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Abstract: The role of viral envelope glycoproteins, particularly the accessory proteins of trimeric
and pentameric gH/gL-complexes, in cell-associated spread of human cytomegalovirus (HCMV)
is unclear. We aimed to investigate their contribution in the context of HCMV variants that grow
in a strictly cell-associated manner. In the genome of Merlin pAL1502, the glycoproteins gB, gH,
gL, gM, and gN were deleted by introducing stop codons, and the mutants were analyzed for viral
growth. Merlin and recent HCMV isolates were compared by quantitative immunoblotting for
expression of accessory proteins of the trimeric and pentameric gH/gL-complexes, gO and pUL128.
Isolates were treated with siRNAs against gO and pUL128 and analyzed regarding focal growth and
release of infectious virus. All five tested glycoproteins were essential for growth of Merlin pAL1502.
Compared with this model virus, higher gO levels were measured in recent isolates of HCMV, and its
knockdown decreased viral growth. Knockdown of pUL128 abrogated the strict cell-association and
led to release of infectivity, which allowed cell-free transfer to epithelial cells where the virus grew
again strictly cell-associated. We conclude that both trimer and pentamer contribute to cell-associated
spread of recent clinical HCMV isolates and downregulation of pentamer can release infectious virus
into the supernatant.

Keywords: cytomegalovirus; clinical isolates; cell-associated spread; glycoproteins; trimer; pentamer

1. Introduction

Human cytomegalovirus (HCMV) is a herpesvirus that is prevalent in 45–100% of
the population worldwide and causes significant morbidity under conditions of reduced
immune defenses [1]. In immunocompetent hosts, a usually subclinical primary infection
is followed by a lifelong latency from which the virus can reactivate despite robust cellular
and humoral immune responses. While numerous viral modulators of antigen presentation
allow escape from virus-specific cytotoxic T cells [2], the ability for cell-associated spread
is considered a viral means to evade neutralizing antibodies [3–6]. After reactivation, the
virus can be shed in various body fluids as cell-free infectivity [7].

Animal models with murine cytomegalovirus (MCMV) suggest that the cell-free mode
of transmission may be particularly relevant for host-to-host transmission, whereas within-
host dissemination can rely on the cell-associated mode of viral spread [8,9]. For HCMV,
this assumption is supported by clinical data showing that infectivity in the bloodstream is
found almost exclusively in the leukocyte fraction [10–13], while viral DNA in plasma or
serum appears to represent mainly free highly fragmented genomes rather than infectious
virion particles [14,15].

In fibroblast culture, freshly isolated HCMV almost always spreads in a strictly cell-
associated manner, i.e., the virus forms foci of infected cells but no infectivity is detectable
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in cell-free supernatant [16,17]. Notably, this transmission mode is completely insensitive
to antibodies that can efficiently neutralize cell-free virus [3,6]. With continued passage of
isolates in fibroblast culture, the strict cell-association is regularly lost, and the appearance
of infectivity in the supernatant is associated with genetic alterations in RL13, the UL128
locus and the UL/b’ region of the viral genome [18].

All HCMV strains commonly used in research carry at least some of these mutations
and can spread in a cell-free fashion, which is reflected in the formation of less restricted
comet-shaped foci. Yet, these strains have apparently also retained the ability to spread
in a cell-associated fashion, as inferred from spreading in fibroblasts monolayers in the
presence of neutralizing antibodies [5]. This antibody-resistant spread is characterized by
the formation of smaller well confined foci and resembles the appearance of foci when
supernatant-associated dissemination in the culture is impeded by overlay with methyl-
cellulose or agarose. Whether cell-associated spread, operationally defined by resistance
against antibodies or modification by overlay media, is mechanistically identical to cell-
associated spread of recent isolates, defined by lack of supernatant-associated infectivity,
is unclear.

While few data are available concerning the details of cell-to-cell spread, molecular
events for the cell-free transmission of HCMV are well characterized. Productively infected
cells release enveloped virions into the environment, which then bind to other cells in
the surroundings and can enter these cells by fusion of the viral envelope with cellular
membranes, and this process is mediated by a conserved set of herpesviral envelope
glycoproteins [19–23]. Homotrimers of gB accomplish the fusion of the viral envelope
with cellular membranes, resulting in release of the viral capsid into the cytoplasm of the
infected cell. gH/gL complexes are assumed to trigger the fusogenic activity of gB, either
as a direct consequence of binding to a cellular receptor or mediated by an additional viral
envelope protein that activates gH/gL upon its own interaction with a cellular receptor.
The data available to date suggest that both principles apply in HCMV, depending on
the cell type. HCMV expresses at least two different variants of gH/gL complexes in
its envelope, a trimeric complex of gH/gL with gO as an accessory protein [24,25] and a
pentameric gH/gL complex with the three proteins of the UL128 locus as accessory proteins
(pUL128, pUL130, and pUL131A) [26–28]. The trimer is apparently required for efficient
infection of all cell types by cell-free virions [29], whereas the pentamer is additionally
required only in certain target cell types, such as endothelial cells, epithelial cells, and
leukocytes [28,30]. Fibroblasts appear to be infected via a direct interaction of the trimeric
gH/gL/gO complex with its cellular receptor PDGFRα that triggers fusion via gB, whereas
endothelial and epithelial cells lack this receptor [31–33]. The cellular surface molecule
NRP2 was recently suggested as an entry receptor for HCMV on these cell types that can
bind to the pentameric gH/gL/pUL128/130/131A complex [34]. For subsequent activation
of fusion, however, the trimeric complex is nevertheless required [29], suggesting that only
this complex can trigger the fusogenic action of gB.

While the contribution of trimer and pentamer to the cell-free infection mode is well
established, their role in cell-associated infection is less clear. Whereas cell-free infection
depends greatly on gO irrespective of the cell type [29,35], cell-associated spread can be
mediated by either the gH/gL/gO trimer or the gH/gL/pUL128-131A pentamer [36–38].
Knockout of both trimer and pentamer, e.g., by combined disruptive mutations in UL74 and
one of the UL128-131A genes, completely abrogated the spread of such mutants in fibroblast
cultures, which indicates that gH/gL complexes are essential also for cell associated spread,
but this has not yet been formally demonstrated. A variant of strain Merlin that has been
cloned into a bacterial artificial chromosome (BAC) vector with repaired RL13 and UL128L
under the control of a tetracycline operator resembles clinical isolates by growing focally
without detectable infectivity in the supernatant [39]. Knockout of gO affected neither focus
size nor resistance against antibodies in this virus, while UL128stop mutations increased
focus size, and this surplus of focus size was then sensitive to antibodies and associated
with some release of cell-free infectivity [6,37,39,40], suggesting that the pentamer restricts
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viral growth to the cell-associated mode. Quantitative aspect may also play a role as
focal spread of the pentamerhigh strain Merlin in Adult retinal pigment epithelial cells
(ARPE-19) cells was resistant against antibodies, whereas focal spread of the pentamerlow

strain TB40/E and a Merlin mutant with reduced pUL128 expression was sensitive [6],
indicating that release of cell-free virus is a matter of pUL128 levels.

Yet, strain Merlin is also distinct from other established HCMV strains by lower
trimer levels, which may explain why knockout of gO had no effect in this virus but
greatly reduced focal growth in the genetic background of the trimerhigh/pentamerlow

strain TB40/E [35,36]. Remarkably, antibodies were able to further reduce these small foci,
again fitting the idea of virus release under pentamerlow conditions [36,41]. A caveat arises
from the fact that a splice acceptor site of UL73 is located adjacent to the ATG of UL74;
therefore, part of the phenotype of that mutant may be due to effects on the expression
of glycoprotein gN [35,42]. Little is known on the role of the gM/gN complex in virus
transmission, except that antibodies to gM/gN can neutralize cell-free HCMV [43]. The fact
that both components of this complex, as well as gH, gL, and gB, were essential for virus
growth in the context of the fibroblast-adapted strains AD169 and Towne [44–46] indicates
a contribution also to cell-associated growth. However, as those strains lack the pentamer
the contribution of each glycoprotein to cell-associated spread should be reexamined in a
pentamerhigh virus that spreads in a strictly cell-associated manner.

Unfortunately, targeted knockout of individual genes is not possible in recent isolates
which are closest to the vivo situation, but the genetically repaired BAC-cloned Merlin
provides a model of a cell-associated virus that can be mutated, with the additional
benefit of reporter genes including Gaussia luciferase [3,39]. With respect to recent isolates,
methods based on inhibitory gene-specific RNAs could at least allow the analysis of genes
for which partial reduction of expression may provide sufficient information. Therefore,
we used the Merlin-BAC to evaluate how knockout of gH, gL, gB, gM, and gN affects
cell-associated spread, and attempted to assess the role of trimer and pentamer by siRNA-
mediated knockdown of UL74 and UL128 in recent isolates. Specifically, we tested the
hypothesis that partial reduction of pentamer expression would lead to release of cell-free
infectivity from strictly cell-associated HCMV isolates as suggested by experiments in the
background of strain Merlin [6], and that residual expression of the pentamer would allow
infection of epithelial cells, thus resembling the situation with trimerhigh/pentamerlow

strains, like TB40/E. If so, this would not only provide insight into the role of gH/gL-
complexes in cell-associated spread but could also facilitate the transfer of recent isolates
from fibroblast cultures to other cell types without the need for coculture.

2. Materials and Methods
2.1. Cells

For propagation, human foreskin fibroblasts (HFF) were kept in “growth medium”
containing minimal essential medium with 5% fetal bovine serum (PAN Biotech, Aidenbach,
Germany) GlutaMAX (Life Technologies, Carlsbad, CA, USA), 100 µg/mL gentamicin,
and basic fibroblast growth factor (bFGF; Life Technologies, 0.5 ng/mL). Human fetal
foreskin fibroblasts (HFFF-tet) cells were immortalized with hTERT and expressed the Tet-
repressor [39]. For propagation, HFFF-tet cells were cultured in “growth medium”. During
experiments, both HFFs and HFFF-tet cells were kept in “growth medium” without bFGF
(MEM5). Human umbilical vein endothelial cells (HUVECs) were cultured in RPMI1640
medium (Life Technologies) supplemented with 10% HCMV-seronegative human serum,
50 µg/mL endothelial cell growth supplement (ECGS, BD Biosciences, Franklin Lakes,
NJ, USA), 5 units/mL heparin (Sigma-Aldrich, St. Louis, MO, USA), and 100 µg/mL
gentamicin. Adult retinal pigment epithelial cells (ARPE-19) were cultured in DMEM/F-12
with GlutaMAX (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
5% FBS and 100 µg/mL gentamicin. Cell-culture microplates were coated with 0.1% gelatin
(Sigma-Aldrich) prior to seeding of cells.
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2.2. Viruses

Merlin pAL1502 is a bacterial artificial chromosome (BAC)-cloned HCMV strain that
is a derivative of the repaired Merlin-BAC pAL1128 [6,39]. It has tet-operator sequences
in front of the RL13 and UL128 genes. Merlin pAL1502-GLuc is a derivative of Merlin
pAL1502 that expresses Gaussia luciferase under control of the major immediate early (IE)
promotor/enhancer [3]. TB40-BAC4 is a BAC-clone based on HCMV strain TB40/E [47],
TB40-BAC4-UL74stop is a derivative thereof which lacks the expression of pUL74 (gO) [35]
and TB40-BAC4∆UL132-128 is a derivative that lacks the complete UL128 gene region [48].

Recent clinical HCMV isolates were provided by the diagnostic laboratory of the
Institute of Virology in Ulm. They originated from routine testing of throat washings from
patients of the Ulm University Medical Center. Sample material was applied to HFFs, and
HCMV-positive cultures were then incubated for several weeks until they showed the
desired cytopathic effect. Infected cells were then aliquoted and frozen at −80 ◦C, and the
cell association of the HCMV isolates was tested by transferring culture supernatants onto
adherent HFFs and immunofluorescence staining for viral immediate-early (IE) antigens
one day after inoculation. Isolates were only used further if they were negative in this assay.

For preparation of cell-free virus stocks, supernatants from productively infected
cultures were centrifuged for 10 min at 2790× g to remove cells and debris and stored at
−80 ◦C in aliquots until used in experiments. For preparation of purified virions, cell-free
supernatants were fractionated by gradient centrifugation [49]. First, HCMV particles
were pelleted from cell-free supernatants by ultracentrifugation at 70,000× g for 70 min,
and the pellets were resuspended in 2 mL sodium phosphate buffer (8 mM NaH2PO4,
32 mM Na2HPO4, pH 7.4). This suspension was then layered on a linear glycerol-tartrate
gradient (15% sodium tartrate/30% glycerol to 35% sodium tartrate in phosphate buffer)
and centrifuged at 80,000× g for 45 min, resulting in separation of HCMV particles into
non-infectious enveloped particles (NIEPs), virions, and dense bodies. The virion fraction
was collected by syringe and needle, resuspended in phosphate buffer, and recentrifuged
at 80,000× g for 70 min. The supernatant was discarded, and virion pellets were stored at
80 ◦C until used for Western blot analyses.

2.3. Generation of Mutant Viruses

Mutant BACs were generated by applying a markerless mutagenesis protocol [50]. In
brief, using plasmid pEP-Kan-S as a template recombination fragments were generated by
PCR that consisted of the 18-bp I-Sce I restriction site and a kanamycin resistance cassette
flanked by repeated sequences containing homology to the desired site of insertion in
the HCMV genome. Since the primers containing the homology regions (Tables 1 and 2)
showed a high binding potential to each other, the recombination fragment was syn-
thesized in two separate PCR reactions. Using the forward primer and the kanamycin
universal reverse primer, the kanamycin cassette region and the I-SceI restriction site of
the plasmid were amplified. The resulting fragment was used as a template for a second
amplification with the short-forward and reverse primers to obtain the final recombination
fragment, which was then inserted by electroporation into recombination-activated GS1783
harboring the Merlin pAL1502-GLuc BAC or Merlin pAL1502. Following kanamycin
selection, all non-HCMV sequences were removed by intrabacterial I-Sce I digestion and a
subsequent red recombination step. BAC-DNA was isolated using the NucleoBond Xtra
Midi kit (Macherey-Nagel, Düren, Germany), each mutant was analyzed by RFLA and
Sanger sequencing, and to reconstitute the virus, the purified BAC-DNA was transfected
into HFFFtet cells using a calcium phosphate-based method (MBS Transfection Kit, Agi-
lent, Waldbronn, Germany) or lipofection (K2 Transfection System, Biontex Laboratories,
München, Germany).
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Table 1. Primers used for the introduction of stop codons into glycoprotein genes.

Primer Sequence (5′-3′)

UL55stop_for ggaatccaggatctggtgcctggtagtctgcgttaacttgtgaatcgtccgtctgggttaagcggtttcctcatcttctacaggatga
cgacgataagtaggg

UL55stop_rev gagtagcagaagttccacgagtagaagatgaggaaaccgcttaacccagacggacgattcacaagttaacgcagactaccacaa
ccaattaaccaattctgattag

UL55stop_short_for ggaatccaggatctggtgcc

UL73stop_for taagcatcgtggcggtggtgtgatggagtggaacacactatgattaggtcttttggtttaatcggtagtggcaagttccaaaggatgacg
acgataagtaggg

UL73stop_rev tgctagcagtcgacgtattgttggaacttgccactaccgattaaaccaaaagacctaatcatagtgtgttccactccatcacaaccaattaa
ccaattctgattag

UL73stop_short_for taagcatcgtggcggtggtg

UL73stop_for M3 caacgtgatgagaccacatgctcacaatgatttttacaattgacattgtacatcgcattagtatgagctttcactgtccagaggatgacga
cgataagtaggg

UL73stop_rev M3 tattccaccaggctgcaaagctggacagtgaaagctcatactaatgcgatgtacaatgtcaattgtaaaaatcattgtgagcaaccaattaa
ccaattctgattag

UL73stop_for_short M3 caacgtgatgagaccacatg

UL75 stop_for cgctatgcggcccggcctccccttctacctcaccgtcttctaggtctacctccttagttgactaccttcgcaacgatatggaggatgacgac
gataagtaggg

UL75 stop_rev cttcggatgcggcgtctgcgccatatcgttgcgaaggtagtcaactaaggaggtagacctagaagacggtgaggtagaaggcaa
ccaattaaccaattctgattag

UL75 stop_short_for cgctatgcggcccggcctcc

UL100stop_for cgtggactttgaaaggctcaacatgtcggcctacaacgtatgacacctgcacacgccttaacttttcttagactcggtgcaaggatga
cgacgataagtaggg

UL100stop_rev acacggcgtagcacaccaactgcaccgagtctaagaaaagttaaggcgtgtgcaggtgtcatacgttgtaggccgacatgtcaaccaa
ttaaccaattctgattag

UL100stop_for_short cgtggactttgaaaggctca

UL115stop_for ctctcatcgtgccgcagacttgatgtgccgccgcccggattgaggcttctctttctcataaggaccggtggtactgctgtgaggatgacga
cgataagtaggg

UL115stop_rev tgggcagcagaaggcaacaccacagcagtaccaccggtccttatgagaaagagaagcctcaatccgggcggcggcacatcacaa
ccaattaaccaattctgattag

UL115stop_short_for ctctcatcgtgccgcagact

Kanamycin universal reverse caaccaattaaccaattctga

Primer sites encoding stop codons are underlined.

Table 2. Primers used for the introduction of stop codons into genes of the UL128 locus.

Primer Sequence (5′-3′)

UL128stop_for acggctgagattcgcgggatcgtcaccaccatgacctagtcattgacatgacaggtcgtacacaacaaggatgacgacgataagt
UL128stop_rev gtagttgcagctcgtcagtttgttgtgtacgacctgtcatgtcaatgactaggtcatggtggtgacgcaaccaattaaccaattctga

UL128stop_short_for acggctgagattcgcgggat

UL130stop_for ctgcctgcttctgtgcgcggtttgggcaacgccctgtctgtagtctccgtggtcgtaactaacagcaaaccagaatccaggatgacg
acgataagt

UL130stop_rev gtttagaccatggcggggacggattctggtttgctgttagttacgaccacggagactacagacagggcgttgcccaaacaaccaattaa
ccaattctga

UL130stop_short_for ctgcctgcttctgtgcgcgg

UL131 stop_for gtctgtttgtctgtgcgccgtggtgctgggtcagtgccagtaggaaaccgcggaataaaacgattattaccgagtaccaggatgacgac
gataagt

UL131 stop_rev agcacgcgtcccagtaatgcggtactcggtaataatcgttttattccgcggtttcctactggcactgacccagcaccacaaccaattaacc
aattctga

UL131 stop_short_for gtctgtttgtctgtgcgccg

Kanamycin universal reverse caaccaattaaccaattctga

Primer sites encoding stop codons are underlined.
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All primers were designed to match the sequence of both TB40-BAC4 and Merlin,
and with each primer set two mutant clones were generated in TB40-BAC4 in order to
test whether the stop codons abolished virus growth as expected. In UL73, these control
experiments showed that two stop codons were not sufficient to fully prevent viral growth.
Hence another doublet of stop codons was inserted including a stop codon at the position
of the third methionine in the amino acid sequence of UL73. With this additional mutation,
virus growth was abolished consistent with the previous findings of UL73 being essential
for replication of cell culture adapted strains. The same primer sets were then applied to
the genetic background of strain Merlin using Merlin-BAC pAL1502-GLuc, which allowed
the evaluation of viral growth during the reconstitution procedure by measuring luciferase
activity in the supernatant of transfected cultures.

2.4. Determination of Viral Growth

The use of Gaussia luciferase for quantification of infection has been described
previously [3]. Briefly, the Gaussia luciferase-containing cell culture supernatants were
either stored at −20 ◦C or mixed immediately with the luciferase substrate coelenterazine
(PjK, Kleinblittersdorf, Germany). Coelenterazine was diluted to 0.2 µg/mL in phosphate
buffered saline with 5 mM NaCl. The substrate was added to the cell culture supernatants
automatically in a plate reader (Chameleon, Hidex, Mainz, Germany) and the lumines-
cence signals were measured as relative light units (RLU). The RLU-values of the luciferase
activity were plotted on a logarithmic scale against the time after transfection to visualize
the viral growth in the cell culture. The slope of the curve during the phase of exponential
growth, appearing linear in the logarithmic scale, was used to calculate the increase of
virus (growth rate = 10slope − 1).

2.5. Knockdown of Gene Expression with siRNA

HFFs were transfected with 200 nmol/l siRNA using Lipofectamine RNAiMAX
transfection reagent (Life Technologies). For knockdown of the cellular genes targeting
the cellular genes PDGFRα and NRP2 premixed pools of four siRNAs were used (M-
003162-04 and M-017721-01; Thermo Fisher Scientific). For knockdown of the viral genes
UL74 and UL128, two individual siRNAs per gene were designed and purchased from
Sigma-Aldrich: UL74 was targeted by 5′-CGAACAAGGCUGCGGUAAU(dT)(dT)-3′ and
5′-GGUCCCAUUCGAAACGAUA(dT)(dT)-3′, UL128 was targeted by 5′-GCGGCAAAGU
GAACGACAA(dT)(dT)-3′ and 5′-CUGCUACAGUCCCGAGAAA(dT)(dT)-3′. To control
for unspecific effects of siRNA transfection, a pool of non-targeting (NT) siRNAs was
included (D-001206-14; Thermo Fisher Scientific).

2.6. Detection of Viral Immediate Early Proteins by Indirect Immunofluorescence

Infected cells were fixed with 80% acetone for 5 min at room temperature, washed with
PBS, incubated at 37 ◦C for at least 90 min with antibody E13 (Argene/Biomerieux, Marcy-
l’Étoile, France) directed against viral immediate early (IE) antigen (UL122/123), washed
with PBS, incubated for 60 min with Cy3-goat-anti-mouse Ig F(ab’)2 fragments (Jackson
ImmunoResearch, West Grove, PA, USA), washed with PBS, and counterstained with
4′,6-Diamidin-2-phenylindol (DAPI, Sigma-Aldrich). This procedure resulted in nuclear
red fluorescence of infected cells and blue nuclear fluorescence of all cells. Images were
taken fluorescence microscopy with an Axio Observer D1 microscope (Zeiss, Oberkochen,
Germany), and, if desired, quantification was done using Zen software (version 2.3, Zeiss).

2.7. Immunoblotting

Samples were lysed in Laemmli lysis buffer [51], the lysates were boiled for 5 min at
95 ◦C, precipitates were removed by centrifugation, and the cleared lysates were stored in
aliquots at −80 ◦C. For immunoblotting under reducing conditions, lysates were thawed,
boiled with 5% β-mercaptoethanol for 5 min at 95 ◦C, and clarified from precipitates by cen-
trifugation, whereas for nonreducing conditions, β-mercaptoethanol was omitted. Lysates
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were then loaded onto 10% or 12.5% polyacrylamide gels and electrophoresis was per-
formed in tris glycine SDS buffer. The proteins were transferred onto PVDF membranes in
tris-glycine buffer with 15% methanol. Membranes were blocked with PBS plus 0.1% Tween
and 5% milk powder before staining with rabbit antibodies against actin (Sigma-Aldrich)
or mouse monoclonal antibodies against the viral proteins gO [37], gB (Abcam, Cambridge,
UK), pUL128 [52] or the cellular protein PDGFRα (Cell Signaling Technology, Danvers, MA,
USA). Horseradish peroxidase (HRP)-conjugated rabbit anti-mouse-Ig (Agilent DAKO,
Santa Clara, CA, USA) or goat anti-rabbit-Ig (Santa Cruz Biotechnology, Dallas, TX, USA)
was used as secondary antibody. Visualization and quantification of the signals was
performed with Super Signal West Dura Extended Duration substrate (Thermo Fisher
Scientific) using FusionCapt Advance Solo (v.7 Vilber Lourmat, Eberhardzell, Germany).

2.8. Statistical Analyses

Datasets with more than two groups of data were analyzed by one-way-ANOVA
using the build-in data analyses function of Sigmaplot to test whether there are significant
differences between the various conditions. If ANOVA indicated significant differences
between groups within the data set, appropriate post-hoc analyses were performed to
identify groups that differ from the untreated control (Holm-Sidak for data sets in Figures
1 and 4B; paired t-tests for data sets in Figures 5 and 6). Datasets in Figures 2 and 4A
were analyzed using unpaired t-tests. Differences between conditions were considered
marginally significant when p-values were <0.05, significant when p values were <0.01 and
highly significant when p values were <0.001.

3. Results
3.1. Envelope Glycoproteins That Are Essential for Cell-Free Virus Spread Are Also Essential for
Cell-Associated Growth

As the essential role of the glycoproteins gB, gH, gL, gM, and gN has only been proven
in the context of viruses that lack the pentameric gH/gL complex and grow via the cell-free
mode [44–46], we aimed to revisit the contribution of these glycoproteins in the genetic
background of a virus that grows strictly cell-associated, like recent clinical HCMV isolates.
To knock out expression of the individual glycoproteins, we introduced stop codons into
the respective open reading frames of a genetically repaired variant of strain Merlin that is
available as a BAC-cloned genome and hence allows for targeted genetic manipulation [39].
This virus grows strictly cell-associated due to expression of RL13 and the UL128 locus
and, therefore, allows the evaluation of whether the herpesviral fusion machinery is also
essential under these conditions.

All genome modification were introduced into the bacterial artificial chromosome
(BAC) Merlin pAL1502-GLuc [3] in E.coli using the seamless mutagenesis approach by
Tischer et al. [50], and for reconstitution of the recombinant viruses BAC DNA was isolated
from the mutated bacteria and transfected into fibroblasts. To impede accidental repair
of introduced stop mutations during the reconstitution process, we always introduced
a set of two stop codons (Table 1). To ensure that the reconstitution process worked,
wildtype BAC Merlin pAL1502-GLuc was always included as a positive control. The
transfection efficiency was controlled by immunofluorescence detection of viral immediate
early antigens (Figure 1A), and reconstitution of virus from the transfected genomes was
monitored by measurement of luciferase activity in the supernatant of the transfected
cultures Figure 1B). The log fold change of luciferase signals during the exponential growth
phase was calculated, and the growth rate per day was calculated from this slope value.
Two measurements were taken for each of two independent transfections with each of the
two clones, resulting in eight values for each mutation, which were then used for statistical
analyses in comparison to wildtype virus in an ANOVA with appropriate post-hoc tests.
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Figure 1. Effect of stop mutations in viral genes encoding for envelope glycoproteins on growth
of the cell-associated model virus Merlin pAL1502-GLuc. (A) Detection of viral immediate early
antigen 2 d post-transfection (dpt) as a proof of successful transfection and 41 dpt as a readout of
viral growth. Data for the UL55stop mutant are shown as an example. (B) Measurement of Gaussia
luciferase activity (relative light units; RLU) as a reporter for viral gene expression. The period during
which growth dynamics were exponential and appear linear on a logarithmic scale were used for
linear regression analyses to determine the slope as a readout for viral growth. Data for the UL55stop
mutant are shown as an example. (C) Growth dynamics of Merlin pAL1502-GLuc (wildtype virus)
and glycoprotein-stop-mutants thereof. The daily growth rates (right panel) were calculated from the
slopes (left panel) as 10slope − 1. Bars indicate mean values of eight replicates (two measurements of
two independent transfections of two clones per gene). Error bars represent the standard error of the
mean (SEM). Asterisks indicate significant differences as compared with wildtype (***, p < 0.001).

As expected, viable virus could be reconstituted by transfection of wildtype genomes,
reflected by an exponential increase of the luciferase signals (Figure 1B). In contrast, virus
growth was not detectable with any of the mutant genomes (Figure 1C). Transfection effi-
ciencies with the mutants were comparable to wildtype controls as reflected by the number
of cells expressing viral IE antigen and an initial luciferase expression. However, the level
of luciferase signals declined after the initial signal peak and subsequently disappeared,
indicating that viable virus could not be reconstituted. This set of data confirmed the
essential role of gB, gH, gL, gM, and gN in the background of a strictly cell-associated
HCMV strain.
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3.2. Knockout of the Pentamer Has Only Limited Effect on Expression of the Trimer in the
Background of Strain Merlin

While gH and gL were both required for Merlin growth, each of the two alternative
gH/gL complexes appeared to be dispensable for growth in fibroblast cultures in previous
studies [37,39]. In the genetic background of strain Merlin, deletion of the trimer by a dual-
stop mutation in UL74 only slightly affected focal growth, and deletion of the pentamer by a
dual-stop mutation in UL128 even enhanced viral spread. In contrast, combined mutations
of UL74 and one of the UL128-131A proteins were lethal to the virus, consistent with the
assumption that gH/gL complexes are essential and gH/gL dimers are insufficient for viral
replication in the absence of accessory proteins [37]. However, the unrestricted growth of
the UL128 stop mutant was somewhat surprising, as Merlin is known to express very low
levels of trimers, even under conditions where expression from the UL128 locus is greatly
reduced [53]. On the other hand, Merlin expresses particularly high levels of pentamer [40],
and we wondered whether only the complete absence of UL128-131A proteins could lead
to trimer expression comparable to trimerhigh strains, such as TB40/E. To formally exclude
any competition for gH/gL, we constructed a new mutant of Merlin pAL1502 with two stop
codons in each of the UL128 locus genes (Figure 2A).

To exclude the possibility that the phenotype of the mutant virus may be due to an
accidental unintended second site mutation, two independent clones were generated and
analyzed. Virus was reconstituted from the mutant genomes by transfection into HFFFtet
cells, and sequence analysis of the reconstituted viruses confirmed that the six stop muta-
tions had been introduced as intended and no unwanted mutations had occurred in the
UL128 locus. The reconstituted viruses were transferred to normal HFFs, which were then
cocultured with an excess of uninfected HFFs or endothelial cells (HUVECs) for 5 d. Both
clones showed the expected phenotype (Figure 2B), i.e., mutants formed comet-shaped foci,
indicating release of cell-free infectivity, whereas wildtype Merlin pAL1502 was strictly
cell-associated, and both mutants did not form foci in endothelial cell cultures, whereas
the wildtype virus spread focally. Concordant with this phenotype, pUL128 signals were
not detected in immunoblotting analyses of lysates from infected HFFs, whereas lysates of
wildtype virus showed the expected band (Figure 2C). Two independent virion prepara-
tions of each virus were then generated by glycerol tartrate gradient centrifugation from
supernatants of infected HFFFtet cultures and compared in nonreducing immunoblotting
analyses for incorporation of the gH/gL/gO trimer. As hypothesized, complete knockout
of the UL128-UL131A proteins further increased the expression of gO above the level in
wildtype virus produced under conditions of UL128 repression (Figure 2D). However, the
increase was only moderate to 167% of wildtype level (standard error of the mean = 22%,
p = 0.029) and did not reach the levels detected with strain TB40/E. At this point, we
wondered whether strain Merlin is unique or whether it shares the expression pattern with
recent clinical isolates that also grow strictly cell-associated.
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Figure 2. Effect of stop mutations in viral genes encoding for the accessory proteins of the pentamer
complex. (A) Schematic representation of the viral genome with the unique long and the unique
short section indicated by UL and US, respectively. The UL128 gene locus is shown enlarged below
the genome map, and the positions of the stop codons that were introduced into the open reading
frames of UL128, UL130, and UL131A are indicated by arrow heads. (B) Virus reconstituted in
HFFFtet cells from wildtype Merlin pAL1502 or mutant genomes was used to infect fibroblasts
(HFFs) which were then cocultured with an excess of uninfected HFFs or endothelial cells (HUVECs)
for 5 d. After the incubation time, cultures were fixed and immunostained for viral immediate early
(IE) antigen. (C) Lysates of infected HFFs were analyzed by separation on a 10% polyacrylamide gel
under reducing conditions and subsequent immunoblotting with antibodies against pUL128 to test
whether the knockout of UL128 was successful. The major capsid protein (MCP) was detected as a
loading control. (D) Virus particles were prepared from infected HFFs (TB40-BAC4 and derivatives)
or HFFFtet cells (Merlin pAL1502 wildtype and UL128-131stop mutants) by gradient purification
and lysed. Lysates were separated on a 10% polyacrylamide gel under nonreducing conditions and
analyzed by immunoblotting with antibodies against glycoprotein O (gO) or MCP (loading control).
For Merlin wildtype and mutants, the ratio of gO/MCP signals were determined to evaluate the
effect of the knockout of the UL128 locus genes on the incorporation of gO into virion particles. Bars
indicate mean values of four replicates with wildtype (two blots of two independent preparations)
and eight replicates of UL128-131stop (two blots of two independent preparations of each of the two
clones). Error bars represent the standard error of the mean (SEM). The asterisk indicates a significant
difference as compared with wildtype (*, p < 0.05).

3.3. Recent Isolates of HCMV Express Higher Levels of gO Than the Cell-Associated Model Virus
Merlin pAL1502

To address the question of which of the laboratory strains TB40/E and Merlin more
better represents clinical isolates regarding expression of the alternative gH/gL-complexes,
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we prepared lysates of recent clinical isolates grown in HFF cultures and analyzed them by
quantitative immunoblotting for the amount of gO and pUL128 as indicator proteins for
trimer and pentamer. The isolates were selected for a strictly cell-associated phenotype,
i.e., lack of infectivity in the supernatant, and an infection rate in the isolate culture of at
least 25% to allow detection of viral proteins in immunoblotting. A total of 8 isolates were
included, and three independent lysates of each isolate were analyzed by immunoblotting
under reducing conditions using monoclonal antibodies against gO, pUL128 and gB. The
latter was used as a reference protein in densitometric analyses of the resulting bands, and
gO/gB and UL128/gB ratios were used as readouts for the relative amount of gO and
pUL128. For comparison, three lysates of Merlin pAL1502 and TB40/E were included, rep-
resenting a cell-associated trimerlow/pentamerhigh and a cell-free trimerhigh/pentamerlow

lab strain, respectively.
The reproducibility of gO/gB and pUL128/gB ratios in the three lysates was suffi-

cient to detect differences between the various viruses (Figure 3A). Regarding gO, the
expression level was remarkably high, with four of the isolates even exceeding the level
of the trimerhigh strain TB40/E and all except one expressing more gO than strain Merlin.
Regarding pUL128, all isolates expressed higher levels than the pentamerlow strain TB40/E,
and none of the isolates exceeded strain Merlin. When the pUL128/gB were plotted against
the gO/gB values (Figure 3B), it became clear that the laboratory strains represented ex-
tremes that were clearly distinct form the isolate data by either a pentamerlow or a trimerlow

phenotype. Within this population, the correlation between pUL128/gB and gO/gB values
was not very strong, but clearly positive, i.e., isolates that expressed higher levels of pUL128
also expressed higher levels of gO.

Figure 3. Comparison of various recent clinical human cytomegalovirus (HCMV) isolates and virus
strains TB40/E and Merlin regarding the relative abundance of glycoprotein O and pUL128. (A) For
each isolate or virus strain, three independent lysates of infected cell cultures were analyzed by
separation on 10% polyacrylamide gels and subsequent immunoblotting for glycoprotein O (gO),
pUL128 and glycoprotein B (gB) using monoclonal antibodies against the respective protein. gB
was used as a reference protein, and ratios of gO/gB signals and pUL128/gB signals were used as a
readout for the relative abundance of gO and pUL128. Each dot represents one lysate. Dashed lines
indicate the upper and lower limits of the values for laboratory strains TB40/E and Merlin. (B) Values
of the relative abundance of pUL128 and gO were plotted against each other, and for clinical isolates
(black dots) a linear regression analysis was performed (dashed line) Dotted lines represent the 95%
confidence interval. (C) An example of one representative immunoblotting analysis underlying the
analyses of (A,B) is shown.
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In conclusion, neither of the lab strains appeared to represent clinical isolates regarding
expression of the accessory proteins of pentamer and trimer, with most of the clinical
isolates showing a pentamerhigh/trimerhigh phenotype.

3.4. Spread of Recent Isolates in Fibroblast Culture Is Promoted by gO and Restricted by pUL128

While an essential role of gO for entry of cell-free HCMV virions into various target
cell types is well established, the contribution of gO to cell-associated spread is less clear.
On one hand, deletion of gO in the background of the cell-associated BAC-cloned strain
Merlin had little effect on focal growth if the alternative pentameric gH/gL complex was
intact [37]. On the other hand, analysis of gO in the Merlin background may underestimate
the role of gO as this protein is only inefficiently incorporated into the gH/gL/gO trimer in
this strain [53,54]. In the light of our novel finding that recent isolates express significantly
more gO than Merlin it appeared appropriate to revisit the role of gO for focal spread in
the context of these isolates.

To address this issue, we knocked down gO expression in the context of recent HCMV
isolates by transfection of two pooled UL74-specific siRNAs and evaluated the effect of this
knockdown on the extent of focal growth, using non-targeting siRNAs as a negative control.
In parallel, we also knocked down the cellular receptor of gO, PDGFRα, that was reported
to promote cell-associated spread of the laboratory strains VR1814 and TB40-BAC4 [33]
but has not been analyzed in the context of recent clinical isolates. The efficacy of siRNA-
mediated knockdown was tested by quantitative western blot analyses, showing a 50%
reduction of gO expression and an almost complete knockdown of PDGFRα expression
as compared to non-targeting siRNA (Figure 4A). Both, gO and PDGFRα had an effect on
focal growth (Figure 4B,C). The partial knockdown of gO reduced growth of the various
isolates by 43.5%, while the more complete knockdown of PDGFRα reduced viral growth
by 70.5%. These results supported the hypothesis that the cell-associated virus spread of
recent clinical isolates in fibroblast cultures is promoted by an interaction of the trimeric
complex gH/gL/gO with its cellular receptor PDGFRα.

To assess the role of the pentamer in the same setting we next knocked down expres-
sion of its accessory protein pUL128 by two UL128-specific siRNAs. With both siRNAs, the
expression of pUL128 was reduced by about one third as compared to the nontargeting
control-siRNA (Figure 5A). This knockdown was associated with an increased spread of
the various isolates in the culture (Figure 5B,C).
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Figure 4. Knockdown of viral glycoprotein O (gO) and its cellular receptor PDGFRα both reduce the
growth of cell-associated clinical HCMV isolates. Human fibroblasts infected with recent HCMV
isolates were transfected with siRNAs targeting transcripts of the viral gene UL74 (encoding gO) or
the cellular gene encoding the receptor PDGFRα. Nontargeting siRNAs (NT) were included as a
control. (A) Four days after transfection, cultures were lysed and analyzed by immunoblotting for
expression of gO or PDGFRα, including detection of actin as a loading control. Chemiluminescence
signals were analyzed by densitometry, and UL128/actin ratios were calculated and normalized to
the NT controls. (B,C) Replicates of the transfected cultures were fixed and immunostained for viral
immediate early (IE) antigen as an indicator of viral growth. Both knockdown of gO and knockdown
of PDGFRα inhibited viral growth to a degree that corresponded to the expression levels of the
proteins after siRNA treatment. Bars indicate mean values of three biological replicates (different
isolates). Error bars represent the standard error of the mean (SEM). Asterisks indicate significant
differences as compared with NT (**, p < 0.01; *, p < 0.05).

3.5. Knockdown of pUL128 Switches HCMV Isolates Transiently to the Cell-Free
Transmission Mode

The increase in virus spread that we observed after knockdown of UL128 could be
due to either increased efficiency of cell-to-cell spread or additional supernatant-associated
spread. The latter appeared likely since the complete knockout of UL128-131A expression is
well known to result in release of cell-free infectivity. Furthermore, the cell-free phenotype
of pentamerlow strains, like TB40/E, VHL/E, and VR1814, indicates that not only complete
loss but also reduced expression from the UL128 locus can be associated with a cell-free
phenotype [40]. Hence, we hypothesized that the partial knockdown of UL128 expression
by treatment with siRNA abrogates the strict cell-association of clinical HCMV isolates
and leads to release of infectious virus into the supernatant. Therefore, we tested cell-free
supernatants obtained from the UL128-siRNA-treated isolate cultures for infectivity by
incubating them overnight with fibroblast cultures and detecting viral immediate early
antigens via immunofluorescence. Already at day 3 after transfection, we found a 25–65-
fold increase in cell-free infectivity compared with nontargeting siRNA, which was further
augmented to a 50–400-fold increase on day 6 (Figure 6A).

As the effect of siRNA-mediated knockdown is transient and isolates are not expected
to be genetically altered by siRNA treatment, we assumed that the release of cell-free
infectivity was also transient and that the virus would switch back to a cell-associated
phenotype after transfer to other cell cultures. Therefore, we transferred supernatants from
day 6 after transfection to HFFs and ARPE-19 cells for long-term propagation and tested
the supernatants for cell-free infectivity at each subpassage. We were interested in whether
infection of epithelial cells (ARPE-19) with supernatant of UL128-siRNA-treated isolates
was possible despite knockdown of the pentamer, and we expected that if the transfer was
successful, the virus could then grow in this cell type in long-term culture. As predicted, the
virus grew strictly cell-associated in HFFs after transfer until the 7th passage, when cell-free
infectivity became detectable and continued to increase until the 10th passage (Figure 6B).
Infection of ARPE-19 cells was possible with UL128 knockdown virus, albeit with very
low efficiency, and the virus grew focally in this cell type without evidence of cell-free
infectivity throughout the course of the experiment. To analyze the stability of the UL128
gene locus during this experiment, we amplified each of the three open reading frames
from samples of (i) the isolate in HFFs before knockdown of UL128, (ii) HFFs 11 d after
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infection by transfer of the released cell-free virus, and (iii) ARPE19 cells after long-term
propagation of the transferred virus for 10 weeks. Using these amplification products, we
determined the DNA sequence of the UL128, UL130, and UL131A open reading frames
and found no differences between samples. All open reading frames appeared intact and
encoded full-length proteins (Figures S1 and S2).

Figure 5. Knockdown of UL128 promotes growth of clinical HCMV isolates. Human fibroblasts, infected with recent HCMV
isolates, were transfected with two individual siRNAs targeting transcripts of the viral gene UL128. Nontargeting siRNAs
(NT) were included as a control. (A) Six days after transfection (dpt), cultures were lysed and analyzed by immunoblotting
for expression levels of UL128, including detection of actin as a loading control. Chemiluminescence signals were analyzed
by densitometry, and UL128/actin ratios were calculated and normalized to the NT controls. Bars indicate mean values
of six replicates (three independent transfections with two isolates). Error bars represent the standard error of the mean
(SEM). The asterisks indicate significant differences as compared with NT controls (***, p < 0.001). (B) Replicates of the
transfected cultures were fixed 3 or 6 dpt and immunostained for viral immediate early (IE) antigen as a readout for viral
growth. The fraction of infected cells was determined and normalized to the NT controls. Bars indicate mean values of six
replicates (3 dpt: six technical replicates, 6 dpt: two independent transfections with three isolates). Error bars represent the
standard error of the mean (SEM). The asterisks indicate significant differences as compared with NT controls (***, p < 0.001).
(C) Representative examples of the immunostainings analyzed in Panel B.
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Figure 6. Effect of siRNA-mediated knockdown of pUL128 on release of cell free infectivity from recent clinical HCMV
isolates. Human fibroblasts (HFFs), infected with recent HCMV isolates, were transfected with two individual siRNAs
targeting transcripts of the viral gene UL128. Nontargeting siRNAs (NT) were included as a control. (A) Three days or six
days after transfection (dpt), supernatants of the transfected cultures were harvested, clarified from cells and debris, and
tested for infectivity. For this, the cell-free supernatants were incubated with uninfected HFFs overnight, fixed and immunostained
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for viral immediate early (IE) antigen. The fraction of infected cells was determined, and the corresponding virus titer in the
respective supernatant was calculated. Bars indicate mean values of 4–6 replicates. Error bars represent the standard error
of the mean (SEM). The asterisks indicate significant differences as compared with NT controls (***, p < 0.001; **, p < 0.01).
Representative examples of the immunostainings are shown for 6 dpt. (B) Supernatants of isolate 1 were transferred to infect
fibroblasts (HFFs) and epithelial cells (ARPE-19) for long-term propagation. Every week, the cell cultures were passaged,
and cell-free supernatants were harvested and analyzed for infectivity. A small fraction of the passaged cells was cultured
separately, fixed after one week and immunostained for viral IE antigen to evaluate the potential for focal growth. Examples
of focus formation are shown in both cell types for passages at 3, 5 and 8 weeks after the initial transfer. Starting from
week 7, cell-free infectivity became detectable in HFFs but not in ARPE-19 cells.

4. Discussion

Our finding that partial knockdown of the viral UL128 gene leads to the release of
cell-free infectious virus from otherwise cell-associated recent clinical HCMV isolates not
only demonstrates the contribution of this gene locus to the regulation of the transmission
mode of HCMV, but also has practical implications as it can greatly facilitate work with
recent isolates.

The importance of the UL128 gene locus for the cell-associated phenotype was first
suggested when disruption of the respective reading frames was found regularly during
adaptation of recent HCMV isolates to growth in fibroblasts and these genetic alterations
were associated with an increase in virus titers [18]. Further evidence came from attempts to
repair the genetic defects in this gene region in BAC-clones of strain Merlin, which showed
that presence of an intact UL128 locus reduced cell-free infectivity by approximately three
log levels compared with UL128 mutant virus [39]. This matches well with the 50–400-fold
increase of cell-free infectivity that we found 6 d after partial knockdown of UL128 in
isolate-infected cultures. With this, our knockdown experiments not only provide formal
evidence that the initially observed association between the increase in cell-free viruses and
disruption of the UL128 locus is a causal relationship in HCMV isolates, but they also add
a quantitative aspect, as they suggest that a certain level of UL128 expression is required
to keep the virus restricted to cell-associated growth. Whether this is mediated directly
by pUL128 or indirectly by the effect on trimer expression still needs to be resolved. With
respect to the biology of HCMV in vivo, one might speculate that HCMV can change its
transmission mode upon modulation of expression of the UL128 locus genes. For example,
reduced expression of the pentamer in epithelial cells of the breast and the kidney could
promote the release of cell-free virus in breast milk or urine for transmission to another host.

The available data on the role of UL74, which encodes gO, were less clear. Knockout
of UL74 expression in the context of the trimerhigh strain TB40/E provided circumstantial
evidence that gO contributes to cell-associated spread, defined as serum-resistant focal
growth [36], whereas UL74 stop mutations in in the background of the trimerlow strain Mer-
lin had no significant effect [37]. Our finding that both knockdown of gO and knockdown
of the cellular gO-receptor PDGFRα affect focal growth in the background of recent isolates
supports the notion that the molecular interaction between these two proteins not only
mediates entry of cell-free HCMV [31–33] but also promotes cell-associated spread of this
virus in fibroblasts. It seems likely that this interaction was overlooked in the background
of strain Merlin simply because the low levels of gO in this strain may contribute little
to cell-associated growth in the presence of an intact UL128 locus. Presuming that our
gO-expression data with eight recent isolates reflect the in vivo situation, it stands to reason
that gO can also contribute to cell-associated spread of HCMV in vivo in certain cell types.

The essential role of gH, gL, and gB in the context of strain Merlin strongly supports
the idea that both cell-free entry and cell-to-cell-transmission depend on gB-mediated
membrane fusion triggered by gH/gL complexes. While this has already been indirectly
suggested by the lethal effect of deletion of these genes in the background of the laboratory
strains AD169 and Towne, it has now been formally proven in a strain that spreads
only via the cell-associated pathway. However, this does not clearly elucidate the exact



Viruses 2021, 13, 614 17 of 20

mechanism of cell-associated spread. Either enveloped virions could be released in a
localized manner and fuse their envelopes directly with neighboring cells or, alternatively,
the gH/gL complexes and gB could promote fusion between the plasma membranes of
infected and uninfected cells, allowing direct transfer of subviral particles. Recent data
obtained with a dual fluorescent of strain Merlin favor the first explanation as capsid and
envelope signals were colocalized on neighbors of productively infected cells in growing
foci [3]. Regardless of which explanation is correct, the necessity of the fusion machinery
for cell-to-cell spread provides a rationale for finding fusion inhibitors that can block both
modes of transmission by the same molecular mechanism.

The ability to release cell-free infectivity by knockdown of UL128 from otherwise
cell-associated recent isolates can greatly facilitate such research attempts, as it becomes
possible for the first time to synchronize and dose infections with freshly isolated HCMV.
This allows the application of inhibitors at a chosen time point after infection and to study
the effect on cell-associated spread, as the cell-free virus released after knockdown of
UL128 switches back to cell-associated mode in the next round of infection. Up to now
such experiments have only been possible with the tet-regulated Merlin variants, in which
the UL128 region could be switched off in HFFFtet cells expressing the tet repressor [39].
This virus continues to have unique advantages in that it is available as a bacterial artificial
chromosome and thus can be genetically modified, including the introduction of targeted
mutations, fluorescent tags, or reporter genes. However, the finding that most of the
isolates that we analyzed by quantitative immunoblotting expressed far higher levels of
gO than Merlin indicated that fresh isolates may be preferable or an important adjunct for
certain questions. In addition, this knockdown approach allows to transfer cell-free virus
from the initial isolation culture in fibroblasts to epithelial cell culture, and thereby reduce
selective pressure on the UL128 gene locus.

It was not trivial, but also not entirely unexpected, that partial knockdown of UL128
was sufficient to induce cell-free infectivity. In principle, the appearance of infectious
virus in the supernatant may either be due to a complete knockdown in a subset of the
transfected cells or to a partial knockdown on the level of individual cells. While we
cannot differentiate these two possibilities by our immunoblotting results, the fact that
epithelial cells could be infected with such supernatants argues for the latter explanation.
If UL128 was completely knocked out in a subset of cells, the respective progeny would
be non-endotheliotropic due to the lack of pentamer. In contrast, a partial knockdown
on the single cell level would result in the release of progeny virions with reduced levels
of pentamer, which are sufficient to mediate entry into endothelial and epithelial cells.
A variety of laboratory strains have been described that combine extended cell tropism,
due to expression of the pentamer, with highly efficient cell-free spread. All share the
characteristic that the pentamer is expressed either at low levels or in a less functional
state compared to the more cell-associated laboratory strain Merlin [40]. Many analyses
with these laboratory strains suggested that higher pentamer levels always come at the
expense of lower trimer levels, and vice versa [53–55]. We were, therefore, surprised
to find that, in our set of clinical isolates, the levels of UL128 and gO were positively
rather than negatively correlated. It would be interesting to see whether these differences
in intracellular expression levels also lead to different levels of trimer and pentamer in
virion particles, but this was beyond the scope of this study as too few particles can be
harvested from such recent clinical isolates. We hope that further improvements regarding
the release of cell free infectivity may allow appropriate analyses in the future. Regarding
the question of which of the known laboratory strains can best represent clinical isolates,
this immunoblot analysis showed that both strain Merlin and strain TB40/E have extremely
imbalanced trimerlow/pentamerhigh and trimerhigh/pentamerlow expression patterns, and
both are markedly different from recent isolates. Even in these isolates, genetic changes
during the limited number of passages cannot be excluded. It is tempting to speculate
that application of UL128 knockdown to primary isolation cultures may enable similar
analyses at time points when genetic alterations are even less likely. It will be interesting
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to analyze in the future what determines the overall level of gH/gL complexes in such
isolates, including a possible contribution of UL148 and US16 [55–59]. Of note, complete
knock-out of expression from the UL128 locus by introducing dual-stop mutations into each
of the UL128 locus genes only moderately increased gO levels. This indicates that gH/gL
complexes, which are free due to lack of UL128 locus proteins, cannot not be quantitatively
complexed by gO to form trimers. Apparently, low expression of gO itself, rather than
overexpression of the UL128 locus, limits the amount of trimer that can be achieved in
strain Merlin. This is consistent with recent findings with conditional repression of the
pUL128 locus [29].

In conclusion, our knockout experiments with the cell-associated model virus Merlin
and knockdown experiments with recent clinical isolates clearly demonstrate the role of
the herpesviral fusion machinery in cell-associated spread and provide an approach to
facilitate research on recent HCMV isolates.
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knockdown of UL128.
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