introduced during the transfer of the information (processed
gradients) from A to C caused additional test error for Tiki-Taka
and needed to be addressed (Gokmen and Haensch, 2020).

The schematic in Figure 2C illustrates the TTv2 dynamics,
highlighting our main contribution. TTv2 introduces an
additional stage (H), between the transfer from A to C, which
performs integration in the digital domain, providing a low
pass filtering function. Furthermore, the model’s parameters
are stored solely on C and only updated if H reaches a
threshold value. Because of these modifications in TTv2, the
model’s parameters are updated more slowly but with higher
confidence, bringing significant benefits against various
hardware noise issues. Details of the algorithm are
provided below.

Tiki-Taka Algorithm
Algorithm 1 outlines the details of the Tiki-Taka algorithm. Tiki-
Taka uses two matrices, A and C, and the neural network
parameters are defined by W � cA + C, where c is a scalar
hyperparameter set between [0,1]. Using W, Tiki-Taka
computes the activations (x) and the error signals (δ) by
utilizing the conventional backpropagation algorithm. The
activation and error computations are identical to SGD and
therefore omitted from the algorithm description. Also, there
are multiple layers, but Algorithm 1 only illustrates the
operations performed on a single layer for simplicity. After
performing the forward propagation and the error
backpropagation on A and C (lines 8 and 9), Tiki-Taka
updates only A by employing the hardware-induced parallel
update (line 10) using x and δ. ηa is the learning rate used for
updating A. These operations are repeated for ns times, a
hyperparameter of Tiki-Taka. After every ns update on A, an
analog mat-vec is performed on A with an input vector u,
resulting in a vector v (line 14). The vector u is generated
each time locally, and it is either a one-hot encoded vector or
a column vector of a Hadamard matrix used in a cyclic fashion.

FIGURE 2 | Schematics of SGD, Tiki-Taka, and TTv2 dynamics.

FIGURE 1 | Pulse responses and weight modulation characteristics are
illustrated for two different devices. (A) Symmetric and linear device: Weight
increments (red) and decrements (blue) are equal in size and do not depend on
the weight. (B) Exponentially saturating device: Weight increments and
decrements both have linear dependencies on the weight. However, there
exists a single weight value at which the strengths of the weight increment and
decrement are equal. This point is called the symmetry point, and it is atw � 0
for the illustrated example.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991484

Gokmen Training Neural Networks on Noisy Hardware

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Using the generated u vector and the result of f (v), C is updated
by employing the hardware-induced parallel update (line 15).

f (v) is a pointwise function: f (vi) � { vi, if |vi|≥T
0, otherwise

where T is

set to the mat-vec noise. ηc is the learning rate used for updating
C. These operations are repeated for the data examples in the
training dataset for multiple epochs until a converge criteria is
met. Following the same practices described in Ref Gokmen and
Haensch (2020), here we also use the one-hot encoded u vectors
and the thresholding f (v) for the LSTM simulations.

TTv2 Algorithm
Algorithm 2 outlines the details of the TTv2 algorithm. In
addition to A and C matrices allocated on analog arrays, TTv2
also allocates another matrix H in the digital domain. This matrix
H is used to implement a low pass filter while transferring the
gradient information processed by A to C. In contrast to Tiki-
Taka, TTv2 uses only the Cmatrix to encode the neural network’s
parameters, corresponding to c � 0. Therefore, the activation (x)
and error (δ) computations are performed using C (lines 10 and
11). TTv2 does not change the updates performed on A. After ns
updates, a mat-vec is performed on A. Unlike Tiki-Taka, TTv2
only uses a one-hot encoded u vector while performing a mat-vec
on A. This provides a noisy estimate of a single row of A, and the
results are stored in v. After this step, the significant distinction
between Tiki-Taka and TTv2 appears. Instead of using u and v to
update C, TTv2 first accumulates v (after scaling with ηc) on H’s
corresponding row, referred to as H(row � t). During this digital
vector-vector addition, themagnitude of any element inH(row � t)
may exceed unity. In that case, the corresponding elements are
reset back to zero, and a single pulse parallel update on C is
performed. The C update of TTv2 uses the sign information of the
elements that grew in amplitude beyond one and the row
information t. After these steps, TTv2 loops back and repeats
these operations for other data examples until it reaches
convergence.

Array Model
Weuse a device model like the one presented in Figure 1B but with
significant array level variability and noise for the training
simulations. We simulate stochastic translators at the periphery
during the update, and each coincidence event triggers an
incremental weight change on the corresponding RPU as
described below. We also introduce noise and signal bounds
during the matrix-vector multiplications performed on the arrays.

During the update, the weight increments (Δw+
ij) and

decrements (Δw−
ij) are assumed to be functions of the current

weight value. For the positive branchΔw+
ij � Δwmin,ij(1 − slope+ij × wij)

and for the negative branch Δw−
ij � Δwmin,ij(1 + slope−ij × wij), where

slope+ij and slope−ij are the slopes that control the dependence of the
weight changes on the current weight values, and Δwmin,ij is the
weight change due to a single coincidence event at the symmetry
point. This model results in three unique parameters for each
RPU element. All these parameters are sampled independently
using a unit Gaussian random variable and then used throughout
the training, providing device-to-device variability. The slopes are
obtained using slope+ij � μs(1 + σsξ

+
ij) and slope−ij � μs(1 + σsξ

−
ij),

where μs � 1.66, σs is set to 0.1, 0.2, or 0.3 for different
experiments, and ξ are the independent random samples. The
simulation results were insensitive to σs; therefore, we only show
results corresponding to σs � 0.2. The weight increments at the
symmetry point are obtained using Δwmin,ij � μΔw(1 + σΔwξij),
where σΔw � 0.3 and μΔw is the array average varied from 0.6
× 10−4 up to 0.15 for different experiments to study the effects
number of states on training accuracy. We define the number of
states as the ratio of the nominal weight range to the nominal
weight increment at the symmetry point; therefore, 2/(μsμΔw)
provides the average number of states. Note that this definition of
the number of states is very different from the definition used for
devices developed for memory applications, and it should not be
compared against multi-bit storage elements. Besides, additional
Gaussian noise is introduced to each weight increment and
decrement to capture the cycle-to-cycle noise: For the

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991485

Gokmen Training Neural Networks on Noisy Hardware

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

multiplicative noise model Δw∓
ij →Δw∓

ij (1 + σcycleξ), whereas for
the additive noise model Δw∓

ij →Δw∓
ij + Δwmin,ijσcycleξ, where

σcycle is set to 0.3 or 1 for different experiments, and ξ is
sampled from a unit Gaussian for each coincidence event.

During the matrix-vector multiplications, we inject additive
Gaussian noise into each output line to account for analog noise.
Therefore, the model becomes y � Wx + σMVξ, where
σMV � 0.06, corresponding to 10% of the nominal weight
maximum (1/μs). Moreover, the matrix-vector multiplications
are bounded to 20 times the nominal weight maximum to
account for signal saturation at the output lines. The input
signals are assumed to be between [−1, 1] with a 7-bit input
resolution, whereas the outputs are quantized assuming a 9-bit
ADC. To mitigate the shortcomings of the signal bounds, we use
the noise, bound, and update management techniques described
in Ref Gokmen et al. (2017).

Training Simulations
We performed training simulations for fully connected,
convolutional, and LSTM networks: the same three networks
and datasets studied in Ref Gokmen and Haensch (2020).
However, the presented results focus on the most challenging
LSTM network referred to as LSTM2-64-WP in Ref Gokmen
et al. (2018). This network is composed of two stacked LSTM
blocks, each with a hidden state number of 64. Leo Tolstoy’s
War and Peace (WP) novel is used as a dataset, and it is split into
training and test sets as 2,933,246 and 325,000 characters with a
total vocabulary of 87 characters. This task performs a
character-based language model where the input to the
network is a sequence of characters from the WP novel, and
the network is trained with the cross-entropy loss function to
predict the next character in the sequence. LSTM2-64-WP has
three different weight matrices for SGD, and including the

FIGURE 3 | LSTM training simulations for SGD, Tiki-Taka, and TTv2
algorithms. Different color curves use an array model with non-symmetric
devices, μΔw � 0.001 (corresponding to 1,200 states), and the multiplicative
cycle-to-cycle update noise at σcycle � 0.3. The square symbols show
the SGD training using linear and symmetric devices where all devices’ slope
parameters are set to zero while all other array parameters remain unchanged.
The open circles are the floating-point baseline.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991486

Gokmen Training Neural Networks on Noisy Hardware

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

biases, they have sizes 256 × (64 + 87 + 1) and 256 × (64 + 64 + 1)
for the two LSTM blocks and 87 × (64 + 1) for the fully
connected layer before the softmax activation. Each matrix of
SGD maps to two seperate A and C matrices for Tiki-Taka and
TTv2.

Figure 3 shows simulation results for SGD, Tiki-Taka, and
TTv2 for non-symmetric device arrays with μΔw � 0.001
(corresponding to 1,200 average number of states) and the
multiplicative cycle-to-cycle noise σcycle � 0.3. Additionally, we
simulate the SGD training using symmetric device arrays where
all devices’ slope parameters are set to zero while all other array
parameters remain unchanged. We also note that without
changing the analog hardware settings, we virtually remap the
nominal weight range from [−0.6, 0.6] to [−2, 2] using the digital
scaling trick shown in Ref Rasch et al. (2020) for all LSTM
simulations. This remapping slightly increases SGD and Tiki-
Taka’s training performance compared to the results published in
Ref Gokmen and Haensch (2020). We also optimized Tiki-Taka’s
hyper-parameters to achieve the best possible training
performance at this modified weight range.

In Figure 3, Tiki-Taka performs significantly better than SGD
for non-symmetric devices, but a clear gap exists between the
symmetric device SGD and the Tiki-Taka results. This gap is due
to the noise during the analog mat-vec performed on A (line 14 of
Tiki-Taka). Ref Gokmen and Haensch (2020) showed that the
remaining gap closes if the noise during the mat-vec on A is
reduced by 10x to σMV � 0.006; however, this low noise setting is
unrealistic for analog hardware. In contrast, TTv2 shows
indistinguishable results compared to the symmetric device

SGD, even when the mat-vec noise on A is at σMV � 0.06.
Therefore, these simulation results prove the benefits of
introducing the filtering stage while transferring information
from A to C, and TTv2 increases the algorithm’s noise
tolerance to the mat-vec performed by the analog arrays at
least by 10x compared to Tiki-Taka.

To further examine the resilience of TTv2 to other analog
hardware issues, namely the number of states and the cycle-to-
cycle update noise, we performed training simulations by varying
μΔw many decades from 0.6 × 10−4 to 0.15. This 2,500x increase in
μΔw causes a 2,500x reduction in states’ number on RPU devices
from 20,000 down to 8. Furthermore, as μΔw increases, the
amount of noise existing during the pulsed updates increases
by 2,500x since cycle-to-cycle noise is defined relative to the state
definition on each device as described above. Figure 4
summarizes these simulation results, where the test error at
the end of the 50th epoch is reported. For each data point in
Figure 4, we finetuned each algorithm’s hyper-parameters
independently and reported the best training results. Both
SGD and Tiki-Taka are very sensitive to the number of states
and the update noise as the test error increases quickly with an
increase in μΔw. Whereas the error for TTv2 remains unchanged
for many decades and highlights the orders of magnitude
increased tolerance of TTv2 to the limited number of states
and the update noise. Compared to SGD and Tiki-Taka, TTv2
is at least 100x more resilient to these two common hardware
issues that appear during the update cycle on analog arrays.

Finally, in Figure 5, we additionally tested the success of TTv2
at an extremely noisy hardware setting. These simulations assume
μΔw � 0.08 corresponding to an average of 15 states, but with an
even higher cycle-to-cycle update noise setting with the additive
noise model at σcycle � 1. Figures 5A–C illustrate (for three
different devices) the amount of update noise and the array
level variability used for TTv2. The blue curves show the
evolution of the weights after each pulse during training. The
red curves show the sign of the updates and the expected average
saturation value for the corresponding device for positive and
negative pulses. The saturation values are very different due to
array level variability, and the response to each pulse is very noisy
due to the additive cycle-to-cycle update noise. As a comparison,
we also show the response of a linear and symmetric device with
σcycle � 0.3 and more than 1,000 states in Figure 5D. The noise is
not even visible for this device used only for the SGD simulations,
further emphasizing the burden imposed on the TTv2 algorithm.

The training simulations in Figure 5E show that TTv2
achieves acceptable training results even at these extremely
noisy hardware settings. Figure 5E also shows a slightly
modified TTv2 implementation with a hysteretic threshold
that achieves a better result than TTv2. In this modified TTv2
implementation, we only changed line 20 of TTv2 from hit � 0 to
hit � sign(hit)0.6. This change makes the thresholding event
asymmetric and hysteretic: Back to back same sign updates on
C happens with a 0.4 threshold, whereas back to back different
sign updates must overcome a threshold of 1.6. These hysteretic
updates allow the system to correct itself quickly if the previous
update caused an undesired modulation on the weight. Note that
the update noise is so large that it may even cause a change in the

FIGURE 4 | LSTM training simulations for SGD, Tiki-Taka, and TTv2
algorithms as a function of μΔw. 10x increase in μΔw results in a simultaneous
10x reduction in the number of states and a 10x increase in the cycle-to-cycle
update noise. Circles correspond to an array model with non-symmetric
devices, whereas squares are for symmetric and linear devices. All symbols
report the test error at the end of the 50th epoch, and the error bars capture
the test error fluctuations for the last five epochs. Lines are guides to the eye.
The floating-point baseline is shown with the black horizontal line at 1.32 test
error. After random weight initialization, an untrained network gives ∼4.46 test
error corresponding to a random guess.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991487

Gokmen Training Neural Networks on Noisy Hardware

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

weight opposite to the intended direction, as illustrated in Figures
5A–C. Furthermore, same sign updates are encouraged to
accelerate the learning along the dimensions that have higher
confidence.

Finally, we emphasize that, in contrast to SGD and Tiki-Taka,
TTv2 only fails gracefully at these extremely challenging
hardware settings. We note that the continued training
further improves the performance of TTv2 until 200 epochs,
and a test error of 1.57 is achieved for the modified TTv2. This
test error is almost identical to one achieved by the symmetric
device SGD baseline with 1,200 states and many orders of
magnitude less noise. All these results show that TTv2 is
superior to Tiki-Taka and SGD, especially when the analog
hardware becomes noisy and provides a very limited number of
states on RPU devices.

Implementation Cost of TTv2
The true benefit of using device arrays for training workloads
emerges when the required gradient computation (and
processing) step is performed in the array using the RPU
device properties. As mentioned in the introduction, the
gradient computation is 1/3 of the training operations
performed on the weights that the hardware must handle
efficiently. Irrespective of the layer type, such as convolution,
fully connected, or LSTM, for an n × n weight matrix in a neural
network, each gradient processing step per weight reuse has a
computational complexity of O(n2). RPU arrays perform the
required gradient processing step efficiently at O(1) constant
time using array parallelism. Specifically, analog arrays deliver
O(1) time complexity simply because the array has O(n2)
compute resources (RPU devices). In this scheme, each
computation is mapped to a resource, and consequently, RPU

arrays trade space complexity for time complexity, whereas
computational complexity remains unchanged. As a result of
this spatial mapping, crossbar-based analog accelerators require a
multi-tile architecture design irrespective of the training
algorithm so that each neural network layer and the
corresponding weights can be allocated on separate tiles.
Nevertheless, RPU arrays provide a scalable solution for a
spatially mapped weight stationary architecture for training
workloads thanks to the nano-scale device concepts.

As highlighted in Algorithm 2, TTv2 uses the same tile
operations and therefore running TTv2 on array architectures
requires no change in the tile design compared to SGD or Tiki-
Taka. Assuming the tile design remains unchanged, a pair of
device arrays operated differentially with the supporting
peripheral circuits, TTv2 (like Tiki-Taka) requires twice more
tiles to allocate A and C separately. However, alternatively, the
logical A and C values can be realized using only three devices by
sharing a common reference, as described in Ref Onen et al.
(2021). In that case, logical A and Cmatrices can be absorbed into
a single tile design composed of three device arrays and operated
in a time multiplex fashion. This tile design minimizes or even
possibly eliminates the area cost of TTv2 and Tiki-Taka
compared to SGD.

In contrast to A and C matrices allocated on analog arrays, H
does not require any spatial mapping as it is allocated digitally,
and it can reside on an off-chip memory. Furthermore, we
emphasize that the digital H processing of TTv2 must not be
confused with the gradient computation step. For an n × n weight
matrix in a neural network, the computational complexity of the
operations performed on H is only O(n), even for the most
aggressive setting of ns � 1. As detailed in Algorithm 2, only
a single row of H is accessed and processed digitally for ns parallel

FIGURE 5 | (A, B, C) Blue curves: The evolution of three different weights (corresponding to three different devices with non-symmetric behavior, σcycle � 1 and
about 15 states) during TTv2 training. Red curves show the sign of the updates and the expected average saturation value for the corresponding device. (D) The
evaluation of a linear and symmetric device with σcycle � 0.3 and more than 1,000 states. (E) LSTM training simulations for SGD, Tiki-Taka, and TTv2 algorithms. Different
color curves use an extremely noisy array model with non-symmetric devices, μΔw � 0.08 (corresponding to 15 states), and the additive cycle-to-cycle update noise
with σcycle � 1. The square symbols show the SGD training baseline from Figure 3with symmetric device arrays with 1,200 states and cycle-to-cycle noise at σcycle � 0.3.
The open circles are the floating-point baseline.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991488

Gokmen Training Neural Networks on Noisy Hardware

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

array update operations on A. Therefore, H processing has
reduced computational complexity compared to gradient
computation: O(n) vs. O(n2). This property differentiates TTv2
from other approaches performing the gradient computation in
the digital domain with O(n2) complexity (Nandakumar et al.,
2020). Regardless, the digital H processing in TTv2 brings
additional digital computation and memory bandwidth
requirements compared to SGD or Tiki-Taka. To understand
the extra burden introduced by H in TTv2, we must compare it to
the burden already handled by the digital components for the
SGD algorithm. We argue that the extra burden introduced in
TTv2 is usually only on the order of 1/ns, and the digital
components required by the SGD algorithm can also handle
the H processing of TTv2.

A weight reuse factor (ws) for each layer in a neural network is
determined by various factors, such as time unrolling steps in an
LSTM, reuse of filters for different image portions in a
convolution, or simply using mini-batches during training. For
an n × n weight matrix with a weight reuse factor of ws, the
compute performed on the analog array is O(n2.ws). In contrast,
the storage and processing performed digitally for the activations
and error backpropagation are usually O(n.ws). We emphasize
that these O(n.ws) compute and storage requirements are
common to TTv2, Tiki-Taka, and SGD and are already
addressed by digital components.

The digital filter of TTv2 computes straightforward vector-
vector additions and thresholds, which require O(n) operations
performed only after ns weight reuses. As mentioned above, SGD
(likewise Tiki-Taka and TTv2) uses digital units to compute the
activations and the error signals, both of which are usually
O(n.ws). Therefore, the digital compute needed for the H
processing of TTv2 increases the total digital compute by
O(n.ws/ns).

Additionally, the filter requires the H matrix to be stored
digitally. H is as large as the neural network model and requires
off-chip memory storage and access. One may argue that this
defeats the purpose of using analog crossbar arrays. However,
note that even though the storage requirements for H are
O(n2), the access to H happens one row at a time, which is
O(n). Therefore, as long as the memory bandwidth can sustain
access to H, the storage requirement is a secondary concern
that can easily be addressed by allocating space on external off-
chip memory. This increases the required storage capacity
from O(n.ws) (only for activations) to O(n.ws) + O(n2)
(activations + H).

Finally, assuming H resides on an off-chip memory, the
hardware architecture must provide enough memory
bandwidth to access H. As noted in Algorithm 2, access to H
is very regular, and only a single row of H is needed after ns
weight reuses. For SGD (and hence for Tiki-Taka and TTv2), the
activations computed in the forward pass are first stored in off-
chip memory and then fetched from it to compute the error
signals during the backpropagation. The activation store and
loads are also usually O(n.ws), and therefore the additional access
to H in TTv2 similarly increases required memory bandwidth by
about O(n.ws/ns).

In summary, compared to SGD, TTv2 introduces extra digital
costs that are only on the order of 1/ns, whereas it brings orders of
magnitude relaxation to many stringent analog hardware specs.
For instance, ns � 5 provided the best training results for the
LSTM network, and for that network, the additional burden
introduced to digital compute and memory bandwidth
remains less than 20%. For the first convolutional layer of the
MNIST problem, ns � 576 is used, making the additional cost
negligible (Gokmen and Haensch, 2020). However, we note that
the neural networks come in many different flavors, beyond those
studied in this manuscript, with different stress points on various
hardware architectures. Our complexity arguments should only
be used to compare the relative overhead of TTv2 compared to
SGD, assuming a fixed analog crossbar-based architecture and
particular neural network layers. Detailed power/performance
analysis of TTv2 with optimized architecture for a broad class of
neural network models requires additional studies.

PART II: Model Extraction
Machine learning experts try various neural network
architectures and hyper-parameter settings to obtain the
best performing model during model development.
Therefore, accelerating the DNN training process is
extremely important. However, once the desired model is
obtained, it is equally important to deploy the model in the
field successfully. Even though training may use one set of
hardware, numerous users likely run the deployed model on
several hardware architectures, separate from the one the
machine learning experts trained the model with. Therefore,
to close the development and deployment lifecycle, the desired
model must be extracted from the analog hardware for its
deployment on another hardware.

In contrast to digital solutions, the weights of the model are
not directly accessible on analog hardware. Analog arrays encode
the model’s weights, and the tile’s noisy mat-vec limits access to
these weight matrices. Therefore, the extraction of the model
from analog hardware is a non-trivial task. Furthermore, the
model extraction must produce a good representation of the
trained model to be deployed without loss of accuracy on another
analog or a completely different digital hardware for inference
workloads.

In Part II, we first provide how an accurate weight extraction
can be performed from noisy analog hardware. Then we further
generalize this method to obtain an accurate model average over
the TTv2 iterates. Ref Izmailov et al. (2019a) showed that the
Stochastic Weight Averaging (SWA) procedure that performs a
simple averaging of multiple points along the trajectory of SGD
leads to better generalization than conventional training. Our
analog-hardware-friendly SWA on TTv2 iterates shows that these
techniques inspired by the Bayesian treatment of neural networks
can also be applied to analog training hardware successfully. We
show that the model averaging further boosts the extracted
model’s generalization performance and provides a model that
is even better than the trained model itself, enabling the
deployment of the extracted model virtually on any other
hardware.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 6991489

Gokmen Training Neural Networks on Noisy Hardware

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Accurate Weight Extraction
Analog tiles perform mat-vec on the stored matrices. Therefore,
naively one can perform a series of mat-vecs using one-hot
encoded inputs to extract the stored values one column (or
one row) at a time. However, this scheme results in a very
crude estimation of the weights due to the mat-vec noise and
limited ADC resolution. Instead, we perform a series of mat-vecs
using random inputs and then use the conventional linear
regression formula, Eq. 4, to estimate the weights.

Ĉ � ((XXT)−1XYT)T (4)

In Eq. 4, Ĉ is an estimate of the ground truth matrix C stored
on the tile, X has the inputs used during weight extraction, and Y
has the resulting outputs read from the tile. Both X and Y are
written in matrix form, capturing all the mat-vecs performed on
the tile.

Figure 6 shows the quality of different weight estimations for a
simulated tile of size 512 × 512 with the same analog array
assumptions described in Part I. When one-hot encoded input
vectors are used only once, corresponding to 512 mat-vecs, the
correlation of the extracted values to the ground truth is very poor
due to analog mat-vec noise (σMV) and ADC quantization, as
seen in Figure 6A. Repeating the same measurements 20 times,
corresponding to a total of 10,240 mat-vecs, improves the quality
of the estimate (Figure 6B). However, the best estimate is
obtained when completely random inputs with uniform
distribution are used, as illustrated in Figure 6C. We note that
the total number of mat-vecs is the same for Figures 6B,C, and
yet Figure 6C provides a much better estimate. This is because the
completely random inputs have the highest entropy (information
content), and therefore they provide the best estimate of the
ground truth for the same number of mat-vecs.

Note, in this linear regression formalism, the tile noise and
quantization error correspond to aleatoric uncertainty and
cannot be improved. However, the weight estimates are not
limited by the aleatoric uncertainty; and instead, the epistemic
uncertainty limits these estimates. For the data shown in
Figure 6C, the standard deviation in weight estimation
(corresponding to the epistemic uncertainty) is 0.002, only
0.1% of the nominal weight range of [−1, 1] used for these
experiments. The uncertainty in weight estimates scales with
1/

number of mat vecs

√
, and if needed, this uncertainty can

be further reduced by performing more measurements.

Accurate Model Average
As shown in Ref Izmailov et al. (2019a), SWA performs a simple
averaging of multiple points along the trajectory of SGD and
leads to better generalization than conventional training. This
SWA procedure approximates the Fast Geometric Ensemble
(FGE) approach with a single model. Furthermore, Ref Yang
et al. (2019) showed that SWA brings benefits to low precision
training. Here, we propose that weight averaging over TTv2
iterates would also bring similar gains and possibly overcome
noisy updates unique to the RPU devices. However, obtaining
the weight averages from analog hardware may become
prohibitively expensive. Naïvely, the weights can be first
extracted from analog hardware after each iteration and then
accumulated in the digital domain to compute averages.
However, this requires thousands of mat-vecs per iteration
and therefore is not feasible.

Instead, to estimate the weight averages, we perform a series of
mat-vecs that are very sparse in time but performed while the
training progresses and then use the same linear regression
formula to extract the weights. Since the mat-vecs are
performed while weights are still evolving, the extracted values

FIGURE 6 | (A–C) Correlation between the ground truth weights and the extracted values using different input forms and number of mat-vecs for a simulated 512 ×
512 tile. Red lines are guides to the eye showing perfect correlation.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 69914810

Gokmen Training Neural Networks on Noisy Hardware

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

closely approximate the weight averages for that training period.
For instance, during the last 10 epochs of the TTv2 iterates, we
performed 100 K mat-vecs with uniform-random inputs and
showed that it is sufficient to estimate the actual weight
averages with less than 0.1% uncertainty.

We note that about 60 M mat-vecs on C and 30 M updates
on A are performed during 10 epochs of training. Therefore,
the additional 100 K mat-vecs on C needed for weight
averaging increases the compute on the analog tiles by
only 0.1%. Furthermore, the input and output vectors (x, y)
for each mat-vec can be processed on the fly by accumulating
the results of xxT and xyT on two separate matrices in the
digital domain: Mxx ←Mxx + xxT and Mxy ←Mxy + xyT . Then
at the end of the training, one matrix inversion and a final
matrix-matrix multiply need to be performed to complete all
the steps needed to estimate the weight averages: Ĉavg �
((Mxx)

−1Mxy)
T .

In practical applications, a separate conventional digital
processor (like CPU) can perform the computations needed
for weight averages by only receiving the results of the mat-
vecs from the analog accelerator. Note that the CPU can generate
the same input vectors by using the same random seed. Therefore,
Mxx and its inverse can be computed and stored well ahead of
time, even before training starts. Furthermore, the same input
vectors and a common (Mxx)

−1 can extract the weight averages
from multiple analog tiles. After all these optimizations, even a
conventional digital processor can sustain the computation
needed for Mxy from multiple tiles and provide the weight
averages at the end of training.

Inference Results
To test the validity of the proposed weight extraction and
averaging techniques, we study the same model trained on
extremely noisy analog hardware using TTv2 with the
hysteretic threshold. We refer to this model as Model-I. As
shown in Figure 5E, the test error of Model-I at the end of
the 50th and 200th epochs are 1.633 and 1.570, respectively.

These test errors assume Model-I runs inferences on the same
analog hardware it trained on and form our baseline.

We apply our model extraction technique in the first
experiment and obtain the weights using only 10 K mat-vecs
with random inputs. We refer to this extracted model as Model-
Ix, and it is an estimate of Model-I. We evaluate the test error of
Model-Ix when it runs either on another analog hardware (with
the same analog array properties) or digital hardware. As
summarized in Table 1, Model-Ix’s test error remains
unchanged on the new analog hardware compared to Model-I,
showing our model extraction technique’s success. Interestingly,
the inference results of Model-Ix are better on the digital
hardware, and the test errors drop to 1.583 and 1.524
respective for the 50th and 200th epochs. These improvements
are due to the absence of the mat-vec noise introduced by the
forward propagation on analog hardware. However, these results
also highlight that the analog training yields a better model than
the test error on the same analog hardware indicates. Therefore,
such benefits ease analog hardware’s adoption for training only
purposes, and the improved test results on digital hardware are
the relevant metrics for such a use case.

We implement our model averaging technique using 100 K
mat-vecs with random inputs applied between 40–50 or 180–200
epochs in the following experiment. We refer to the extracted
model average as Model-Iavg, and the test error for Model-Iavg is
also evaluated on analog or digital hardware. In all cases, as
illustrated in Table 1, Model-Iavg gives non-trivial improvements
compared to Model-Ix (and Model-I). These improvements on
the averaged models’ generalization performance show the
success of our model averaging technique. We emphasize that
the model training is performed on extremely noisy analog
hardware using TTv2. Nevertheless, the test error achieved by
Model-Iavg on digital hardware is 1.454, just shy of the FP model’s
performance at about 1.325.

Finally, to further illustrate the success of the proposed model
extraction and averaging techniques, we performed simulations
for another two models, Model II and III, which are also

TABLE 1 | Inference results of various models on different hardware.

Model–I, Ix, Iavg
#States = 15,

σcycle = 1

Model–II, IIx, IIavg
#States = 60,
σcycle = 0.3

Model–III,IIIx, IIIavg
#States = 120,

σcycle = 0.3

Inference on Analog Hardware
50th Epoch-Trained Model 1.633 1.454 1.430
50th Epoch-Extracted Model 1.633 1.455 1.430
40th–50th Epochs-Extracted Model Avg 1.560 1.425 1.407
200th Epoch-Trained Model 1.570 1.410 1.403
200th Epoch-Extracted Model 1.571 1.410 1.403
180th–200th Epochs-Extracted Model Avg 1.487 1.377 1.372

Inference on Digital Hardware
50th Epoch-Extracted Model 1.583 1.403 1.378
40th–50th Epochs-Extracted Model Avg 1.520 1.379 1.359
200th Epoch-Extracted Model 1.524 1.360 1.350
180th–200th Epochs-Extracted Model Avg 1.454 1.334 1.326

FP Baseline Model: 1.315–1.332.
Repeating the same FP training results in about 0.01 variability in the test error due to the randomness in weight initialization. Bold values provide the baseline training results without model
extraction. Italic values correspond to models that are indistinguishable from the FP model.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 69914811

Gokmen Training Neural Networks on Noisy Hardware

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

summarized in Table 1. Like Model-I, these models are also
trained on noisy analog hardware but with slightly relaxed array
assumptions. The only two differences compared to Model-I are
1) Model-II and III both used analog arrays with the additive
cycle-to-cycle update noise at σcycle � 0.3, 2) Model-II and III
respectively had 60 and 120 states on RPU devices. For these
slightly relaxed but still significantly noisy analog hardware
settings, both Model-II and III provide test results on the
digital hardware that are virtually indistinguishable from the
FP model when the model averages between 180–200 epochs
are used.

We note that the inference simulations performed on analog
hardware did not include any weight programming errors that
may otherwise exist in real hardware. Depending on its strength,
these weight programming errors cause an accuracy drop on the
analog hardware used solely for inference purposes.
Additionally, after the initial programming, the accuracy may
further decline over time due to device instability, such as the
conductance drift (Mackin et al., 2020; Joshi et al., 2020).
Therefore, any analog hardware targeting inference
workloads must address these non-idealities. However, we
emphasize that these problems are unique to inference
workloads. Instead, if analog hardware is targeting training
workloads only, these problems become obsolete.
Furthermore, the unique challenges of the analog training
hardware, namely the limited number of states on RPU
devices and the update noise, are successfully handled by our
proposed TTv2 training algorithm and the model averaging
technique. As illustrated above, even very noisy analog
hardware can deliver models on par in their accuracy
compared to FP models. In addition, after the training
process is performed on analog hardware using TTv2, the
extracted model average can be deployed on various digital
hardware and perform inference without any accuracy loss.
Therefore, these results provide a clear path for analog hardware
to be employed to accelerate DNN training workloads.

DISCUSSION AND FUTURE DIRECTIONS

DNN training using SGD is simply an optimization algorithm
that provides a point estimate of the DNN parameters at the end
of the training. In this frequentist view, a hypothesis is tested
without assigning any probability distribution to the DNN
parameters and lacks the representation of uncertainty. More
recently, however, the Bayesian treatment of DNNs has gained
more traction with new approximate Bayesian approaches
(Wilson, 2020). Bayesian approaches treat the DNN
parameters as random variables with probabilities. We believe
many exciting directions for future research may connect these
approximate Bayesian approaches and neural networks running
on noisy analog hardware.

For instance, Ref Maddox et al. (2019) showed that a simple
baseline for Bayesian uncertainty could be formed by determining
the weight uncertainties from the SGD iterates, referred to as SWA-
Gaussian. It is empirically shown that SWA-Gaussian
approximates the shape of the true posterior distribution of the
weights, described by the stationary distribution of SGD iterates.
We can intuitively generalize these results to the TTv2 algorithm
running on analog hardware. For instance, the proposed TTv2
algorithm updates a tiny fraction of the neural network weights
when enough evidence is accumulated by A and H’s gradient
processing steps. Nevertheless, the updates onweights are still noisy
due to stochasticity in analog hardware. Therefore, TTv2 iterates
resemble the Gibbs sampling algorithm used to approximate a
posterior multivariate probability distribution governed by the loss
surface of the DNN. Assuming this intuition is correct, analyzing
the uncertainty in weights over TTv2 iterates may provide a simple
Bayesian treatment of a DNN, similar to SWA-Gaussian.

To test the feasibility of the above arguments, we performed
the following experiments that are motivated by the results of
SWA-Gaussian (Maddox et al., 2019) and Bayes-by-Backprop
(Blundell et al., 2015): First, we extract the mean (μi) and the
standard deviation (σ i) of each weight from the TTv2 iterates

TABLE 2 | Inference results of pruned networks for Model-III on digital hardware.

Signal-to-noise used for
pruning

Weight
proportion removed (%)

Carefully pruned network Randomly pruned network

(No pruning) 0 1.326 1.326∣∣∣∣μi ∣∣∣∣/σ i < 1 16.7 1.331 3.42 ± (0.26)∣∣∣∣μi ∣∣∣∣/σ i < 2 30.2 1.371 4.09 ± (0.32)∣∣∣∣μi ∣∣∣∣/σ i < 3 40.8 1.466 4.40 ± (0.29)

Random pruning experiments are performed 10 times. The table reports the mean and standard deviation of these 10 experiments for the randomly pruned networks. An untrained
network gives ∼4.46 test error corresponding to a random guess.

TABLE 3 | Inference results of disturbed networks for Model-III on analog hardware.

Signal-to-noise used for
disturbance

Carefully disturbed network Randomly disturbed network

(No disturbance) 1.370 1.370
μi ± σ i 1.493 3.54 ± (0.15)

Random disturb experiments are performed 10 times. The table reports the mean and standard deviation of these 10 experiments.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 69914812

Gokmen Training Neural Networks on Noisy Hardware

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

and define a signal-to-noise ratio as
∣∣∣∣μi∣∣∣∣/σ i. Then we remove the

weights with the lowest signal-to-noise ratio below a certain value
and compare the inference performance of this carefully pruned
network to the unpruned one. We also look at the performance
degradation of a randomly pruned network with the same amount
of weight pruning. Table 2 summarizes the results of these
experiments performed for Model-III from 180 to 200 epochs.

As illustrated in Table 2, the carefully pruned network’s
performance (1.331) is almost identical to the unpruned one
(1.326) when

∣∣∣∣μi∣∣∣∣/σ i < 1, corresponding to 16.7% pruning.
However, the same amount of pruning causes significant
performance degradation for a randomly pruned network
(∼3.42). When the signal-to-noise threshold is raised to 3,
corresponding to 40.8% pruning, the carefully pruned network
still performs reasonably well (1.466). Whereas at this level of
pruning, a randomly pruned network is not any better than an
untrained network producing random predictions.

In the second set of experiments, as summarized inTable 3, we
use the extracted means (μi) and standard deviations (σ i) and
disturb each weight randomly proportional to its standard
deviation: wi � μi + ξσ i, where ξ is sampled from a unit
Gaussian for each weight. Then, we compare the inference
performance of this carefully disturbed network to a randomly
disturbed network with the same amount of total weight
disturbance. Although the carefully disturbed network
performs reasonably well at 1.493, the randomly disturbed
networks’ performance significantly degrades to about 3.54.

These experiments empirically suggest that the weight
uncertainty of TTv2 iterates on analog hardware provides
additional valuable information about the posterior probability
distribution of the weights governed by the loss surface of the
DNN. The results illustrated in Tables 2, 3 do not address how
the weight uncertainty can be extracted from analog hardware in
practical settings; however, suppose this information can be
extracted. In that case, the weight uncertainty can be used to
sparsify the DNN during the model deployment on digital
hardware (Blundell et al., 2015). Alternatively, the weight
uncertainties can be leveraged to devise better programming
routines while transferring the model to another noisy analog
hardware. In addition, a low dimensional subspace can be
constructed over TTv2 iterates so that the model can be
deployed as a Bayesian neural network, similar to the results
presented in Ref Izmailov et al. (2019b). The Bayesian model
averaging performed even in low dimensional subspaces
produces accurate predictions and well-calibrated predictive
uncertainty (Izmailov et al., 2019b). We believe that noisy
analog hardware with modified learning algorithms can also
accelerate Bayesian approaches while simultaneously providing
many known benefits, such as improved generalization and

uncertainty calibration. However, these ideas require further
investigation, and new techniques that can also extract the
weight uncertainty from analog hardware are needed.
Furthermore, extending this work to larger and more extensive
networks is a general task for the feasibility of analog crossbar
arrays, not only restricted to the work presented here.

SUMMARY

In summary, we presented a new DNN training algorithm,
TTv2, that provides successful training on extremely noise
analog hardware composed of resistive crossbar arrays.
Compared to previous solutions, TTv2 addresses all sorts of
hardware non-idealities coming from resistive devices and
peripheral circuits and provides orders of magnitude
relaxation to many hardware specs. Device arrays with non-
symmetric and noisy conductance modulation characteristics
and a limited number of states are enough for TTv2 to train
neural networks close to their ideal accuracy. In addition, the
model averaging technique applied over TTv2 iterates provides
further enhancements during the model extraction. In short,
we describe an end-to-end training algorithm and model
extraction technique from extremely noisy crossbar-based
analog hardware that matches the performance of full-
precision SGD training. Our techniques can be immediately
realized and applied to many readily available device
technologies that can be utilized for analog deep learning
accelerators.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

TG conceived the original idea, developed the methodology,
wrote the simulation code, analyzed and interpreted the
results, and drafted the manuscript.

ACKNOWLEDGMENTS

Author thanks to Wilfried Haensch for illuminating discussions
and Paul Solomon for careful reading of the manuscript.

REFERENCES

Agarwal, S., Gedrim, R. B. J., Hsia, A. H., Hughart, D. R., Fuller, E. J., Talin, A. A.,
James, C. D., Plimpton, S. J., and Marinella, M. J. (2017). “Achieving Ideal
Accuracies in Analog Neuromorphic Computing Using Periodic Carry,” in
Symposium on VLSI Technology, Kyoto, Japan. doi:10.23919/vlsit.2017.7998164

Agarwal, S., Plimpton, S. J., Hughart, D. R., Hsia, A. H., Richter, I., Cox, J. A., et al.
(2016). Resistive Memory Device Requirements for a Neural Network Accelerator.
Vancouver, BC, Canada: IJCNN. doi:10.1109/IJCNN.2016.7727298

Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., di Nolfo, C.,
et al. (2018). Equivalent-accuracy Accelerated Neural-Network Training
Using Analogue Memory. Nature 558, 60–67. doi:10.1038/s41586-018-
0180-5

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 69914813

Gokmen Training Neural Networks on Noisy Hardware

https://doi.org/10.23919/vlsit.2017.7998164
https://doi.org/10.1109/IJCNN.2016.7727298
https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.1038/s41586-018-0180-5
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). “Weight
Uncertainty in Neural Networks,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning, PMLR 37,
1613–1622.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al.
(2020). “Language Models Are Few-Shot Learners,” arXiv:2005.14165 [cs.CL].

Burr, G. W., Narayanan, P., Shelby, R. M., Sidler, S., Boybat, I., di Nolfo, C., and
Leblebici, Y. (2015). “Large-scale Neural Networks Implemented with Non-
volatile Memory as the Synaptic Weight Element: Comparative Performance
Analysis (Accuracy, Speed, and Power),” in IEDM (International Electron
Devices Meeting). doi:10.1109/iedm.2015.7409625

Burr, G. W., Shelby, R. M., Sebastian, A., Kim, S., Kim, S., Sidler, S., et al. (2017).
Neuromorphic Computing Using Non-volatile Memory. Adv. Phys. X 2,
89–124. doi:10.1080/23746149.2016.1259585

Cloud Tpu. (2007). Available: https://cloud.google.com/tpu/docs/bfloat16.
Fuller, E. J., Keene, S. T.,Melianas, A.,Wang, Z., Agarwal, S., Li, Y., et al. (2019). Parallel

Programming of an Ionic Floating-GateMemoryArray for ScalableNeuromorphic
Computing. Science 364 (6440), 570–574. doi:10.1126/science.aaw5581

Gokmen, T., and Haensch, W. (2020). Algorithm for Training Neural Networks on
Resistive Device Arrays. Front. Neurosci. 14, 103. doi:10.3389/fnins.2020.00103

Gokmen, T., Onen, M., and Haensch, W. (2017). Training Deep Convolutional
Neural Networks with Resistive Cross-Point Devices. Front. Neurosci. 11, 538.
doi:10.3389/fnins.2017.00538

Gokmen, T., Rasch, M. J., and Haensch, W. (2018). Training LSTM Networks with
Resistive Cross-PointDevices. Front. Neurosci. 12, 745. doi:10.3389/fnins.2018.00745

Gokmen, T., and Vlasov, Y. (2016). Acceleration of Deep Neural Network Training
with Resistive Cross-Point Devices: Design Considerations. Front. Neurosci. 10,
333. doi:10.3389/fnins.2016.00333

Graphcore. (2021). Available: https://www.graphcore.ai/.
Grollier, J., Querlioz, D., Camsari, K. Y., Everschor-Sitte, K., Fukami, S., and Stiles,

M. D. (2020). Neuromorphic Spintronics. Nat. Electron. 3, 360–370.
doi:10.1038/s41928-019-0360-9

Yang, G., Zhang, T., Kirichenko, P., Bai, J.,Wilson, A.G., and Sa, C.D. (2019). “SWALP:
StochasticWeight Averaging in Low-Precision Training,” arXiv:1904.11943 [cs.LG].

Haensch, W., Gokmen, T., and Puri, R. (2019). The Next Generation of Deep
Learning Hardware: Analog Computing. Proc. IEEE, 107, 108–122. doi:10.1109/
jproc.2018.2871057

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,” in IEEE
International Conference onComputer Vision (ICCV). doi:10.1109/iccv.2015.123

Kim, H., Rasch, M., Gokmen, T., Ando, T., Miyazoe, H., Kim, J.-J., et al. (2019).
“Zero-shifting Technique for Deep Neural Network Training on Resistive
Cross-point Arrays,” arXiv:1907.10228 [cs.ET].

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and Wilson, A. G. (2019).
“Averaging Weights Leads to Wider Optima and Better Generalization,” arXiv:
1803.05407 [cs.LG].

Izmailov, P., Maddox, W., Kirichenko, P., Garipov, T., Vetrov, D., and Wilson, A.
G. (2019b). “Subspace Inference for Bayesian Deep Learning,” inUncertainty in
Artificial Intelligence (UAI) 115, 1169–1179.

Joshi, V., Le Gallo, M., Haefeli, S., Boybat, I., Nandakumar, S. R., Piveteau, C.,
et al. (2020). Accurate Deep Neural Network Inference Using Computational
Phase-Change Memory. Nat. Commun. 11, 2473. doi:10.1038/s41467-020-
16108-9

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep Learning.Nature 521, 436–444.
doi:10.1038/nature14539

Mackin, C., Narayanan, P., Ambrogio, S., Tsai, H., Spoon, K., Fasoli, A., Chen, A.,
Friz, A., Shelby, R. M., and Burr, G. W. (2020). “Neuromorphic Computing
with Phase Change, Device Reliability, and Variability Challenges,” in IEEE
International Reliability Physics Symposium, Dallas, TX, USA (IRPS).
doi:10.1109/irps45951.2020.9128315

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and Wilson, A. G. (2019).
“A Simple Baseline for Bayesian Uncertainty in Deep Learning,” in Advances in
Neural Information Processing Systems (Vancouver, BC, Canada: NeurIPS),
32, 13153–13164.

Miyashita, D., Lee, E. H., and Murmann, B. (2016). “Convolutional Neural
Networks Using Logarithmic Data Representation,” arXiv:1603.01025 [cs.NE].

Nandakumar, S. R., Le Gallo, M., Piveteau, C., Joshi, V., Mariani, G., Boybat, I.,
et al. (2020). Mixed-Precision Deep Learning Based on Computational
Memory. Front. Neurosci. 14, 406. doi:10.3389/fnins.2020.00406

Nvidia. (2021). Available: https://www.nvidia.com/en-us/data-center/a100/.
Onen, M., Gokmen, T., Todorov, T. K., Nowicki, T., Alamo, J. A. D., Rozen, J., et al.

(2021). Neural Network Training with Asymmetric Crosspoint Elements.
submitted for publication.

Rasch, M. J., Gokmen, T., and Haensch, W. (2020). Training Large-Scale Artificial
Neural Networks on Simulated Resistive Crossbar Arrays. IEEE Des. Test. 37
(2), 19–29. doi:10.1109/mdat.2019.2952341

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
Representations by Back-Propagating Errors. Nature 323, 533–536.
doi:10.1038/323533a0

Steinbuch, K. (1961). Die Lernmatrix. Kybernetik 1, 36–45.
Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and Policy

Considerations for Deep Learning in NLP," ACL 2019 - 57th. Annu. Meet.
Assoc. Comput. Linguist. Proc. Conf., 3645–3650.

Sun, X., Choi, J., Chen, C.-Y., Wang, N., Venkataramani, S., Srinivasan, V., et al.
(2019). Hybrid 8-bit Floating point (HFP8) Training and Inference for Deep
Neural Networks. Adv. Neural Inf. Process. Syst. 32, 4901–4910.

Sun, X., Wang, N., Chen, C.-Y., Ni, J.-M., Agrawal, A., Cui, X., et al. (2020). Ultra-
Low Precision 4-bit Training of Deep Neural Networks. Adv. Neural Inf.
Process. Syst. 33, 1796–1807.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2017). Efficient Processing of Deep
Neural Networks: A Tutorial and Survey. Proc. IEEE, 105, 2295–2329.
doi:10.1109/jproc.2017.2761740

Wilson, A. G. (2020). Bayesian Deep Learning and a Probabilistic Perspective of
Model Construction. International Conference on Machine Learning Tutorial.

Woo, J., and Yu, S. (2018). Resistive Memory-Based Analog Synapse: The Pursuit
for Linear and Symmetric Weight Update. IEEE Nanotechnology Mag. 12,
36–44. doi:10.1109/mnano.2018.2844902

Yu, S., Chen, P., Cao, Y., Xia, L., Wang, Y., andWu, H. (2015). “Scaling-up Resistive
Synaptic Arrays for Neuro-Inspired Architecture: Challenges and prospect,” in
International Electron Devices Meeting (IEDM), Washington, DC, USA
(IEEE). doi:10.1109/iedm.2015.7409718

Yu, S. (2018). Neuro-inspired Computing with Emerging Nonvolatile Memorys.
Proc. IEEE, 106, 260–285. doi:10.1109/jproc.2018.2790840

Conflict of Interest: TG was employed by the company IBM. The author declares
that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Gokmen. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 69914814

Gokmen Training Neural Networks on Noisy Hardware

https://doi.org/10.1109/iedm.2015.7409625
https://doi.org/10.1080/23746149.2016.1259585
https://cloud.google.com/tpu/docs/bfloat16
https://doi.org/10.1126/science.aaw5581
https://doi.org/10.3389/fnins.2020.00103
https://doi.org/10.3389/fnins.2017.00538
https://doi.org/10.3389/fnins.2018.00745
https://doi.org/10.3389/fnins.2016.00333
https://www.graphcore.ai/
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1109/jproc.2018.2871057
https://doi.org/10.1109/jproc.2018.2871057
https://doi.org/10.1109/iccv.2015.123
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/irps45951.2020.9128315
https://doi.org/10.3389/fnins.2020.00406
https://www.nvidia.com/en-us/data-center/a100/
https://doi.org/10.1109/mdat.2019.2952341
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.1109/mnano.2018.2844902
https://doi.org/10.1109/iedm.2015.7409718
https://doi.org/10.1109/jproc.2018.2790840
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Enabling Training of Neural Networks on Noisy Hardware
	Introduction
	PART I: Training
	Device Arrays and Conductance Modulation Characteristics
	Algorithms
	Tiki-Taka Algorithm
	TTv2 Algorithm
	Array Model
	Training Simulations
	Implementation Cost of TTv2
	PART II: Model Extraction
	Accurate Weight Extraction
	Accurate Model Average
	Inference Results

	Discussion and Future Directions
	Summary
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

