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1  Introduction

Novel bioassay methods for low-cost, rapid, and easy-to-
use multiplex detection of pathogens are increasingly
demanded in diverse fields ranging from human infec-
tious disease diagnostics [1, 2], drinking water quality
control [3–5] to food safety applications [6–8]. Most of
today’s commercial instruments for pathogenic target
deoxyribonucleic acid (DNA) detection rely on fluores-
cence read-out, often in combination with target amplifi-
cation through PCR. This enables a high degree of multi-
plexing and excellent sensitivity, however, at the expense

of a high risk of false positives, relatively costly equip-
ment, and the need for specially trained personnel. In con-
trast, magnetic [9, 10] and optomagnetic bioassay princi-
ples [11–13] offer unique advantages in terms of very low
background signals and associated low-cost equipment
and are therefore promising for biodetection platforms to
be used in developing countries [14]. Particularly relevant
applications could, for instance, be in-field, rapid and
cost-efficient qualitative multiplex monitoring of patho -
gens. If one or more positive answers are obtained, sam-
ples could be sent to a central laboratory for further analy-
sis, such as identification of strains, etc.

In this paper we present an optomagnetic method for
rapid and cost-efficient qualitative biplex detection of
bacterial DNA sequences. Within less than two hours, the
assay gives a qualitative answer to whether none, both, or
only one of the bacterial DNA sequences is present in a
sample. The assay begins with a padlock probe ligation
and rolling circle amplification (RCA) protocol (about
70 min) for highly specific target recognition and isother-
mal enzymatic amplification. The resulting two types of
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RCA products in the form of macromolecular coils of
 ssDNA (here denoted DNA coils) with a repeating
sequence motif are mixed with magnetic beads (exhibit-
ing Brownian relaxation behavior) of two different sizes,
each functionalized with a detection oligonucleotide
complementary to only one type of DNA coil. It should be
noted that the padlock probe ligation reaction constitutes
highly specific target recognition since both the 5′ and 3′
ends of the linear padlock probe are designed to bp next
to each  other on the target strand. After an incubation
step of 20 min and transfer to a disposable cuvette, the
coil-bead sample is measured using an optomagnetic sys-
tem (measurement time about a few minutes) in which
the sample, while being subjected to an alternating cur-
rent (AC)  magnetic field (perpendicular to the optical
path), is illuminated by a laser beam and the transmitted
light is collected by a photodetector. The field-induced
sample response is measured as the second harmonic
component, V2 = V2′ + V2′′, of the output voltage from the
photodetector, normalized with respect to the total inten-
sity of transmitted light, V0. We consider two data analy-
sis approaches; firstly V2′/V0 and secondly the phase angle
response, ζ = arctan (V2′/V2′′), vs. frequency of the AC
magnetic field. Beads bound to DNA coils will respond
differently than free beads, which will be reflected in the
shape of the curves. We are able to show that each com-
bination of presence/absence of the two targets has a dis-
tinct phase angle signature, thereby enabling a straight-
forward qualitative biplex read-out. It should be noted that
in previous work [15] we demonstrated biplex detection of
bacterial DNA sequences using a commercial and portable
AC susceptometer device (DynoMag) for read-out in terms
of measuring the AC magnetization of the sample. In the
current work we have achieved major advancements in
terms of performing the read-out in a device having con-
siderable potential to be made at a much lower cost than
the DynoMag system (about a factor of 100 times lower).
Furthermore, the optomagnetic system is considerably
easier to miniaturize and is also much more compatible
with microfluidics for automated sample preparation.

2  Materials and methods

Sequences of targets, padlock probes, and detection
oligonucleotides can be found in Supporting information,
Table S1.

2.1  Conjugation of detection oligonucleotides 
to magnetic nanobeads

Two 200-μL batches of oligonucleotide-functionalized
magnetic beads were prepared according to protocols
described in detail in Supporting information, Section S1.
Detection oligonucleotide for Escherichia coli (EC) was
conjugated to 250-nm beads (nanomag-D avidin, Micro-

mod), and detection oligonucleotide for Vibrio cholerae
(VC) was conjugated to 100-nm beads (Brownian nanoflu-
id (BNF)-Starch avidin, Micromod, Germany). The two
bead batches were further diluted with PBS to a final con-
centration of 400 μg/mL, after which they were mixed at
a volume to volume ratio of 1:2 to get final approximate
concentrations of 130 and 270 μg/mL of 250- and 100-nm
beads, respectively.

2.2  Padlock probe target recognition, ligation, 
and rolling circle amplification

Target recognition and RCA were performed essentially
as previously described in ref. [15], for details see Sup-
porting information, Section S2.

2.3  Optomagnetic setup

The optomagnetic setup comprises a Blu-ray laser source,
a photodetector, a pair of electromagnets, a sample hold-
er, a current source, a data acquisition (DAQ) unit, and a
computer; for details, see Supporting information, Section
S3. A schematic illustration of the setup is shown in Sup-
porting information, Fig. S1. An AC magnetic field is
applied using the electromagnets, and the frequency
modulation of the photodetector voltage signal is meas-
ured using a lock-in amplifier with the magnetic field fre-
quency as the reference. The magnetic beads respond to
the applied AC field by the formation and disruption of
chain-like superstructures. The modulation of transmit-
ted light by this chain formation/disruption dynamics is
measured as the second harmonic component of the pho-
todetector voltage signal, divided into its in- and out-of-
phase components. Theory behind the optomagnetic
measurement principle can be found in Supporting infor-
mation Section S4 as well as in ref. [16]. In particular, Sup-
porting information, Fig. S2 shows the relation between
the AC magnetic and the optomagnetic sample response.

2.4  Sample preparation and read-out

Fifteen μL of bead solution was gently mixed with 15 μL
of DNA coil solution of different compositions and con-
centrations. The solution was incubated for 20  min at
55°C, after which it was diluted with 30 μL of a 50–50
buffer mixture (50 v/v % of 1 × PBS pH 7.4 and 50 v/v % of
hybridization buffer). The final solution was transferred to
a cuvette and measured using the optomagnetic setup in
the frequency range 1–200 Hz with an AC magnetic field
amplitude of 2.58 mT.

3  Results and discussion

Panels A and B in Fig. 1 show in- (V2′/V0) and out-of-phase
(V2′′/V0) vs. frequency spectra for four selected DNA coil
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concentration combinations, respectively. It can be
observed that all four curves have clearly distinct signa-
tures, different in shape and/or peak frequency. For no
DNA coils present (EC 0, VC 0) a comparably narrow V2′
peak is seen at a frequency corresponding to one in-
between the two individual free-bead peaks, which could
be considered as the sum of the peaks for 250- and 100-nm
beads. When measuring on samples with only 250-nm
beads and EC-coils (see Supporting information, 
Fig. S3A), the free-bead peak is located at 15 Hz, where-
as the free-bead peak for 100-nm beads (see Supporting
information, Fig. S3B) is located at 40 Hz. It is reasonable
to assume that the result from measuring on a sample
containing both bead sizes would be represented by a
peak at a frequency somewhere in between those two val-
ues. When DNA coils in high enough concentration are
present, the free-bead peak is suppressed in favor of the
formation of a new bound-bead peak at a lower frequen-
cy. This V2′ peak is tentatively explained by the formation
of chains by beads bound in DNA coils. As can be seen in
Supporting information, Fig. S3A and B, the bound-bead
peak for 250-nm beads in EC coils appears at 5 Hz where-
as the bound-bead peak for 100-nm beads in VC coils
appears at a slightly higher frequency. Using this infor-
mation, the interpretation of the curve shapes and peak
frequencies of Fig. 1B is straightforward. For the sample
EC 1, VC 1, the peak represents the sum of the two bound-
bead peaks and is thus located at 5 Hz. For sample EC 1,
VC 0, the measured V2′ spectrum represents the sum of
the contributions from EC coils with bound 250-nm beads
and free 100-nm beads. Accordingly, the curve shows one
peak at 37 Hz representing the free 100-nm beads and a
signature of one low-frequency peak representing the
response from EC coils with bound 250-nm beads. For the
sample EC 0, VC 1, the V2′ curve is a sum of the response
from free 250-nm beads and VC coils with bound 100-nm
beads. Since these two peaks overlap much more than for
the case of the EC 1, VC 0 sample, the resulting curve is
much narrower. In the EC 0, VC 1 curve, a small residual
peak at 50 Hz can be seen, corresponding to the response
from a small amount of free 100-nm beads. The explana-
tion for the residual free 100-nm bead peak being located
at a somewhat higher frequency compared to the meas-
ured free-bead peak at 40 Hz could be explained in terms
of the existence of a small part of the bead size distribu-
tion (corresponding to beads with the smallest sizes) hav-
ing few or no oligonucleotides, therefore unable to bind to
DNA coils.

In recent studies [16] we have demonstrated that the
phase angle analysis method is superior to the turn-off
approach (decrease of V2′ peak amplitude upon increasing
DNA coil concentration) with regards to SDs of the meas-
ured samples. Thus, we proceeded by considering the
phase angle ζ = arctan (V2′/V2′′) vs. frequency spectrum. In
Fig. 2, the ζ vs. frequency spectra belonging to the four
samples in Fig. 1 are shown (see Supporting information,

Fig. S4C for all samples). With this analysis method the
four concentrations result in curves with clearly distinct
signatures. Additionally it should be noted that, accord-
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Figure 1. Biplex detection of EC and VC DNA coils, generated through tar-
get recognition by padlock probe ligation followed by RCA (see protocols
in Supporting information Section S2), using 250- and 100-nm magnetic
beads functionalized with detection oligonucleotides for EC and VC,
respectively (see protocol in Supporting information, Section S1). 
Fifteen μL of DNA coil solution (both EC and VC) and 15 μL of bead sus-
pension (mixture of the two sizes) were incubated for 20 min at 55°C and
diluted with 30 μL of a buffer mixture prior to measurements in an opto-
magnetic system. In this setup the sample contained in a disposable
cuvette, while being subjected to an AC magnetic excitation field (perpen-
dicular to the optical path), is illuminated by a laser beam and the trans-
mitted light is collected by a photodetector. Four combinations of DNA
coil concentrations were measured upon; 0–0, 0–1, 1–0, and 1–1, where
the first figure represents the concentration of EC coils and the second fig-
ure represents the concentration of VC coils in nM. The second harmonic
component, V2 = V2′ + V2′′, of the photodetector voltage output signal was
measured as a function of frequency of the applied magnetic excitation
field. Panel A shows the normalized in-phase component, V2′/V0, and pan-
el B show the normalized out-of-phase component, V2′′/V0, where V0 is the
total intensity of transmitted light. The curves are based on the average of
triplicate measurements.
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ing to Supporting information, Fig. S4C, a DNA coil con-
centration of 0.5 nM gives the same response as obtained
for the 1-nM coil concentration; an observation that fur-
ther confirms the qualitative assay characteristics of our
method. Important to emphasize is that in ref. [16] (Sup-
porting information, Fig. S7) we have shown using 250-nm
beads that the phase angle spectrum of a negative control
sample does not significantly differ from that of a sample
containing 500 pM of DNA coils non-complementary to
the beads. This implies that in the biplex assay the bind-
ing of beads to complementary DNA coils is not signifi-
cantly influenced by the presence of non-complementary
DNA coils.

4  Concluding remarks

We have demonstrated qualitative biplex detection of 
E. coli and V. cholerae DNA sequences in an optomag-
netic measurement setup. Within less than two hours an
answer can be obtained. The presented methodology is
potentially interesting for low-cost screening of pathogens
relating to both human and veterinary medicine in
resource-poor regions of the world.
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Figure 2. Biplex detection of EC and VC DNA coils using 250- and 100-nm
magnetic beads functionalized with EC and VC detection probes, respec-
tively, according to Supporting information, Section S1. The DNA coils
were generated according to protocols given in Supporting information,
Section S2. Fifteen μL of DNA coil solution (both EC and VC) and 15 μL of
beads (mixture of the two sizes) were incubated for 20 min at 55°C and
diluted with 30 μL of a buffer mixture prior to measurements in an opto-
magnetic system. The figure shows phase angle vs. frequency spectra for
four different combinations of DNA coil concentrations; 0–0, 0–1, 1–0, 1–1
(in nM), where the first figure represents EC and the second figure repre-
sents VC. The phase angle is defined as ζ = arctan (V2′/V2′′) where V2′ and
V2′′ is the in-phase and out-of-phase components of the second harmonic
of the photodetector voltage output signal. Each curve is based on tripli-
cate measurements with error bars corresponding to one SD.
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