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Abstract
Mechanical ventilation is a highly utilized life-saving tool, particularly in the cur-
rent era. The use of EEG in a brain–ventilator interface (BVI) to detect respira-
tory discomfort (due to sub-optimal ventilator settings) would improve treatment 
in mechanically ventilated patients. This concept has been realized via develop-
ment of an EEG covariance-based classifier that detects respiratory-related corti-
cal activity associated with respiratory discomfort. The aim of this study was to 
determine if head movement, detected by an accelerometer, can detect and/or 
improve the detection of respiratory-related cortical activity compared to EEG 
alone. In 25 healthy participants, EEG and acceleration of the head were recorded 
during loaded and quiet breathing in the seated and lying postures. Detection of 
respiratory-related cortical activity using an EEG covariance-based classifier was 
improved by inclusion of data from an Accelerometer-based classifier, i.e. classi-
fier ‘Fusion’. In addition, ‘smoothed’ data over 50s, rather than one 5 s window 
of EEG/Accelerometer signals, improved detection. Waveform averages of EEG 
and head acceleration showed the incidence of pre-inspiratory potentials did not 
differ between loaded and quiet breathing, but head movement was greater in 
loaded breathing. This study confirms that compared to event-related analysis 
with >5 min of signal acquisition, an EEG-based classifier is a clinically valuable 
tool with rapid processing, detection times, and accuracy. Data smoothing would 
introduce a small delay (<1 min) but improves detection results. As head accel-
eration improved detection compared to EEG alone, the number of EEG signals 
required to detect respiratory discomfort with future BVIs could be reduced if 
head acceleration is included.
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1   |   INTRODUCTION

Resting breathing is usually controlled by the auto-
matic respiratory centers in the pontomedullary regions. 
Respiratory-related motor cortical activity provides addi-
tional descending inputs to the respiratory motoneurons 
to compensate for decreased automatic ventilation, to 
compensate for inspiratory load-capacity imbalance, or to 
perform voluntary tasks. Electroencephalography activity 
(EEG) can be used to detect respiratory-related cortical 
activity, as a pre-motor potential or ‘Bereitschaftspotential’ 
(Macefield & Gandevia, 1991). Pre-motor potentials have 
been detected before inspiration (pre-inspiratory poten-
tials) or before expiration (pre-expiratory potentials) in 
loaded breathing or simulated ‘patient-ventilator asyn-
chrony’ in healthy control participants (Raux et al., 2007a, 
b; Hudson et al., 2016; Morawiec et al., 2015), during resting 
breathing in respiratory or neurological disease (Nguyen 
et al., 2018; Georges et al., 2016; Launois et al., 2015) and 
in critically ill patients who are mechanically ventilated 
(Raux et al.,  2019). Respiratory-related cortical activity 
is usually accompanied by respiratory discomfort or dys-
pnoea (Morawiec et al., 2015; Nguyen et al., 2018; Georges 
et al., 2016; Raux et al., 2019). Thus, it was proposed that 
EEG could be used in a brain–ventilator interface (BVI) to 
detect respiratory discomfort and consequently improve 
treatment in mechanically ventilated patients (Navarro-
Sune et al., 2017). However, as previously stated, for a BVI 
to be clinically valuable, rapid processing and detection 
times are needed whereas event-related analysis of EEG 
from waveform averages of 60+ breaths requires at least 
5 min of signal acquisition.

We have developed new methodologies using 
continuous analysis of the EEG signals to detect 
respiratory-related cortical activity (Hudson et al., 2016; 
Navarro-Sune et al.,  2017). The covariance-based clas-
sifier tests for altered brain activity by first defining a 
reference period of EEG from covariance (or connec-
tivity) matrices (i.e., reference prototypes) and then 
determines when EEG matrices differ from reference 
prototypes. The performance of the classifier was tested 
by a k-fold cross-validation and represented by Receiver 
Operating Characteristic (ROC) curves. The areas under 
ROC curves (AUC; range 0–1) indicate the performance 
of the classifier, for example, an AUC of 1 indicates per-
fect discrimination between the altered and reference 
EEG, and an AUC of 0.5 indicates random discrimi-
nation. Using 9 frontal and central EEG channels, the 
classifier can discriminate between resting and loaded 
breathing (inspiratory threshold load of 23cmH20) in 
healthy, seated participants with a mean AUC of 0.85 
(Hudson et al., 2016). Using 8–14 EEG channels, for dis-
crimination of brain activity before and after ventilator 

adjustments that relieved dyspnoea in mechanically 
ventilated patients, the median AUC was 0.89 (Raux 
et al., 2019). Ideally, a BVI would have near-perfect dis-
crimination from as few signals as possible.

Signal artifacts are bound to interfere with classifier 
performances with head movements being of particular 
concern for EEG recordings. For example, a combina-
tion of EEG and gyroscope signals (to indicate changes in 
head orientation, that is, angular velocity) was better than 
EEG or gyroscope data alone to detect artifact from head 
movements that typically occur during ambulatory EEG 
recordings (O'Regan & Marnane, 2013). The technique of 
combining different signal modalities for machine learn-
ing classification is termed “fusion” whereby the signals 
(or features) are either integrated “early” to generate one 
classifier or distinct classifiers are integrated “late” to gen-
erate one final decision rule that in turn classifies the data. 
Breathing is associated with head movements that can 
become very intense when respiratory activity increases, 
at least in children (World Health Organisation,  2013). 
Thus, we tested the hypothesis that an accelerometer to 
detect changes in head movement (i.e., linear velocity) 
would improve, compared to an EEG covariance-based 
classifier alone, the detection of respiratory-related corti-
cal activity. Accelerometer data are highly informative as 
they can characterize both individuals' behavior (Hossain 
et al., 2019; Hung et al., 2013) and cardio-respiratory activ-
ity (Hernandez et al., 2014; Röddiger et al., 2019; Ruminski 
et al., 2014). Given their unobtrusive design and reduced 
cost, they are increasingly used in wearable technology. 
For comparison with previous studies (see above), we 
determined time-locked changes in EEG signals, that is, 
pre-inspiratory potentials, but also motor potentials that 
typically follow pre-inspiratory potentials. As breathing 
can be associated with head movements that may con-
taminate EEG (see Jeran et al.,  2013) we assessed time-
locked changes in head movement in resting and loaded 
breathing.

We measured EEG and head movement in healthy par-
ticipants, for two different levels of inspiratory load, with 
quiet (i.e., resting) breathing as a reference period. Two 
postures, seated and reclined (i.e., two-thirds supine) were 
also studied as clinical practice guidelines recommend 
that mechanically ventilated patients in the intensive care 
unit should be semi-supine to decrease the risk of respi-
ratory infections and increase the patient comfort (Dodek 
et al., 2004).

2   |   METHODS

The studies were carried out in 25 healthy participants 
(10 males) with an average (±SD) age, height, and weight 
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of 25.2 ± 3.3 years, 1.71 ± 0.1  m, and 62.5 ± 8.7  kg. All 
were naive to respiratory physiology experiments. Most 
were non-smokers, with 5 participants reported to have 
smoked previously (4 pack years or less). The study 
procedures were approved by the Comité de Protection 
des Personnes Ile-de-France VI, Groupe Hospitalier 
Pitie-Salpetriere, Paris, France, conformed with the 
Declaration of Helsinki, except for database registration 
(clause 35) and participants gave informed written con-
sent prior to the study.

2.1  |  Experimental set-up and protocol

Participants were seated in a comfortable chair with neck 
and head support that could be reclined by 60 deg for the 
“lying” condition (see Figure  1). They were in a quiet, 
soundproof room with experimenters in an adjacent 
room with a one-way mirror to monitor the participant. 
Electroencephalographic activity (EEG), respiratory vari-
ables, and acceleration of the head in three dimensions 
were recorded during four experimental conditions: Quiet 
breathing and loaded breathing in both the seated and 
lying postures.

As described previously (Hudson et al.,  2016), 
EEG was recorded from 32 channels (ActiCap; Brain 
Products) according to the 10–20 system, including 
electrodes on both ear lobes and under the right eye to 

monitor electrooculographic activity. An accelerome-
ter (3D Acceleration Sensor, Brain Products) was taped 
firmly to the EEG cap, close to the vertex (see Figure 1). 
The accelerometer weighed 8 g and had a range of ±2 g 
(equivalent to approx. ±19.62 m/s2). Each axis of the ac-
celerometer was recorded as auxiliary channels via the 
EEG hardware. The component of acceleration along the 
x-axis corresponded to right–left, the y-axis to posterior–
anterior, and the z-axis to inferior–superior movements 
of the head with changes recorded as negative–positive 
voltages, respectively, for all axes. Online, EEG signals 
were referenced to FCz with a ground electrode at FPz 
and amplified, filtered (0.02–1000 Hz for EEG and DC-
1000 Hz for accelerometer signals), and sampled at 
500 Hz.

During the quiet breathing conditions, participants 
wore nasal cannula attached to a differential pressure 
transducer (DP45-18; Validyne) to measure nasal pres-
sure to indicate the onset of inspiratory airflow. During 
the loaded conditions, participants wore a nose clip and 
breathed through a mouthpiece connected to a pneumo-
tachograph (Hans Rudolph Inc) and pressure transducer 
(DP45-18; Validyne) to measure airflow. Mouth pres-
sure was also measured close to the mouth (DP15-34; 
Validyne). The pneumotachograph was connected to a 2-
way valve (Hans Ruldolph Inc) so that an inspiratory load 
could be added to the inspiratory port but expiration was 
unloaded (Figure 1). End-tidal CO2 was monitored at the 

F I G U R E  1   Experimental set-up and time-locked waveform averages of EEG and head movement. (a) Recordings were made from 32 
EEG channels and a 3D accelerometer during quiet and loaded breathing in two postures. During loaded breathing, participants breathed 
through an inspiratory threshold load, set to either a ‘high’ (~20 cmH2O) or ‘low’ (~7 cmH2O) load. The respiratory apparatus for quiet 
breathing, during which participants wore nasal cannula only, is not shown. Participants were semi-reclined (i.e. lying) or seated (light 
gray). The inset shows the position of the accelerometer relative to the Cz electrode. The x-axis indicated right–left, the y-axis posterior–
anterior, and the z-axis inferior–superior movements of the head. (b) Pre-inspiratory and motor potentials at FCz (black traces) from a 
participant during loaded (top panels) and quiet (bottom panels) breathing in the lying and seated postures. Average waveforms of the 
root sum square of the accelerometer signals (Acc; gray traces) are also shown. EEG and Acc were time-locked to the onset of inspiratory 
pressure (vertical line). For EEG, the slope of the signals as indicated by the red and green lines were assessed to indicate the presence of 
a pre-inspiratory (*) or motor (#) potential, respectively (see Methods). To quantify head movement, the slope of the accelerometer was 
calculated over the same pre-inspiratory phase (PIP) and motor phase (MP). The slope values are shown for Acc data only. This participant 
was breathing through a high inspiratory threshold load.
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expiratory port (Servomex). An inspiratory threshold load 
(Respironics) was set to be either a “high” load (~20cmH2O; 
n = 13 participants) or “low” load (~7 cmH2O; n = 12 par-
ticipants). Respiratory variables were sampled at 2  kHz 
(PowerLab, ADInstruments).

Nasal pressure (quiet breathing conditions) or 
mouth pressure (loaded conditions) was recorded as an 
auxiliary channel by the EEG hardware. To time-lock 
EEG and respiratory signals, a simultaneous digital 
trigger generated from a threshold crossing of inspira-
tory nasal or mouth pressure recorded on both systems. 
The position of the trigger was verified offline by visual 
inspection.

The four experimental conditions were quiet breath-
ing in the seated and lying postures, with no instruction 
given in relation to breathing, and loaded breathing with 
an inspiratory threshold load in the seated and lying 
postures. Each condition lasted approximately 10  min. 
The quiet breathing conditions were always performed 
before the loading conditions to minimize participants' 
awareness to their breathing pattern, but the order of 
the postures within the quiet and loading conditions was 
randomized.

2.2  |  Data analysis

2.2.1  |  Respiratory variables

For the loaded conditions, in which participants breathed 
through respiratory apparatus, inspiratory mouth pres-
sure, tidal volume, inspiratory time, mean inspiratory 
flow, respiratory rate, and end-tidal CO2 were measured 
for each breath and averaged across loaded breaths for 
each participant and posture. Due to technical issues, air-
flow and end-tidal CO2 could be not measured in 9 and 2 
participants, respectively, so respiratory data are missing 
for these participants. Ventilation during quiet breathing 
was not measured as a signal of nasal pressure was used to 
indicate the onset of inspiration only.

2.2.2  |  Classification using machine 
learning techniques

EEG data, accelerometer signals, and a combination 
of both were tested to determine the best classification 
approach to discriminate between quiet and loaded 
breathing. Data analyses were performed using Matlab 
(Mathworks Inc) version 2017b. The methodology of 
the EEG covariance-based classifier has been described 
previously (Hudson et al.,  2016; Raux et al.,  2019; 
Navarro-Sune et al., 2017). It uses an outlier detection 

approach to test for “altered” brain activity compared 
to “reference” activity and here, was used to test be-
tween loaded and quiet breathing in both postures. The 
classification is based on the distance to the centroid, d, 
defined by the reference period in a Riemannian mani-
fold. As altered breathing is represented elsewhere in 
the manifold, distances to the reference centroid in-
crease (relative to the reference period) providing a sin-
gle and useful metric to assess breathing-related states 
by receiver operating characteristic (ROC) curves (see 
below).

In this paper, we introduced two improvements with 
respect to previous publications (Hudson et al.,  2016; 
Raux et al., 2019; Navarro-Sune et al., 2017)

1.	 a new classifier based on accelerometer data. It can 
be either used alone or associated with the EEG 
classifier (i.e., ‘Fusion’ of distances) to improve the 
overall performances.

2.	 a time buffer to average the distance of a given segment 
with previous distances, introducing a “smoothing” 
effect. Smoothed distances introduce a time delay but 
provide more flexibility to adapt the classifiers to the 
dynamics of ventilation.

Therefore, the ability of accelerometer data to discrim-
inate between loaded and quiet breathing was tested, both 
independently and in combination with EEG. The effect 
of smoothing distances (smoothed data) was also com-
pared to the original approach (raw data) in the different 
classifiers as well as the Fusion of distances method.

2.2.3  |  EEG covariance-based classifier

EEG from 14 frontal and central channels (F3, Fz, F4, 
FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6) 
were down-sampled to 250 Hz and segmented using a 5 s 
sliding window with 50% overlap. To detect contaminated 
segments -mostly due to muscular and/or movement 
artifacts- we used the same technique based on z-scores 
as Raux et al.  (2019) such that segments above the 80th 
quantile were discarded in the analysis.

Quality segments were then band-pass filtered (be-
tween 8 Hz and 24 Hz to enhance motor rhythms, asso-
ciated with these frequencies) and used to compute EEG 
spatial covariance matrices. For each participant, refer-
ence activity was defined from the first 20% of EEG during 
quiet breathing. Then, co-variance matrices from the re-
maining quiet breathing and loaded breathing recordings 
were tested against the reference period (see Figure 1 in 
Raux et al., 2019) using Riemannian distances (dE). The 
performance of the classifier to separate the loaded from 
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quiet breathing was tested using a 10-fold cross-validation 
technique, that is, quiet breathing is divided into 10 equal 
parts, and 9 of these are tested against data from the loaded 
breathing, for 9 iterations to cover all combinations of 9 of 
the 10 parts of quiet breathing. This generates sensitivity 
and specificity data. The area under the curve (AUC) of 
the resultant ROC is used to indicate the performance of 
the classifier in each participant, with an AUC of 1 indi-
cating perfect discrimination and AUC of 0.5 indicating 
random discrimination.

For clinical applications, a minimal\reduced EEG 
set-up to detect altered brain activity related to breathing 
is preferred. Thus, all possible combinations of six elec-
trodes only (from the 14 frontal and central electrodes, i.e., 
3003 combinations) were tested to determine which set of 
six electrodes gave the best AUC. The AUC from the com-
bination of electrodes F4, FC2, FC6, C3, Cz, and C4 were 
superior (best median AUC across all subjects) and these 
data only are reported for the EEG classifier.

2.2.4  |  Accelerometer-based classifier

Accelerometer data (simultaneous measurements in the 
X, Y, and Z planes, see Figure 1) were band-pass filtered 
(0.1–45 Hz) and converted to root sum squared (RSS) 
values (i.e. RSS  =  √[X2 + Y2  + Z2]), then segmented in 
50% overlapped 5-s windows. Segments identified by 
the EEG z-score artifact detection were also removed. 
Then, six features in frequency domain for each seg-
ment were extracted from Fast Fourier Transform (FFT): 
Frequency and amplitude values of the first and sec-
ond dominant peaks and the mean power between 0.3 
to 2  Hz and 3 to 15 Hz. The first and second dominant 
peaks should correspond to respiratory rate and respira-
tory effort (i.e., neck and jaw tremor and muscle activ-
ity; see Gresty,  1987 and below), respectively. Human 
head movements contain low frequencies with the maxi-
mum spectral activity expected within 0.3 and 2 Hz. The 
dominant peak is likely to fall within these bounds, but 
the average power in this band gives complementary in-
formation on the variability of the respiratory rate and 
non-respiratory slow movements. Mean power between 3 
and 15 Hz will capture muscle effort during both resting 
and loaded breathing. Scalene and sternocleidomastoid 
muscles in the neck which are obligatory and accessory 
inspiratory muscles, respectively, have bilateral synchro-
nous activity between 4 and 20 Hz during both abrupt 
forward perturbations (i.e., simulating whiplash; Blouin 
et al., 2006) and during ramped breathing efforts (unpub-
lished observations, Hudson et al.,  2007). The average 
discharge rate of motor units in the human scalene mus-
cles is 8.7 Hz during resting breathing and increases to 

9.5 Hz during hypercapnic breathing which triples tidal 
volume (Gandevia et al., 1999). Features were organized 
in six-dimensional arrays and represented in a vector 
space, where Euclidean distances can be used instead of 
Riemannian metrics. Like the EEG covariance matrices 
approach, the classifier used the first 20% of data dur-
ing quiet breathing to generate the centroid in the vector 
space from which Euclidean distances are computed for 
every segment (dA).

2.2.5  |  Distance fusion

Given that EEG and accelerometer data provide comple-
mentary information about the overall ventilatory state 
of participants, we tested the performance of combining 
the output of both systems, that is, the distance obtained 
by the EEG classifier, dE, and the distance from the ac-
celerometer classifier, dA. Distance fusion was computed 
as follows:

1.	 Transform distance data to be approximately normally 
distributed: log(dE) and log(dA)

2.	 Compute uE and uA, that is, the values corresponding 
to the 90th quantile of distances during the reference 
period (normal breathing)

3.	 Compute pE and pA with the following sigmoid func-
tion to impose values fall between 0 and 1: p  =  1 / 
(1 + eu – log[d])

4.	 Obtain distance fusion dF by weight averaging the 
transformed distances from both classifiers: dF = (1−k) 
pE + k pA

The parameter k was set to 0.35 after checking different 
weights to maximize the performance of detection mea-
sured by the AUC.

2.2.6  |  Distance smoothing

The introduction of a time buffer allowed the applica-
tion of a moving average filter to “smooth” the distances 
obtained for each segment by the classifiers. We used a 
weighted moving average filter, that is, a filter that obtains 
the mean value of past N segments and averages it with 
the current distance value. Given that the assessment of 
breathing states needs several respiratory cycles, we stud-
ied the effect of averaging N  =  1–12 segments, which 
implies 5–60 s of delay to output the smoothed distance. 
Classifier performances, measured by the mean AUC val-
ues in all subjects, were maximal using N = 10 segments 
(50 s) in the buffer. Data that was not smoothed is referred 
to as “raw”.
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2.2.7  |  Time-locked analysis of EEG: pre-
inspiratory and motor potentials

These analyses were performed using Analyzer 2.2 (Brain 
Products). Offline, EEG recordings were down-sampled 
to 250 Hz, re-referenced to linked earlobes, band-pass fil-
tered (0.5–45 Hz), and a band-stop filter (49–51 Hz) was 
applied to minimize electrical noise on the signals. EEG 
was segmented into epochs 1500 ms before and 500 ms 
after the trigger at the onset of inspiratory nasal or mouth 
pressure for quiet or loaded breathing conditions, respec-
tively. Artifact rejection was performed manually, based 
on several components (variance, value, maximum and 
minimum voltage, kurtosis). Epochs were then averaged 
to generate waveform averages for each participant and 
condition, with the number of epochs indicated in Table 1. 
FCz was analyzed for the presence of pre-inspiratory po-
tentials in the loaded and quiet breathing conditions 
(Hudson et al., 2016; Hudson et al., 2018).

A pre-inspiratory potential was considered to be pres-
ent if three criteria were met: (i) A linear relationship 
in the waveform average EEG with a slope greater than 
−0.5 μV/s was identified over 1500 ms prior to the onset 
of inspiration, (ii) the slope was statistically significant to 
zero (F-test for equality of variance), and (iii) the maximal 

voltage of the EEG in this period did not exceed 25 μV 
(suggestive of artifact). A motor potential was considered 
to be present according to the same criteria, but with a 
slope greater than 5.0 μV/s over 500 ms after the onset of 
inspiration.

2.2.8  |  Time-locked analysis of head 
acceleration

Head acceleration signals in three dimensions were fil-
tered as for the EEG (see above). To assess time-locked 
changes in the accelerometer signals (or head movement), 
the RSS was calculated from 1500 ms before to 500 ms 
after the onset of inspiratory pressure. As for the EEG av-
erages, the slope of the root sum square between -1000 ms 
and 0 ms (i.e., pre-inspiratory phase) and between 0 ms 
and 500 ms (i.e., motor phase) was calculated for each par-
ticipant and condition. For consistency, the accelerometer 
slope value was assigned the same sign as the EEG, that is, 
negative value in the up-going direction and positive value 
in the down-going direction (see Figure 1).

In addition to slope, the average amplitude of the root 
sum square during the pre-inspiratory and motor phases 
was calculated for each participant (irrespective of load 

T A B L E  1   Respiratory parameters during loaded breathing

Lying Seated

Statistics
High load 
(n = 13)

Low load 
(n = 12)

High load 
(n = 13)

Low load 
(n = 12)

Mouth pressure 
(cmH20)

−18.12 ± 7.08 −7.94 ± 1.90 −18.68 ± 5.65 −7.58 ± 2.34 Load p < 0.001
Posture p = 0.85
Interact. p = 0.40

Tidal volume† (l) 0.85 ± 0.15 0.86 ± 0.24 0.90 ± 0.14 0.83 ± 0.20 Load p = 0.75
Posture p = 0.82
Interact. p = 0.36

Insp. time (s) 4.00 ± 1.03 3.19 ± 1.02 4.49 ± 1.87a 2.89 ± 0.87 Load p < 0.05
Posture p = 0.61
Interact. p < 0.05

Mean inspiratory flow† 
(l/s)

0.24 ± 0.09 0.31 ± 0.12 0.23 ± 0.09 0.29 ± 0.11 Load p = 0.21
Posture p = 0.42
Interact. p = 0.72

Ventilation† (l/m) 6.63 ± 1.64 7.50 ± 1.44 6.64 ± 1.74 8.07 ± 1.90 Load p = 0.18
Posture p = 0.28
Interact. p = 0.29

End-tidal CO2‡ (%) 2.88 ± 1.06 3.38 ± 0.85 2.62 ± 0.91 3.27 ± 0.68 Load p = 0.11
Posture p = 0.20
Interact. p = 0.58

Note: EEG and head movement were recorded from 25 participants during loaded breathing with a high or low load and quiet breathing (not shown) in two 
postures. The number of participants for the high and low load conditions is indicated. The statistics (2-way repeated measures ANOVA) indicate the effect of 
load level, posture and their interaction on respiratory variables. Statistically significant differences are highlighted in bold typeface. † and ‡ data available for 
16 and 23 participants, respectively (see Methods).
aPost-hoc difference between load level for seated posture.
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level) to quantify overall head movement in loaded and 
quiet breathing in both postures. Amplitude was assigned 
a positive value.

2.3  |  Statistics

Group data are presented as mean (SD). To compare the 
effect of load level (high, low) and posture (lying, seated) 
on the respiratory variables during the loaded conditions, 
a 2-way repeated measures ANOVA was performed, with 
post-hoc testing using the Holm-Sidak test. A 2-way re-
peated measures ANOVA was also used to compare AUC 
across load level and posture for each distance type with or 
without distance smoothing, that is, EEG classifier: dE and 
dE’, Accelerometer classifier: dA and dA’, Fusion distance: 
dF and dF’. There was no effect of load level or posture 
for most comparisons so data were pooled, and a 2-way 
repeated measures ANOVA was then used to compare the 
effect of distance type (EEG, Accelerometer, and Fusion) 
and data extraction type (raw and smoothed) on AUC.

For pre-inspiratory and motor potential analysis, the 
presence or absence of potentials was tabulated against 
the respiratory condition (high load, low load or quiet 
breathing) for each posture (lying and standing). Three-
by-two chi-squared tests were used to compare the in-
cidence of potentials between conditions. In addition, 
two-by-two Fisher Exact tests were used to compare the 
effect of posture for each condition at a time. To compare 
the number of EEG epochs and accelerometer slope with 
different load levels and postures, a 2-way repeated mea-
sures ANOVA was used for loaded breathing and 1-way 
repeated measures ANOVA was used to compare between 
postures for quiet breathing. Accelerometer amplitude 
between loaded and quiet breathing and postures was 
also compared with a 2-way repeated measures ANOVA. 
Exploratory t-tests (i.e., uncorrected for multiple compar-
isons, as the accelerometer slope data were tested in the 
2-way ANOVA) were used to compare accelerometer slope 
in the pre-inspiratory or motor phase for those with and 
without a pre-inspiratory or motor potential, respectively.

All statistical analyses were performed with SigmaStat, 
version 12.0 (Systat Software Inc.).

3   |   RESULTS

3.1  |  Respiratory variables

There was no difference in ventilation between respiratory 
conditions (see Table 1). As expected, a greater negative 
mouth pressure was generated in those given an inspira-
tory threshold load set to a “high” setting compared to 

those with a “low” setting. However, there was no ef-
fect of posture on the mouth pressure generated and no 
interaction between posture and load. Inspiratory time 
was longer for loaded breathing with a high compared to 
low load, due to the difference in the seated posture (see 
Table  1), but inspiratory time was comparable between 
postures.

3.2  |  Classification using machine 
learning techniques

The ability to discriminate between loaded and quiet 
breathing was tested using an EEG- or accelerometer-
 based classifier. In addition, the combination of their 
output distances, that is, “Fusion”, was tested. The best 
combination of 6 of the 14 premotor and motor electrodes 
are reported (see Methods). For each classifier type (i.e., 
EEG or Accelerometer) there was no effect of posture or 
load level, as shown in Table 2. There was an effect of load 
for Fusion distances, with higher AUC for the high load 
compared to low load. Values were pooled across pos-
tures and loads to assess the effect of distance type (EEG 
classifier, Accelerometer classifier vs. Fusion) and data 
extraction type (i.e., raw versus smoothed). There was 
an effect of distance type (p < 0.001), data extraction type 
(p < 0.001) and an interaction (p < 0.001), with pairwise 
post-hoc differences between all averages (see Table  2). 
The best approach to discriminate between loaded and 
quiet breathing was Fusion distance with smoothed data 
and the worst was the Accelerometer classifier with raw 
data. Compared to classification with EEG alone, the ad-
dition of accelerometer data, that is, Fusion, improved the 
AUC curve for 23/25 participants in the lying posture and 
20/25 participants in the seated posture.

3.3  |  Pre-inspiratory and 
motor potentials

A longer inspiratory time in the high compared to low 
load condition resulted in a difference in the numbers 
of epochs available for EEG waveform averages from the 
10-min recording time during loaded breathing (Table 3). 
There were more epochs in the low load in the seated 
posture. As shown in Figure  3, there was no difference 
in the incidence of pre-inspiratory potentials between res-
piratory conditions, that is high load vs low load vs quiet 
breathing, in the lying (p = 0.07, Chi2) or seated (p = 0.08, 
Chi2) postures. There was also no difference in incidence 
between postures in the high load (p = 1.0, Fisher Exact 
Test), low load (p = 1.0, Fisher Exact Test), or quiet breath-
ing (p = 0.68, Fisher Exact Test) conditions (Table 3).
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The incidence of motor potentials between respiratory 
conditions, that is, high load versus low load versus quiet 
breathing, differed in the lying (p = 0.02, Chi2) but not the 
seated (p = 0.8, Chi2) posture (see Figure 3A). There was 
no difference in incidence between postures in the high 
load (p = 0.59, Fisher Exact Test), low load (p = 1.0, Fisher 
Exact Test) or quiet breathing (p = 1.0, Fisher Exact Test) 
conditions (Table  3). Few participants had both a pre-
inspiratory and motor potential and only with a high load; 
two participants in the lying posture and one participant 
in the seated posture.

3.4  |  Time-locked head acceleration

As for EEG potentials, the accelerometer signals were 
time-locked to the onset of inspiration to determine if 
changes in head movement between quiet and loaded 
breathing affect the interpretation of EEG potentials. 
Table  3 summarizes the effect of load level and/or pos-
ture on accelerometer slope across all participants for 
loaded and quiet breathing during the pre-inspiratory and 
motor phases. In relation to EEG potentials, the slope was 
steeper for those with a pre-inspiratory potential (n = 4) 

compared to those without (n = 9) for the high load in the 
lying posture (Figure 3B).

Comparison of the average amplitude of the acceler-
ometer revealed that head movement was greater during 
loaded breathing than quiet breathing, for both the 
pre-inspiratory (p < 0.001) and motor (p < 0.01) phases 
(Figure  4). There was no main effect of posture on pre-
inspiratory (p = 0.33) or motor (p = 0.12) head movement. 
Due to an interaction between condition and posture for 
pre-inspiratory movement (p < 0.001), the effect of posture 
differed for loaded and quiet breathing and greater head 
movement in loaded breathing was due to a difference in 
lying (see Figure 4).

4   |   DISCUSSION

We have shown for the first time that detection of 
respiratory-related cortical activity using an EEG 
covariance-based classifier is improved by the inclu-
sion of data from an Accelerometer-based classifier. 
Discrimination of loaded from quiet breathing was su-
perior when the output of both systems was combined, 
i.e. Fusion of distances, and data were smoothed over 

T A B L E  2   Area under the curve for the performance of EEG, Accelerometer or a combination of signals to discriminate between loaded 
and quiet breathing

Lying Seated

Statistics

All

High load 
(n = 13)

Low load 
(n = 12)

High load 
(n = 13)

Low load 
(n = 12) Grand average (n = 25)

EEG dE 0.71 ± 0.10 0.67 ± 0.10 0.75 ± 0.10 0.69 ± 0.11 Load p = 0.13
Posture p = 0.14
Interact. p = 0.67

0.71 ± 0.10

EEG dE’ 0.82 ± 0.11 0.81 ± 0.13 0.88 ± 0.08 0.80 ± 0.13 Load p = 0.22
Posture p = 0.36
Interact. p = 0.29

0.83 ± 0.11

Acc dA 0.13 ± 0.11 0.12 ± 0.04 0.14 ± 0.08 0.14 ± 0.07 Load p = 0.80
Posture p = 0.42
Interact. p = 0.63

0.13 ± 0.08

Acc dA’ 0.58 ± 0.13 0.58 ± 0.09 0.59 ± 0.19 0.49 ± 0.16 Load p = 0.29
Posture p = 0.26
Interact. p = 0.13

0.56 ± 0.15

Fusion dF 0.76 ± 0.11 0.69 ± 0.10 0.80 ± 0.11 0.71 ± 0.12 Load p < 0.05
Posture p = 0.18
Interact. p = 0.74

0.74 ± 0.12

Fusion dF’ 0.92 ± 0.07 0.87 ± 0.09 0.93 ± 0.07 0.83 ± 0.17 Load p < 0.05
Posture p = 0.65
Interact. p = 0.35

0.89 ± 0.11

Note: AUC values are given for each posture and level of load to indicate the ability of an EEG covariance- or Accelerometer (Acc) -based classifier to detect 
altered brain activity during loaded breathing, as assessed using the distances of these classifiers, dE and dA, respectively. The combination of inputs, that is, 
Fusion of distances, dF, is also shown. The classifier was tested with “raw” data of one 5-s window or “smoothed” data over 50 s with the later indicated by the 
comma postfix. The statistics indicate the effect of load level, posture and their interaction (interact.) on AUC. Data were pooled across postures and loads to 
Grand Averages as shown on the right (see also Figure 2).



      |  9 of 15HUDSON et al.

T
A

B
L

E
 3

 
Ti

m
e-

lo
ck

ed
 E

EG
 a

nd
 a

cc
el

er
om

et
er

 d
at

a 
du

ri
ng

 lo
ad

ed
 a

nd
 q

ui
et

 b
re

at
hi

ng

Ly
in

g
Se

at
ed

Q
ui

et
 b

re
at

hi
ng

 
(n

 =
 2

5)
St

at
is

ti
cs

 lo
ad

ed
 

br
ea

th
in

g

St
at

is
ti

cs
 

qu
ie

t 
br

ea
th

in
g

H
ig

h 
lo

ad
 

(n
 =

 1
3)

Lo
w

 lo
ad

 
(n

 =
 1

2)
Q

ui
et

 b
re

at
hi

ng
 

(n
 =

 2
5)

H
ig

h 
lo

ad
 

(n
 =

 1
3)

Lo
w

 lo
ad

 
(n

 =
 1

2)

A
ve

ra
ge

 (r
an

ge
) E

EG
 

ep
oc

hs
65

 (2
4–

12
7)

82
 (4

8–
12

7)
16

1 
(1

06
–2

12
)

64
 (2

3–
13

4)
a

92
 (6

0–
13

9)
b

15
5 

(7
0–

21
2)

Lo
ad

 p
 <

 0.
05

Po
st

ur
e 
p 

<
 0.

05
In

te
ra

ct
. p

 <
 0.

05

Po
st

ur
e 

p 
=

 0
.5

5

Pr
e-

in
sp

. p
ot

en
tia

l 
in

ci
de

nc
e 

(%
)

31
 (n

 =
 4

)
8 

(n
 =

 1
)

16
 (n

 =
 4

)
23

 (n
 =

 3
)

8 
(n

 =
 1

)
8 

(n
 =

 2
)

Po
st

ur
e 

(h
ig

h 
lo

ad
) 

p 
=

 1
.0

 P
os

tu
re

 
(lo

w
 lo

ad
) p

 =
 1

.0

Po
st

ur
e 

p 
=

 0
.6

8

M
ot

or
 p

ot
en

tia
l 

in
ci

de
nc

e 
(%

)
23

 (n
 =

 3
)

17
 (n

 =
 2

)
4 

(n
 =

 1
)

8 
(n

 =
 1

)
8 

(n
 =

 1
)

8 
(n

 =
 2

)
Po

st
ur

e 
(h

ig
h/

lo
w

 
lo

ad
) p

 =
 0

.6
/1

.0
Po

st
ur

e 
p 

=
 1

.0

Pr
e-

in
sp

 a
cc

el
 sl

op
e 

(m
s−

2 /s
)

−
7.

70
 ±

 8.
20

0.
17

 ±
 5.

18
−

1.
17

 ±
 5.

22
−

2.
97

 ±
 5.

93
−

1.
22

 ±
 7.

08
−

3.
84

 ±
 7.

19
Lo

ad
 p

 <
 0.

05
Po

st
ur

e 
p 

=
 0

.3
1

In
te

ra
ct

. p
 =

 0
.0

7

Po
st

ur
e 

p 
<

 0.
05

M
ot

or
 a

cc
el

 sl
op

e 
(m

s−
2 /s

)
29

.2
2 ±

 12
4.

55
−

5.
08

 ±
 35

.7
2

5.
55

 ±
 15

.7
0

−
5.

85
 ±

 90
.9

5c
11

.6
6 ±

 36
.1

3
21

.3
3 ±

 29
.2

1
Lo

ad
 p

 =
 0

.7
9

Po
st

ur
e 

p 
=

 0
.4

5
In

te
ra

ct
. p

 <
 0.

05

Po
st

ur
e 

p 
<

 0.
05

Th
e 

nu
m

be
r o

f a
rt

ifa
ct

-fr
ee

 E
EG

 e
po

ch
s f

ro
m

 1
0 

m
in

 o
f l

oa
de

d 
(h

ig
h 

or
 lo

w
) a

nd
 q

ui
et

 b
re

at
hi

ng
 in

 th
e 

ly
in

g 
an

d 
se

at
ed

 p
os

tu
re

s a
re

 sh
ow

n.
 T

he
se

 e
po

ch
s w

er
e 

us
ed

 fo
r w

av
ef

or
m

 a
ve

ra
ge

s o
f E

EG
 a

t F
C

z 
to

 d
et

ec
t p

re
-

in
sp

ir
at

or
y 

(in
sp

) a
nd

 m
ot

or
 p

ot
en

tia
ls

. I
n 

ad
di

tio
n,

 fr
om

 w
av

ef
or

m
 a

ve
ra

ge
s o

f t
he

 ro
ot

 su
m

 sq
ua

re
 o

f t
he

 a
cc

el
er

om
et

er
 si

gn
al

s, 
th

e 
ac

ce
le

ro
m

et
er

 (a
cc

el
) s

lo
pe

 w
as

 c
al

cu
la

te
d 

ov
er

 1
 s 

pr
io

r t
o 

(p
re

-in
sp

) o
r 0

.5
 s 

af
te

r 
(m

ot
or

) t
he

 o
ns

et
 o

f i
ns

pi
ra

tio
n.

 S
ee

 F
ig

ur
e 

3b
 fo

r t
he

 c
om

pa
ri

so
n 

of
 a

cc
el

er
om

et
er

 sl
op

e 
in

 p
ar

tic
ip

an
ts

 w
ith

 o
r w

ith
ou

t a
 p

re
-in

sp
ir

at
or

y 
po

te
nt

ia
l. 

Th
e 

st
at

is
tic

s f
or

 lo
ad

ed
 b

re
at

hi
ng

 in
di

ca
te

 th
e 

ef
fe

ct
 o

f l
oa

d 
le

ve
l, 

po
st

ur
e 

an
d 

th
ei

r i
nt

er
ac

tio
n 

(in
te

ra
ct

.) 
or

 th
e 

ef
fe

ct
 o

f p
os

tu
re

 a
lo

ne
 w

he
n 

lo
ad

 le
ve

ls
 w

er
e 

te
st

ed
 in

de
pe

nd
en

tly
 (e

.g
., 

Fi
sh

er
 E

xa
ct

 te
st

s f
or

 in
ci

de
nc

e)
. T

he
 st

at
is

tic
s f

or
 q

ui
et

 b
re

at
hi

ng
 in

di
ca

te
 th

e 
ef

fe
ct

 o
f p

os
tu

re
.

a Po
st

-h
oc

 d
iff

er
en

ce
 b

et
w

ee
n 

lo
ad

 le
ve

l f
or

 se
at

ed
 p

os
tu

re
.

b Po
st

-h
oc

 d
iff

er
en

ce
 b

et
w

ee
n 

po
st

ur
es

 fo
r l

ow
 lo

ad
.

c Po
st

-h
oc

 d
iff

er
en

ce
 b

et
w

ee
n 

po
st

ur
es

 fo
r h

ig
h 

lo
ad

.



10 of 15  |      HUDSON et al.

50s rather than using individual 5-s windows. This is 
consistent with previous findings where angular veloc-
ity of the head (via gyroscope measures) improved the 
performance compared to an EEG classifier alone to de-
tect artifacts observed during walking from head move-
ments (O'Regan & Marnane,  2013). In addition, there 
was equivalent detection for small and high changes in 
the load to breathe and for lying and seated postures 
which is important for the clinical applications of this 
technique. With limited number of epochs available 
for waveform averages (see below), there was no differ-
ence in the incidence of pre-inspiratory potentials be-
tween loaded and quiet breathing, but motor potential 
incidence did vary in the lying posture. Time-locked 
changes in head movement, as indicated by a steeper 
slope in the accelerometer signal, for those with or with-
out EEG potentials differed only for the high load condi-
tion during lying. Overall head movement, as indicated 
by a higher average amplitude in the accelerometer 

signal, was greater in loaded breathing compared to 
quiet breathing.

4.1  |  Advances to the development of the 
BVI classifier

Compared to previous discrimination analysis using the 
same EEG covariance-based classifier with eight or more 
EEG signals (AUC of 0.85 and 0.89 in healthy participants 
and critically-ill patients, respectively; see Introduction), 
we had an AUC of 0.71 with six EEG signals in healthy 
participants, averaged across load levels and postures. The 
lower discrimination value could be due to fewer EEG 
signals and/or a smaller load to breathe. The inspiratory 
threshold load in the present study was ~13 cmH2O (on 
average) which equates to 10%–15% of maximal inspira-
tory muscle strength in healthy participants, compared 
to 23 cmH2O or 20%–25% of maximal inspiratory muscle 
strength used previously (Hudson et al., 2016). The relative 
inspiratory load in critically ill patients (Raux et al., 2019) 
was also likely to be higher than 10%–15%, as respiratory 
muscle dysfunction is common in mechanically venti-
lated patients which reduces their inspiratory capacity. 
A smaller load is unlikely to explain the lower AUC seen 
here, as there was no effect of load level on EEG classi-
fier performance, at least up to ~20% maximal inspiratory 
strength in healthy participants. Even so, in the present 
study, discrimination with six EEG signals was improved 
to AUC of 0.83 when data were smoothed over 50s.

The combination of frontal and central electrodes that 
provided the best AUCs was F4, FC2, FC6, C3, Cz and 
C4, likely to reflect respiratory-related cortical activity in 
the pre-frontal, premotor, supplementary, central, and 
primary motor areas consistent with our previous find-
ings (Hudson et al., 2016; Raux et al., 2019; Navarro-Sune 
et al., 2017). There was a slight lateralization in the elec-
trode combination, with 4 of the 6 electrodes on the right 
side of the brain, which is incongruous with the bilat-
eral activation of the respiratory muscles. Previously, the 
electrodes with the greatest “ranking”, that is influence 
on the detection of altered brain activity associated with 
loading in healthy participants had a more bilateral dis-
tribution (see Figure 6 in 10). The lateralization here may 
just be chance as only six electrodes were used in the EEG 
classifier.

The classifier with an input of accelerometer only per-
formed poorly, especially with raw data extraction, to dis-
criminate between loaded and quiet breathing in healthy 
participants in lying and seated postures. Although head 
movements in patients with compromised respiratory 
function may be greater due to recruitment of accessory 
respiratory muscles and/or the need to compensate for 

F I G U R E  2   Areas under the curve for EEG- and Accelerometer- 
based classifiers and Fusion distances, pooled across postures 
and loads. Areas under the curve (AUC) for detection of loaded 
breathing from the reference period of quiet breathing for classifier 
inputs of EEG or Accelerometer (Acc) or Fusion (combination 
of EEG and Acc output distances) with data extraction from raw 
(dE, dA, and dF) or smoothed data (dE’, dA’, and dF’; see Methods). 
Two-way repeated measures ANOVA revealed an effect of analysis 
input, data extraction, and an interaction, such that all pairwise 
post-hoc comparisons were significant, *p < 0.001, #p < 0.05. Mean 
(SD) data for 25 participants.
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increased respiratory-related postural perturbation, this 
suggests the future development of a minimal/reduced 
setup for a BVI needs to include at least some EEG signals 
to detect respiratory-related cortical activity.

The best discrimination resulted from the Fusion of 
distances analysis, that combined EEG and Accelerometer 

classifier output distances, using smoothed data, with an 
AUC of 0.89. The improved Fusion AUC value suggests 
that EEG and head acceleration provide complemen-
tary data on respiratory-related cortical activity. It also 
appears to be a more sensitive method for detection of 
altered brain activity as the AUC were higher for the high 

F I G U R E  3   Incidence of pre-inspiratory and motor potentials and comparison of head movement slope for participants with and 
without EEG potentials. (a) The incidence of pre-inspiratory (top panel) and motor (lower panel) potentials in lying (black bars) and seated 
(white bars) postures for different levels of inspiratory threshold loading (high or low, see Methods) and quiet breathing. The number of 
participants/total participants for each condition are shown above each column. The incidence or pre-inspiratory potentials was similar in 
each condition, but the incidence of motor potentials was different between conditions in the lying posture (#p < 0.05, Chi-squared test). (b) 
The slope of the root sum square of the accelerometer signals was calculated over the same pre-inspiratory and motor phases (see Methods). 
The mean slope for those with a pre-inspiratory (top panel) or motor (lower panel) potential (from panel A) are shown in black and white 
for the lying and seated postures, respectively. The slope for those without a pre-inspiratory or motor potential data are shown in gray for 
both postures. For clarity, standard deviations are not shown but averaged 6.31 (range 4.87–9.12) ms−2/s when calculated for pre-inspiratory 
slopes and 58 (range 12.08–245.36) ms−2/s for motor slopes. The slope could not be compared for conditions when only one participant had a 
pre-inspiratory or motor potential as indicated in panel A (these data had a SD of zero). The slope differed between those with and without a 
pre-inspiratory potential with the high load in the lying posture only (#p < 0.05, t-test). Note the change in scales for top and lower panels.
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compared to the low load for Fusion distances, whereas 
the AUC for the EEG and Accelerometer classifiers 
were comparable across load levels. Assuming the rela-
tive inspiratory load was similar or inconsequential (see 
above), this is comparable to discrimination in critically 
ill patients before and after adjustment of ventilatory 
settings, but here, was achieved using seven signals (6 
EEG + Accelerometer) compared to 8 or 14 EEG signals 
in critically ill patients (Raux et al., 2019). The applica-
tion of a moving average filter (i.e., smoothing) intro-
duces a delay of ~50 s, but improves the stability of the 
metric, thus improving AUCs.

EEG and Accelerometer data were combined using a 
type of “classifier fusion” known as “score fusion”, where 
the outputs (i.e., distances) of the classifiers are combined 
with a fixed rule, that is, sum of distances. Here, the AUC 
was maximized when the relative weight of the EEG to 
Accelerometer inputs were 0.75 to 0.35, respectively. Of 
all the classifier fusion methods tested, O'Regan and 
Marnane  (2013) also found that score fusion using the 
sum rule provided optimal results to detect head move-
ment artifacts from a combination of EEG and gyroscope 
data. Although their results of score fusion (sum rule) 
were matched by “feature fusion”, that is, early integration 
of EEG and gyroscope signals to generate one classifier, 
the authors endorsed score fusion methodology as it has 
the practical advantage of being more robust to the loss 
of one of the signals (O'Regan & Marnane, 2013). This at-
tribute would also be beneficial for the intended clinical 

application of a BVI that combines EEG and head acceler-
ation data in the mechanically ventilated patients.

We did not measure respiratory discomfort to demon-
strate a direct link between changes in brain activity and 
head movement (i.e., Fusion) with dyspnoea, but this has 
been demonstrated previously for brain activity in healthy 
participants and clinical populations (see Introduction). 
Thus, a Fusion classifier is feasible as part of a BVI to de-
tect respiratory discomfort and improve ventilator settings. 
Practically, the reference condition would be one in which 
respiratory discomfort is minimized (self-reported dys-
pnoea or assessed using the respiratory distress observation 
scale in non-communicative patients), which unsurpris-
ingly, is also associated with improved ventilatory settings, 
for example, increased tidal volume and ventilation (see 
Raux et al., 2019). Then, deviation from this baseline ‘com-
fort’ can be detected and an alarm raised for clinicians to 
review ventilator settings. This would be an individualized 
approach for each patient. Using brain activity only, the 
median AUC was 0.89 but varied between 0.36 and 1.0. It 
remains to be determined if addition of head movement 
and Fusion classification can improve the detection of al-
tered brain activity associated with respiratory discomfort 
in mechanically ventilated patients. In addition, although 
theoretically possible (Yger et al., 2017) and piloted in our 
laboratory (see Hudson et al., 2016), classification of brain 
activity and head movement within a ‘real-time’ domain 
following classifier set-up (i.e., learning the reference pe-
riod) of ~1 min needs to be demonstrated.

F I G U R E  4   Head movement during pre-inspiratory and motor phases of loaded and quiet breathing. Average amplitude of the root sum 
square of the accelerometer signals was calculated over the pre-inspiratory (left panel) and motor (right panel) phases (see Methods). High 
and low load levels were pooled for loaded breathing, and a two-way repeated measures ANOVA test revealed an effect of condition (i.e., 
loaded vs. quiet breathing) but no main effect of posture (lying vs. seated). Head movement was greater for loaded than quiet breathing for 
both the pre-inspiratory and motor phases. However, due to an interaction between condition and posture for pre-inspiratory movement, 
the effect of posture differed for loaded and quiet breathing and greater head movement in loaded breathing was due to a difference in lying. 
Mean (SD) data for 25 participants and all significant main and pairwise post-hoc comparisons are shown, *p < 0.001, ^p < 0.01, #p < 0.05.
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4.2  |  Time-locked changes in EEG and 
head movement

Previously with a similar “low” load (mean 7.5 cmH20) 
while seated, the incidence of pre-inspiratory potentials 
was 25% (Hudson et al.,  2018), comparable to 8% here 
in seated and lying. Previously, with a similar “high” 
load (median 17 cmH20) while seated, the incidence 
of pre-inspiratory potentials was 67% (Tremoureux 
et al.,  2010), compared to 23% here in seated and 31% 
in lying. Note even higher inspiratory threshold loads 
(median 20 cmH20 and median 23 cmH2O) can result in 
higher incidences of pre-inspiratory potentials of 100% 
(Raux et al., 2007b) and 89% (Tremoureux et al., 2010), 
respectively. The lower incidence in the current study 
for the load of ~17 cmH2O may be explained by the 
lower number of epochs available, which were ~ 65 here 
(as each condition was restricted to 10 min) compared 
to 80 epochs previously (Tremoureux et al.,  2010). A 
greater pre-inspiratory potential incidence during quiet 
breathing while supine, compared to seated posture has 
been previously demonstrated (Launois et al.,  2019). 
Our participants were only reclined by 60 deg rather 
than supine, but the apparent influence of posture is 
also seen in our results both for quiet and loaded breath-
ing (Figure 2, black versus white bars).

As discussed previously (Hudson et al., 2016), the pre-
inspiratory potential methodology was again limited in 
its ability to detect cortical-related activity in response 
to smaller loads. As the AUC for discrimination between 
quiet and loaded breathing with a small load ranged from 
0.70 to 0.88 and was not different to discrimination for 
high loads, it implies a limitation of the pre-inspiratory 
potential technique, rather than a lack of cortical activity.

The time-locked averages of accelerometer data re-
veal that over the second prior to the start of inspiratory 
pressure, the increases in head movement (i.e., steeper 
accelerometer slope) were greater when participants 
were breathing with a high load. The overall head move-
ment (i.e., greater accelerometer amplitude) was also 
greater both prior to and after the onset of the breath in 
loaded compared to quiet breathing. To our knowledge, 
this is the first demonstration in adults that the ampli-
tude of head movements increases when breathing be-
comes loaded. This information may be used to validate 
contactless-respiratory monitoring in patients with acute 
or chronic respiratory disorders (e.g., Lee et al.,  2021; 
Janssen et al., 2016). Given the slope was calculated from 
the root sum square of the signals in three dimensions, the 
direction of the movement is not identified, but assumed 
in these healthy participants to represent head extension 
due to bilateral recruitment of the sternocleidomastoid 
muscles in anticipation of having to generate a bigger 

negative pressure to produce inspiratory airflow (Hudson 
et al., 2007).

Head movement, as indicated by the slope of the sig-
nal, was bigger in those with a pre-inspiratory potential 
compared to those without in the high load condition in 
the lying posture. We cannot compare the effect of head 
movement in the low load condition as only one partic-
ipant had a pre-inspiratory potential for both postures. 
There was no apparent effect of head movement on the 
detection of motor potentials, but again not all conditions 
could be compared due to low motor potential incidence. 
The influence of artefactual head movement on detection 
of EEG potentials in loaded breathing and in clinical pop-
ulations (see Introduction for references) cannot be deter-
mined from the present study, given the low incidence of 
pre-inspiratory potentials across conditions, but our data 
provides rationale to study this further.

5   |   CONCLUSIONS

In summary, we have demonstrated that the inclusion of 
an accelerometer should be considered in the further de-
velopment of a BVI to detect respiratory-related cortical 
activity. This should be tested in clinical populations as 
well as in reliability studies to confirm which EEG signals 
should be included with the accelerometer signal for fast 
and accurate detection of respiratory discomfort.
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