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Abstract Filoviruses cause severe hemorrhagic fever in
humans. The archetypal virus of this group, Ebola virus, is
responsible for the current filovirus epidemic in West Africa.
Filoviruses infect most mammalian cells, resulting in broad
species tropism and likely contributing to rapid spread of virus
throughout the body. A thorough understanding of filovirus
entry events will facilitate the development of therapeutics
against these critical steps in the viral life cycle. This review
summarizes the current understanding of filovirus entry and
discusses some of the recent advancements in therapeutic
strategies that target entry.
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Introduction

Ebolavirus and Marburgvirus are members of the Filoviridae
family of enveloped, negative-sense RNA viruses that cause
severe hemorrhagic fever in humans and non-human primates
(NHPs). There are four identified Ebolavirus species (Ebola
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virus [formerly Zaire Ebola virus; EBOV'], Bundibugyo virus,
Sudan virus, and Tai Forest virus) that are associated with epi-
sodic hemorrhagic fever outbreaks in sub-Saharan Africa [1-3].
EBOV is the cause of the current West Africa epidemic, and
over 26,000 individuals are thought to have been infected during
this 18-month epidemic [3]. A fifth Ebolavirus member, found
in the Philippines, is Reston virus that is pathogenic in non-
human primates. No approved vaccines or antivirals are cur-
rently available against these viruses, and the current outbreak
emphasizes the critical need for development of treatments.

Filoviruses infect a wide array of human primary cells and
cell lines. Dendritic cells (DCs) and macrophages are major
early and sustained targets of infection [4, 5]. Viral replication
in these cells is thought to amplify virus within the infected
host, leading to systemic spread of a broad array of cell pop-
ulations ranging from hepatocytes to endothelial cells to fibro-
blasts. Lymphocytes are one of the few cell types that are not
productively infected by filoviruses in the body [6].

Recent findings identifying events associated with filovi-
rus entry have provided insights into the uniquely complex
entry mechanisms that this family of enveloped viruses uses.
Entry is initiated by virion attachment at the plasma mem-
brane, leading to a macropinocytosis-like internalization into
endosomes. Once in the endosomal/lysosomal pathway, the
viral glycoprotein (GP) undergoes proteolytic cleavage and
structural rearrangements, facilitating interactions with host
factors, including an essential intracellular receptor. Follow-
ing this interaction, fusion of the viral and host membranes
allows the release of the nucleocapsid core into the cyto-
plasm for viral replication. Elucidation of this series of
events has revealed novel host-virus interactions and led to
the identification of novel therapeutic targets against
filoviruses. Here, we discuss the current understanding of

' EBOV abbreviation designates the species Ebola virus
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filovirus entry and recent developments in therapeutics that
target the viral entry process.

Filovirus Structure and Glycoprotein Expression

Filoviruses form unique filamentous virus particles that are
surrounded by a membrane acquired during viral budding
from the host cell plasma membrane. Studies indicate that
phosphatidylserine (PtdSer) is exposed on the outer leaflet of
virion membranes, and the presence of PtdSer is important for
virus attachment to cell surfaces [7¢, 8¢]. Within the virion, the
RNA genome is surrounded and protected by the nucleocap-
sid complex composed of the nucleoprotein (NP), VP30, and
VP35 [9]. The viral polymerase is thought to be recruited to
this complex by interactions with VP35 and VP30 [10, 11].
VP40 and VP24, the major and minor matrix proteins, respec-
tively, control virus morphogenesis, studding the inner leaflet
of' the viral membrane. More recently, these structural proteins
have also been implicated in the regulation of filovirus RNA
synthesis [12]. The viral GP is the only virally encoded protein
present on the outer surface of virions and mediates virus-host
membrane fusion.

Filovirus GP is a class I viral membrane fusion GP that is
similar to HIV-1 Env and influenza virus hemagglutinin
(HA) (recently reviewed [13]). The major product expressed
by the EBOV GP gene is a secreted, soluble GP (sGP) [14].
The function of sGP is still unclear, but it is thought to be
important in viral immune evasion (recently reviewed [15]).
Full length, membrane-associated EBOV GP is produced by
an RNA frame shift that results in the insertion of a non-
templated adenosine residue during transcriptional RNA
editing [16]. In contrast, the Marburgvirus GP gene directly
encodes membrane-associated GP, and an equivalent soluble
form of Marburgvirus GP is not thought to not be expressed
[17]. Mature filoviral GPs are formed by post-translational
furin cleavage of the proprotein, producing the disulfide-
linked heterodimer composed of GP1 and GP2 [18]. The
GP1 subunit is required for receptor interactions and
transmembrane-associated GP2 is required for membrane
fusion. Like other class I viral membrane fusion GPs, filo-
virus GPs are found on virions as trimers. Crystal structures
of both Ebolavirus species and Marburgvirus GP
ectodomains have been solved [19, 20, 21++]. GP forms a
chalice-like shape with a trimer of heterodimers of GP1/
GP2, where GP2 is the base and GP1 is the cup.

Filovirus GP1 has four distinct domains: base, receptor-
binding domain (RBD), glycan cap, and mucin-like domain
(MLD). The base interacts with GP2, providing structural
support for the other domains. Residues within the RBD in-
teract with an intracellular cellular receptor, Niemann-Pick C1
(NPC1) within the late endosomal/lysosomal compartments.
The MLD and glycan cap are heavily glycosylated with N-
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linked glycans and the MLD also contains as many as 80 O-
linked glycans [19, 22, 23+]. Glycans of GP1 are important for
shielding the GP from neutralizing antibodies [23¢, 24-26].

Unlike many class 1 viral GPs, the filovirus GP2 fusion
peptide resides in a loop near the N-terminal sequence of
GP2 rather than directly at the N-terminus. The 45 amino acid
EBOV fusion loop is clamped by a disulfide bond and has a
membrane-seeking hydrophobic sequence at the tip of the
loop [27-30]. Within the pre-fusion form of GP, the hydro-
phobic loop sequences are protected by residues on an adja-
cent GP1 subunit until fusion events unfold. In addition to the
fusion loop, GP2 contains two canonical helical repeats in its
ectodomain as well as a transmembrane domain and a short
cytoplasmic tail.

Cell Surface Proteins Involved in Viral Attachment

Several cell surface proteins have been identified to mediate
attachment of filoviruses, and evidence suggests that these
same molecules are responsible for virus entry into the endo-
some. C-type lectins (CLECs) interact with N- and O-linked
glycans on GP, while PtdSer receptors interact with PtdSer
present in the viral envelope (recently reviewed in [31, 32])
(Fig. 1). These cell surface proteins do not serve as canonical
enveloped virus receptors that interact with filovirus GP RBD
amino acids. Instead, these proteins interact with filoviruses
through more unconventional mechanisms discussed below.
Outside the host cell, the filovirus GP RBD remains masked
and conformationally unavailable for receptor interactions. It
is only upon proteolytic processing within the endosomal
compartment that more conventional filovirus GP/receptor in-
teractions are made possible.

To date, CLECs, including dendritic cell-specific ICAM-3-
grabbing non-integrin (DC-SIGN), liver/lymph node-specific
ICAM-3 grabbing non-integrin (L-SIGN), lymph node sinu-
soidal endothelial cell C-type lectin (LSECTin),
asialoglycoprotein receptor 1 (ASGPRI), and human macro-
phage galactose- and acetylgalactosamine-specific C-type lec-
tin (hMGL), have been identified to bind to N- and O-linked
glycans on EBOV GP to facilitate virus entry into a variety of
cells [23¢, 33-37]. DC-SIGN and L-SIGN are expressed on
cells of the myeloid lineage and liver/lymph node endothelial
cells, respectively. Several groups have demonstrated that
high-mannose N-linked glycans on EBOV GP interact with
DC/L-SIGN to facilitate entry [23e, 33, 38—41]. N-
acetylglucosamine is important for EBOV entry mediated by
LSECTin, which is expressed in sinusoidal endothelial cells in
the liver and lymph nodes along with in vitro matured DCs
and macrophages [35]. Mouse LSECTin, but not mouse DC-
SIGN, has been shown to mimic the properties of its human
homolog, suggesting that mice lacking the LSECTin receptor
could be utilized in infection studies to better define the role of
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Fig. 1 Model of filovirus entry pathway. Filoviruses attach to the cell
membrane via non-canonical cell surface receptors, C-type lectins
(CLECs), and phosphatidylserine (PtdSer) receptors. CLECs (DC/L-
SIGN, LSECtin, ASGPRI, and hMGL) interact with sugars on the
virion glycoprotein through their carbohydrate recognition domains.
LSECtin is thought to exist as a dimer rather than a tetramer at the cell
surface. PtdSer receptors (TIM and TAM family members) interact with
PtdSer that is present in the virion envelope through their PtdSer binding
pockets (TIM family) or through complexing with PtdSer binding
proteins Gas6 or Protein S (TAM family). Following interaction with
these cell surface proteins, the virions enter the endosomal pathway
through a macropinocytosis-type uptake mechanism. Within the

this CLEC in vivo [42, 43]. The other two CLEC family
members known to enhance filovirus infection, ASGPRI and
hMGL, are expressed on hepatocytes and monocyte-derived
immature dendritic cells or macrophages, respectively. Both
function as EBOV entry factors by binding specifically to
galactose and N-acetylgalactosamine [23e, 34, 36].

The role of EBOV GP N-linked glycans on CLEC-
dependent entry was recently evaluated [23¢]. Elimination of
N-linked glycans by mutagenesis of the MLD or the core and
glycan cap of GP profoundly decreases virus entry mediated
by cells ectopically expressing either DC-SIGN or L-SIGN.
Not surprisingly, given these observations, the combined re-
moval of all N-linked glycans on GP1 abrogated transduction
by these CLECs, demonstrating the importance of these
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endosomal compartment, filovirus GP is cleaved by cysteine proteases,
including cathepsin B and L, to expose the receptor-binding domain
(RBD) of filovirus GP. Exposure of the RBD allows GP to interact with
the luminal C-domain of the intracellular receptor, NPC1. Once the virion
interacts with NPC1, two-pore Ca>* channels (TPCs) play an important
role in late entry events. Potential additional proteolysis events may also
be required for fusion to occur, but the exact steps leading to fusion
remain unknown. Fusion then releases the viral ribonucleoprotein
complex into the cytoplasm for replication. The therapeutics that are
currently under investigation for their ability to block filovirus entry are
indicated at the steps that they are thought to inhibit

glycans for interactions with these CLECs. Interestingly,
LSECtin-dependent entry was less affected by loss of N-
linked glycans on the core and glycan cap, but loss of N-linked
glycans on the MLD abolished LSECtin-dependent virus en-
try. The impact of EBOV GP N-linked glycans on ASGPRI-
or hMGL-dependent entry has a quite different profile. Re-
moval of N-glycans from the MLD, but not the core of GP,
decreased EBOV entry mediated by ASGPR1 about two-fold,
and entry by hMGL was only modestly affected by GP1
N-linked glycan loss. These findings providing evidence that
MLD O-linked glycans, rather than the EBOV GP1 N-linked
glycans, are critical for interaction with these CLECs.

A subset of PtdSer receptors have been shown to enhance
entry of a variety of enveloped viruses, such as filoviruses,
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alphaviruses, and flaviviruses by binding to virion-
associated PtdSer. To date, six PtdSer-mediated virus-entry-
enhancing receptors (PVEERs) have been identified. T-cell
immunoglobulin and mucin domain (TIM)-1 and -4 directly
bind to PtdSer on virions, whereas the Tyro3 (TAM) family
tyrosine kinase receptors (Tyro3, Axl, and Mer) complex
with Gas6 or Protein S to bind to PtdSer [7e, 8e, 44-46].
A complex composed of integrin «V/f33 or (35 is another
PVEER that has been shown to facilitate uptake of lentiviral
particles bearing a modified Sindbis virus GP [46]. Details
of PtdSer receptors in virus entry were recently reviewed by
Moller-Tank and Maury [32].

Although CLECs and PVEERs have been demonstrated to
enhance virus attachment and infection, the specific mecha-
nism(s) by which these factors induce internalization of virus
particles remains unknown. Also, the relative importance of
each CLEC or PVEER in vivo has yet to be explored. It
remains unknown as to whether the loss of one of these pro-
teins impacts filovirus infection or if these proteins are suffi-
ciently redundant in their function that loss of them individu-
ally would have little consequence to virus entry. Determining
the importance of these receptors in vivo may allow for the
development of antibodies or small molecules to inhibit filo-
virus infection at cellular attachment.

Filovirus Internalization and Endosomal Trafficking

Following attachment, virions are internalized into
endosomal compartments. Macropinocytosis is thought to
be the primary uptake mechanism, but other routes of uptake,
including caveolin- and clathrin-dependent endocytosis, have
been also been reported [45, 47-53] (recently reviewed in
[54]). It remains possible that the uptake mechanism used
may be cell type dependent and/or cell surface receptor de-
pendent. Differences in cell-dependent mechanisms of entry
are supported by the observation that African green monkey
epithelial cells (Vero) and human neuroblastoma cells (SNB-
19) primarily use macropinocytosis for viral uptake, but the
signaling pathways required for uptake differ [45, 47, 49].
Filovirus entry in Vero cells is primarily, if not exclusively,
mediated by TIM-1 and requires signaling through the
phosphoinositide 3-kinase (PI3K)/Akt pathway [8e, 45, 55,
56]. In contrast, for entry into SNB-19 cells, surface expres-
sion of the TAM tyrosine kinase, Axl, and phospholipase C
signaling is required [45]. It is not currently known if the
requisite signaling is directly tied to virion interactions with
specific receptors or if the signaling requirements are down-
stream from initial cell surface interactions. Recently, we
have also observed that AMP-activated protein kinase
(AMPK) is important for one or more early steps of EBOV
entry in a variety of different cell types, but the detailed role
of AMPK in entry remains to be elucidated [57].
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Evidence suggests that filoviruses traffic from the cell surface,
through early endosomes and into the late endosomal or lyso-
somal compartment before viral membranes fuse with cellular
membranes to mediate viral genome entry into the cytoplasm
[58, 59]. A recent study demonstrated that release of the viral
genome is slow, presumably due to the need for EBOV to traffic
to late endosomal/lysosomal compartments [60¢]. Upon initial
internalization, EBOV colocalizes with early endosomal
antigen-1 (EEA1) positive vesicles [47]. Rab5 and Rab7
GTPases are involved in trafficking the virions to late endosomes.
At later times of entry, virions localize with perinuclear
Rab7/LAMP-1-positive late endosomes, and a dominant-
negative inhibitor of Rab7 reduces infection, suggesting the im-
portance of Rab7 in EBOV entry [47]. Additional GTPases have
also been implicated in EBOV endocytosis, including RhoB,
Racl, and CDC42 [49, 61]. Along with the involvement of
GTPases in endosomal trafficking, other host protein and signal-
ing pathways have been suggested to be involved in virion traf-
ficking, including homotypic fusion and vacuole protein-sorting
(HOPS) multi-subunit tethering complex and calcium-
calmodulin kinases [55, 62, 63]. Required events between filovi-
rus attachment and fusion are numerous and remain incompletely
characterized; we have yet to fully map the endosomal route(s)
that filoviruses travel to reach the site of viral fusion.

Cathepsin Cleavage of Filovirus GP

Filovirus GPs require proteolytic cleavage to expose the RBD,
generating a fusion-ready form of the protein [19, 64, 65]. For
EBOV, this event occurs within the endosomal/lysosomal path-
way as early endosomes mature to late endosomes, acidifying
the compartment and activating endosomal cysteine proteases,
cathepsin L and B. These low-pH-dependent proteases remove
the heavily glycoslated MLD and glycan cap from GP1 to
produce a 17- to 19-kDa protein [66—69]. Interestingly, other
proteases, such as bacterial thermolysin, can effectively substi-
tute for these cathepsins both in vitro and in vivo [67, 70, 71e¢].
Early studies indicated that cathepsin L was not absolutely
required for filovirus infection [64, 72]. Subsequent studies
by Misasi et al. demonstrated that the infectivity of
Marburgvirus as well as some Ebolavirus species also do not
require cathepsin B in vitro, although proteolytic processing by
one or more cysteine proteases is needed [70¢]. Most recently,
Marzi et al. demonstrated that both survival and viral organ
titers from cathepsin B and L knockout mice following lethal
challenge with mouse-adapted EBOV were similar to wild-type
mice, indicating that loss of either of these cathepsins does not
abrogate filovirus infection in vivo [71e¢]. In total, these studies
indicate that EBOV GP proteolytic processing is a required step
in the entry process, and, while cathepsins B and L can mediate
efficient processing of some filoviruses, these proteases are
neither specifically nor absolutely required.
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Once GP1 is proteolycally cleaved to expose the RBD,
EBOV GP is able to interact with its intracellular receptor,
NPC1 [63, 73, 74¢]. Interestingly, several studies suggest that
entry of proteolytically processed EBOV remains sensitive to
broad-spectrum cysteine protease inhibitors, such as E64d,
suggesting that in addition to the formation of the 17—
19 kDa form of the GP, there are additional protease-
requiring steps needed for fusion to occur [60e, 64].

Intracellular Receptor, NPC1, and the Role
of Endosomal Ca>" Channels

In 2011, NPC1 was identified as a host protein required for
filovirus entry by two independent screening studies [63, 73]
(recently reviewed in [58, 75, 76]). NPC1 is a large multi-pass
membrane protein that is a marker of specific late endosomal/
lysosomal compartments [77]. The physiological role of this
protein is in trafficking of cholesterol [78, 79]. The role of
NPC1 in EBOV entry is independent of its role in cholesterol
trafficking since cells lacking NPC2 or an NPC1 mutant de-
fective in cholesterol trafficking are still able to mediate
EBOV infection. Consistent with this, NPC1-deficient cells
or biochemical knockdown of NPC1 results in inhibition of
EBOV entry in tissue culture [63, 73]. Furthermore, NPC1
heterozygote mice displayed decreased mortality compared
to wild-type mice when challenged with mouse-adapted
EBOV [63]. NPCI interacts only with the proteolytically
cleaved GP specifically through the luminal C domain of
NPCI1 [73, 74, 80]. Most recently, it has been shown that
EBOV VLP trafficking to the NPC1-positive late endosome/
lysosomes temporally correlates with viral/cellular membrane
fusion events, suggesting that entry into this compartment is a
key rate-defining step for EBOV entry and that fusion may
occur with this vesicle [60¢]. Additionally, a recent study sug-
gests that upon TIM-1-dependent entry of EBOV particles,
NPCI1 colocalizes with TIM-1 in the same endosomal com-
partment, consistent with a possible virion “hand-off” be-
tween these two receptors as has been proposed [75, 81].

As the importance of NPC1 in filovirus entry was defined,
parallel work established a role for the L-type calcium channels
in entry [82, 83ee]. Specifically, L-type channel drugs verapa-
mil, tetrandrine, nimodipine, and diltiazem that inhibit calcium
signaling induced by nicotinic acid adenine dinucleotide phos-
phate (NAADP) block EBOV infection [84]. These channels,
known as two-pore Ca®" channels (TPCs), are found in both
NPC1+ and NPC1- late endosomal compartments that are also
LAMPI1+. In addition, active TPCs are required for EBOV
fusion [83e¢]. EBOV particles accumulate in TPC2+/NPC1+
compartments upon tetrandrine treatment, leading the authors
to suggest that the TPC2+/NPC1— compartment is downstream
from the double-positive compartment and may serve as the
vesicle from which virions are released into the cytoplasm.

Virus Fusion

While the trigger of membrane fusion remains unknown, fusion
of EBOV virions in the endosomal/lysosomal compartment is
thought to be similar to those of other viruses with class I fusion
GPs [29]. Conformational changes and proteolytic processing
of GP expose the fusion loop in GP2, resulting in insertion of
fusion loop hydrophobic residues into the vesicular membrane
[65, 85]. Recent studies have demonstrated that the conforma-
tion of the hydrophobic tip of the loop changes under low pH
conditions, which presumably exist in this vesicular environ-
ment [30, 86¢]. Mutations of two hydrophobic residues in the
fusion loop (1544 and L.529) compromise virus fusion, suggest-
ing that these residues are critical for forming a consolidated
hydrophobic surface at the tip of the loop [86+]. Upon loop
insertion into the vesicular membrane, the unwinding of the
GP2 trimer causes refolding of the helical regions into a six-
helix bundle pulling the host and viral membranes into prox-
imity for fusion [87]. Fusion allows for release of the viral RNA
and associated viral proteins into the cytoplasm for downstream
viral processes (Fig. 1).

Therapeutics Targeting Filovirus Entry

Small-Molecule Inhibitors In the search for effective thera-
peutics that broadly or specifically block filovirus family
members, many groups have explored the ability of small
molecule inhibitors to interfere with specific steps of the viral
entry process (recently reviewed in [88]). The drugs being
explored currently target events that occur within endosomes,
such as the proteolysis of filovirus GP, endosomal trafficking,
interactions with NPC1, and fusion. In addition, several non-
specific cysteine protease (E-64, leupeptin) or cathepsin B/L
inhibitors (CA-074, FY-DMK, and CID23631927) have been
investigated for their ability to inhibit EBOV infection in vitro
[66, 67, 89-91]. Recently, another cysteine protease inhibitor,
K11777, was identified to inhibit EBOV entry in tissue culture
in sub-nanomolar concentrations and to be effective and safe
in a SARS-CoV mouse infection [92]. The effectiveness of
these protease inhibitors in vivo remains to be elucidated.
However, the efficacy of some of these compounds may not
translate to in vivo studies since as noted above cathepsins B
and L are dispensable for in vivo EBOV replication. Conse-
quently, inhibitors specific for these enzymes are not likely to
prove efficacious against filoviruses in vivo [71ee].

Several drugs have been investigated for their ability to
inhibit EBOV entry through targeting late endosomal events,
including NPC1 interactions. UI8666A, a cationic amphi-
phile, induces a loss of NPC1 function by halting cholesterol
transport, and through a poorly understood mechanism re-
duces EBOV infectivity in vitro [93, 94]. Other cationic am-
phiphiles were shown to have a similar effect on both EBOV
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entry and cholesterol accumulation, providing evidence that a
broad spectrum of these compounds have at least some
efficacy against EBOV entry [95]. For example, the tertiary
amine imipramine that interferes with both cholesterol/
sphingomyelin transport and inhibits acid sphingomyelinase
activity reduces EBOV infectivity in vitro [63, 95, 96]. A third
compound, 3.47, has also been shown to be effective in
inhibiting EBOV entry in vitro and has been reported to di-
rectly interact with NPC1 [73, 97].

A set of related estrogen receptor inhibitors that are also
cationic amphiphiles have been identified through an in vitro
screen of FDA-approved molecules for their efficacy against
EBOV [98]. Within this panel of drugs, clomiphene and
toremifene were shown to protect against mouse-adapted
EBOV in vivo. These selective estrogen receptor modulators
inhibit EBOV by a mechanism independent of their ability to
interact with estrogen and seemed to affect late entry events,
perhaps in a manner similar to U18666A. The ability of these
drugs to become potential human filovirus therapeutics relies
on future work focusing on determining a detailed mechanism

of viral inhibition along with determining their efficacy in vivo.

Calcium-calmodulin kinases were initially identified in a
siRNA screen as host proteins critical for EBOV infection
[62]. Calmodulin (CAMK?2) inhibitor KN-93 profoundly
inhibited entry of EBOV GP pseudotyped lentiviral vectors
and reduced wild-type EBOV viral titers by >95 %. Verapa-
mil, tetradrine, nimodipine, and diltiazem inhibit TPCs found
in the late endosome/lysosome compartment as discussed
above. Mice treated with tetradrine have a significant decrease
in morbidity and mortality and have reduced viral titers [§3¢].
These TPC inhibitors need further study but show promising
antiviral efficacy.

Monoclonal Antibody Therapies Against EBOV Entry Re-
cently, antibodies that bind to EBOV GP have been shown to be
effective in protecting NHPs against lethal EBOV challenge
[99, 100, 101e°]. A neutralizing monoclonal antibody (mAb),
KZ52, was isolated from a human EBOV survivor and was
utilized in crystallography studies that elucidated the EBOV
GP structure [19, 102]. KZ52 binds the base of the pre-fusion
GP1/GP2 and neutralizes infection in vitro [19, 20]. This region
of GP has been termed a “hot spot” for neutralization due to the
identification of a number of monoclonal antibodies that bind to
this region including an anti-SUDV antibody 16F6 [20, 85].
Interestingly, KZ52 alone protects mice and guinea pigs against
lethal infection but does not protect NHPs [103, 104].

More recently, it is combinations of different anti-EBOV GP
mADbs that have been shown to protect NHPs against lethal chal-
lenge with EBOV when administered following infection [99,
100, 101ee]. One effective cocktail is MB-003 (MappBio) that
includes the anti-GP antibodies 13C6, 13F6, and 6D8 [99]. The
other is ZMADb (Defyrus) that includes anti-GP antibodies 1H3,
2G4, and 4G7 [100, 105¢]. These two cocktails have been
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combined to make ZMapp (13C6, 2G4, and 4G7) that is being
developed as an EBOV therapeutic [101¢¢]. In mapping the epi-
topes of these antibodies, it has been shown that 13C6 and 1H3
bind to the glycan cap of GP1, whereas 2G4 and 4G7 bind at the
GP1/GP2 interface in a similar region as KZ52 and 16 F6 and the
latter mAbs within the cocktail effectively neutralize virus infec-
tion in vitro [105e, 106¢]. These studies demonstrate that a com-
bination of antibodies that target the GP1-GP2 interface and the
glycan cap of EBOV GP effectively provides protection in vivo.

Many mechanistic questions about how these antibodies
are working to inhibit filovirus infection remain unanswered.
Future work should explore the ability of these cocktails to
protect against other Ebolavirus species and to develop similar
cocktails against the other species if the current cocktails
prove ineffective. Furthermore, studies are needed to deter-
mine the mechanism of protection provided by the glycan
cap antibodies, and investigate the ability of these antibodies
to interact with soluble GP. Additionally, and perhaps most
importantly, we need to determine how readily the virus can
evolve mutations within targeted epitopes, thereby escaping
from inhibition by these antibodies.

Conclusion

Recent advances in filovirus entry research have provided
valuable insights for the development of new therapeutics.
In the past 5 years, the field has elucidated several steps within
the complicated filovirus entry pathway. These include (1)
identification of PtdSer receptors that serve as non-specific
viral envelope attachment/internalization factors; (2) identifi-
cation of NPC1 as a novel and essential endosomal receptor
for filoviruses; (3) establishing the role of L-type calcium
channels in entry; and (4) more in-depth knowledge of filovi-
rus GP expression, structure, and function to better therapeu-
tically target the entry pathway.

Our understanding of the details of the filovirus entry pro-
cess is not yet complete. Future work will explore the mecha-
nistic details of these entry steps and the proteins involved
in vitro along with defining their critical roles during in vivo
infection. Some important questions that still remain to be an-
swered include as follows: What triggers viral internalization
following viral attachment to the cell? Does the virus always
follow the same endosomal compartment pathway? What host
signaling pathways are involved in viral internalization and
trafficking and can these pathways be targeted by therapeutics?
Since not all filoviruses require cathepsin B and L, what other
proteases can process GP? Also, what exact role does NPC1
play in fusion? What is/are the fusion trigger(s) that have yet to
be identified? Through further development of a clear under-
standing of the basic cellular and virus biology underlying the
entry process, we will be able to develop more effective and
safe therapeutics to halt human filovirus infections.
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