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ABSTRACT

The Bologna ENZyme Web Server (BENZ WS) anno-
tates four-level Enzyme Commission numbers (EC
numbers) as defined by the International Union of
Biochemistry and Molecular Biology (IUBMB). BENZ
WS filters a target sequence with a combined sys-
tem of Hidden Markov Models, modelling protein se-
quences annotated with the same molecular func-
tion, and Pfams, carrying along conserved protein
domains. BENZ returns, when successful, for any
enzyme target sequence an associated four-level EC
number. Our system can annotate both monofunc-
tional and polyfunctional enzymes, and it can be a
valuable resource for sequence functional annota-
tion.
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INTRODUCTION

In the post genomic era, annotating protein sequences with
functional and structural features is a basic operation for
bridging the gap among the hundred millions chains from
different organisms, made available by deep sequencing and
proteomic projects, and the much smaller number of pro-
teins known with atomic details and with an experimentally
characterised biochemical function (1, 2). The problem of
functional annotation is therefore one of outmost relevance
for the correct assignment of newly generated sequences to
their structural and functional protein family or clan, from
where they can gain some structural and functional char-
acteristics. Indeed, the experiment Critical Assessment of
Functional Annotation (CAFA) (3), since 2010, provides
a large-scale assessment of computational methods devel-
oped to predict protein function as described with Gene On-
tology (GO) terms, according to the three main categories,
Molecular Function, Biological Process and Cellular Com-
ponent (4). Yet, CAFA has no specific section on the En-
zyme Commission number (EC number) prediction.

For protein enzymes, the EC number is a traditional
code of the catalysed biochemical reactions, describing
the relationship among the protein activity, substrates,
and products. Presentlyy, ENZYME (5) is the reposi-
tory of information relative to the nomenclature of en-
zymes, based on the recommendations of the Nomencla-
ture Committee of the International Union of Biochemistry
and Molecular Biology (https://web.expasy.org/docs/swiss-
prot_guideline.html). Rhea (6), in turn, is the expert-curated
knowledgebase of chemical and transport reactions of bio-
logical interest, based on the chemical dictionary ChEBI,
which describes reaction participants and their transfor-
mations (https://www.rhea-db.org/). In Rhea, reactions are
extensively curated with links to supporting literature and
are mapped to other resources, including the UniProt file
of each protein enzyme. Presently, the EC code includes
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seven major classes: (i) oxidoreductases, (ii) transferases,
(iii) hydrolases, (iv) lyases, (v) isomerases, (vi) ligases, (vii)
translocases. The EC code may range from one to four
figures, when the protein catalytic activity is characterised
with atomic resolution. In this case, when possible, the ar-
chitecture of the catalytic site is derived from the protein
structure and archived in specific databases, like M-CSA
(https://www.ebi.ac.uk/thornton-srv/m-csa) (7), which also
includes ligands.

In the UniProt reference database for protein sequences,
the annotation of a protein as an enzyme is carried out
whenever the automated workflow highlights specific fea-
tures according to given rules (https://www.uniprot.org/
help/biocuration). The system implements motifs derived
from HAMAP (High-quality Automated and Manual An-
notation of Proteins, https://hamap.expasy.org/), (8) and/or
PROSITE, (a database of protein domains, families and
functional sites, https://prosite.expasy.org/), (9). Feature
discovering includes also the presence of motifs described in
InterPro (10), which provides functional analysis of proteins
by classifying them into families and by predicting domains
and important sites (https://www.ebi.ac.uk/interpro/), and
in Pfam (11), which models protein families with Hidden
Markov Models (HMMs) after multiple sequence align-
ment (https://pfam.xfam.org/). Via transfer of knowledge
and association rules, the enzyme gains an EC number.
Eventually, manual curation allows the enzyme sequence
to move from the TTEMBL to the SwissProt section of
UniProt (https://www.uniprot.org/). EC number annota-
tion in UniProt can include from one to four numbers, rou-
tinely depending on the annotation level of the target pro-
tein.

Other databases, by integrating different sources of in-
formation, comprising UniProt and PDB, offer a complete
annotation for enzymes, such as BRENDA, (12), (https://
www.brenda-enzymes.org/index.php) and CATH (https://
http://www.cathdb.info/) (13). BRENDA, established in
1987, has evolved into a main collection of curated func-
tional enzyme and metabolism data, supported by links to
literature and continuously updating (12). CATH, in turn,
is a free, publicly available online resource that provides in-
formation on the evolutionary relationships of protein do-
mains. Created in the mid-1990s, it is also continuously up-
dated. In its section FunFams, it allows the search of a target
sequence and returns a functional annotation with EC num-
ber, after protein domain annotation modelled by a system
of HMM hierarchical architectures. CATH is also part of
InterPro and contributes therefore to the main annotation
system of UniProt (https://www.ebi.ac.uk/interpro/).

As an alternative to transfer of knowledge, ab-
initio computational approaches can give direct
prediction/annotation of an EC number for a given
input sequence or structure. This approach requires ex-
ploring the complex rules of associations among enzyme
sequential and structural features and the EC codes.
Methods, mainly based on different types of statistical and
machine learning methods, adopt different input features,
and predict EC numbers ranging from one to four levels,
although with an efficiency decreasing at increasing number
of levels (for an extensive review, see (14)). More recently,
ECPred (15) implements an ensemble of machine learning
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methods based on EC nomenclature and outperforms
DEEPre, based in turn on an end-to-end feature selection
and a classification model training approach (16). Both
methods declare a decrease in efficiency when predicting
four-level EC numbers.

A major problem in annotating EC codes remains their
specificity (four-level EC codes) and the EC assignment to
polyfunctional enzymes. Here, to address this problem, we
develop BENZ, a system including two main sets of HMMs.
One set is meant to detect sequence conservation of the tar-
get towards functional families, and the other conservation
of structural architectures and family domains as described
by Pfam models. The information derived from the inter-
play of the two different types of HMMs allows, in our case,
a direct prediction of a four-level EC code for monofunc-
tional enzymes. The system can also associate four-level EC
codes to polyfunctional enzymes.

MATERIALS AND METHODS

Databases

BENZ is presently updated with UniProt/SwissProt re-
lease 2021_.01. A previous version of BENZ, based on
UniProt/SwissProt release 2019_11 was used in order to
generate a system for CAFA-like validations. Links to
Pfam (11) and KEGG (17) databases are derived from the
UniProt releases. Fragments and sequences shorter than 50
residues are not considered. Annotations of active, metal,
ligand-binding sites (when available) are also derived from
UniProt and mapped into the Pfam architecture of the en-
zyme proteins.

Graph building, clustering and cluster HMM generation

The procedure stands out from a previously implemented
workflow, which we adopted to generate and update
our BAR 3.0 (Bologna Annotation Resource, https://bar.
biocomp.unibo.it/bar3/), a protein functional and struc-
tural annotation resource (18). Briefly, all the UniProt
sequences of a specific release (in this case, UniProtKB
2019.01) are compared with BLAST (https://www.ncbi.
nlm.nih.gov/), and then clustered by constraining sequence
identity (SI) and alignment coverage (COV, the ratio be-
tween the number of overlapping positions and the align-
ment length). A graph is built by connecting sequence pairs
that fulfil both identity and coverage constraints. Here, we
adopt (SI) >50% on an alignment coverage (COV) >90%.
Clusters are obtained by isolating the connected compo-
nents of the graph. For updating, we use UniRef90 clusters
(https://www.uniprot.org/help/uniref) which are mapped to
BAR clusters, following the procedure outlined before (18).
This allows the inclusion of the remaining TrEMBL se-
quences, and the AlignBucket algorithm (20) speeds up
the alignment procedure, exploiting the constraint on COV.
Each sequence in the cluster retains the annotation present
in the UniProt file (PDB with the highest coverage and res-
olution when available, Pfam/s, KEGG links and four-level
EC codes, when present). Our system allows updating (18),
by adding new sequences and by reshaping clusters accord-
ingly, with the inclusion of new annotations from UniProt.
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From this background architecture, we retain only clus-
ters containing sequences associated to four-level EC codes,
particularly clusters containing SwissProt manually curated
sequences, and TrEMBL sequences with an associated PDB
file. For each cluster, we then trained a cluster HMM, with
HMMER 3.3.2 (http://hmmer.org/, (20)), on the cluster spe-
cific multiple sequence alignment, as computed with Clustal
Omega (21). The present version of BENZ WS, for technical
reasons includes Cluster HMMs with average lengths rang-
ing from 50 to 5000 residues, and this sets the limit of the
query sequence to about 5000 residues.

Reference sequence selection and cluster HMM coloring
scheme

For each cluster HMM, we select the best annotated
sequence/s to be reference sequence for the cluster HMM-
EC number/s association with the following constraints:
for SwissProt sequences, chains with the highest annota-
tion score; for TTEMBL sequences, only those with a four-
level EC number and a PDB association. Each reference
sequence is then associated to its specific Pfam architec-
ture, and eventually relevant sites (including active, ligand
and metal binding sites) are mapped into the correspond-
ing Pfam/s. Cluster HMM are then grouped into two cate-
gories. GOLD cluster HMMs are univocally associated to
one reference sequence, and BLUE cluster HMMs are as-
sociated to more than one reference sequence.

BENZ implementation

BENZ includes cluster HMMs and Pfam models (Pfam ver-
sion 33.1). When a target sequence enters the server, it is fil-
tered by the two different sets of models. Within the cluster
HMMs, when retained (threshold for inclusion is E-value
< 107°), the sequence finds a reference template; within
the Pfam models, when retained (threshold for inclusion is
E-value<10~%), it gains an architecture. The inclusion E-
values were chosen after a self-consistency test (the predic-
tion of the whole set of reference sequences).

This architecture is then compared to that of the refer-
ence and the target is endowed with the four-level reference
EC number only when its architecture is at least equal to
that of the template. If not, the four-level EC number is at-
tributed on the basis of a common Pfam, containing rele-
vant sites (active, metal binding, ligand binding sites). The
general scheme of BENZ annotation system is depicted in
Figure 1. When the retaining cluster HMM is plurivocally
associated to more than one reference sequence, a dendro-
gram is generated after multiple sequence alignment with
Clustal Omega (21), including the query sequence, which is
associated with the EC code/s of the most similar among
the references.

Web server

The BENZ web server interface is optimized to work with
common web browsers, including Chrome 88.0, Firefox
83.0, Edge 88.0 and Safari 14.0. Upon submission, jobs
are processed asynchronously adopting an internal queuing
service based on Sun Grid Engine. Submitted sequences are
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Figure 1. Workflow of BENZ WS. For a query sequence, in FASTA for-
mat, the annotation procedure starts with HMM filtering. If the retain-
ing HMM is plurivocally associated to different references sequences (blue
star), a dendrogram is generated to find among the reference sequences
the most similar one to the target. Otherwise (yellow star), the target is
associated to the only reference. The EC number-query sequence associa-
tion is then made after evaluating if the reference protein architecture (Ref
Seq Arch) is contained (C) in that of the predicted target Pfam architecture
(Query Pred Arch), focusing on Pfams carrying relevant sites. Pfams in our
system are annotated when possible, with the positions of the active site,
ligand binding site and metal binding site (relevant sites). A sequence fea-
ture viewer allows the user to verify whether the query sequence conserves
the residues relevant to the protein catalysis for validating the transfer of
annotation from the reference sequence. Links to the reference sequence
UniProt/SwissProt file, structure PDB file and Pfam entries, together with
KEGG identifiers and pathways are also present in the output (see HELP,
https://benzdb.biocomp.unibo.it/help).

aligned against the cluster HMMs and Pfam libraries with
HMDMer 3.3.2 (20). User is provided with a link to a static
web page that will display results upon job completion. The
page is updated every 30 s. Results are routinely returned
within 1 minute since the submission. Longer times may be
needed for sequences longer than 3000 residues.

When criteria described in Figure 1 are fulfilled, the re-
sult page returns the EC annotation as derived from the
best matched reference sequence. The ‘Best match’ section
also reports the PDB structure of the reference (when avail-
able), the Pfam architectures of both query and reference se-
quences and the type of HMM-reference association, either
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univocal (GOLD star) or plurivocal (BLUE star). More de-
tails are provided in the ‘Data’ section, including the list of
cluster HMMs scoring with E-value <107, the associated
reference sequences and the links to IntEnz (https://www.
ebi.ac.uk/intenz/), UniProt, PDB, Pfam and KEGG. Tabu-
lar data are represented with DataTables (https://datatables.
net/), allowing to sort rows with respect to any column key
and to search for text occurrences in the table. Links are
resolved with the Identifiers.org service (22) to improve in-
teroperability.

For plurivocal clusters, the dendrogram, in Newick for-
mat, representing the distances among the query and the
reference sequences is computed with Clustal Omega (21)
and visualized with the Bio.Phylo module of Biopython
(23). The Pfam domains mapped on the query sequence
are listed in the ‘Predicted Target Architecture’ table and
graphically represented with tracks displayed by means of
the Pviz.js library (24). Graphic view also enables to inves-
tigate the conservation of active, metal-binding, and ligand-
binding sites between the query and the reference sequences.
The web server is freely accessible without registration at
https://benzdb.biocomp.unibo.it.

RESULTS
BENZ. statistics

In the present version, our annotation system comprises 16
593 reference sequences (93.6% from SwissProt), from 8§91
organisms, included in 12 612 cluster HMMs (Table 1). Our
system can annotate 5136 four-level EC numbers by means
of a target-reference sequence association (Figure 1). This
can be found by filtering the target with cluster HMMs and
by associating the predicted target architecture to that of
the reference sequence (Figure 1). When more than one ref-
erence is present in the retaining cluster HMM, a dendro-
gram, including the target and the cluster HMM references,
allows finding the closest reference to the target. The final
comparison among the predicted target architecture and the
reference selected one, allows or not the association of the
target with the EC number of the reference. In BENZ, 16%
of the clusters HMMs (BLUE) are endowed with more than
one reference sequence, including 6798 reference sequences
(36% of the references, Table 1).

The reference sequence architectures comprise 4158 Pfam
models, 1758 of which map relevant sites (active, ligand and
metal binding) for testing the target vs reference conserva-
tion of the functional activity. 7601 reference sequences are
linked to 9382 KEGG pathways.

BENZ comprises also 2023 polyfunctional reference se-
quences (96% from SwissProt), for a total of 1589 four-level
EC numbers, included in 1485 cluster HMMs (907 GOLD
and 578 BLUE). The distribution of the polyfunctional ref-
erence sequences (Supplementary Table S1S and Supple-
mentary Figure S1S) indicates that the number of EC codes
per sequence ranges from 2 to 9, following the UniProt an-
notation. Their associated architecture includes from one
to 26 Pfam models, for a total of 1156 Pfam entries. Poly-
functional reference enzymes have relevant sites mapped
into 725 Pfam entries and 1082 polyfunctional reference se-
quences link 2627 KEGG pathways.
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BENZ at work

BENZ is tested against different protein sets (Table 2).
Firstly, we run two different sets of proteins not included
in our reference sequences: a positive (sequences annotated
in SwissProt with a four-level EC code) and negative (se-
quences annotated in SwissProt without a four-level EC
code). Results indicate that the system has a good efficiency
in assigning four-level EC codes (92.4%) and in rejecting
non-enzyme proteins (95.1%). A similar good efficiency is
detected when testing two other sets, one comprising poly-
functional enzymes from SwissProt and the other including
human sequences endowed with EC numbers downloaded
from TrEMBL.

CAFA-like validation

The performance assessment of our method was carried out
running an in-house CAFA-like benchmark. To this aim,
we simulated a time-challenge experiment by computing EC
annotation acquired in the time elapsed between two distant
releases of SwissProt. As reference sets, we used SwissProt
releases 2019_11 (z0: 11 December, 2019) and 202003 (¢1:
17 June 2020). A BENZ test version was implemented us-
ing only sequences and annotations of the former release.
Positive and negative benchmark datasets were compiled
by comparing the functional annotations available in the
two releases. The positive dataset consists of proteins non-
annotated for EC at ¢0 but endowed with a four-level EC
annotation at #/. Fragments were excluded. The full positive
dataset therefore consists of 607 proteins not included in the
ground-truth dataset of the BENZ-WS test version and en-
dowed with a four-level EC number out of the seven main
EC classes. For sake of comparison with methods not han-
dling the EC 7 class (translocases), we considered a reduced
dataset comprising 366 enzyme sequences labelled with EC
codes from classes 1 to 6.

The negative dataset contains 1034 non-fragment pro-
teins that, from 70 to ¢/, acquired a Gene Ontology (GO)
annotation for Molecular Function (MF) different from
GO:0003824 (catalytic activity) and its descendants, and
that are not endowed with an EC number at any level.

We then assessed the performance of the BENZ testing
version (built only on sequences and annotations available
at 10) in discriminating enzymes from other proteins and in
assigning the EC annotation. We computed different scor-
ing measures, including the True Positive Rate (TPR), eval-
uating the fraction of correct predictions at different EC lev-
els, the False Negative Rate (FNR) scoring the number of
enzymes in the positive dataset predicted as non-enzymes
and the False Positive Rate (FPR) scoring the number of
negative proteins predicted with an EC number (Table 3).

On the full dataset (Table 3, first row), BENZ reaches
FNR and FPR values of 12.2% and 3%, respectively, indi-
cating a good ability in discriminating enzymes from other
proteins. The correct EC number assignment (TPR) is equal
to 85% on four-level annotations, and slightly higher when
less detailed levels of annotation are considered. When the
seventh Enzyme class is filtered out in the reduced data set
(about 40% of the proteins), BENZ WS is still scoring with
good values of FNR and FPR (second row in Table 3), high-
lighting the robustness of the method.
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Table 1. BENZ statistics

EC1 EC2 EC3 EC4 EC5 EC6 EC7 Total
EC numbers* 1437 1550 1034 595 254 189 77 5136
Cluster HMM 1758 5116 3755 1006 637 636 288 12612
Cluster HMM GOLD 1326 4315 3190 800 497 496 218 10 547
Cluster HMM BLUE 432 801 565 206 140 140 70 2065
Ref Seq® 2752 (390) 6455 (990) 4582 (729) 1348 (324) 842 (145) 883 (105) 405 (14) 16 593 (2023)
Ref Str® 1230 (152) 2252 (253) 2100 (213) 625 (110) 333 (41) 287 (22) 149 (5) 6798 (618)
Pfam® 682 (429) 1923 (769) 1672 (711) 463 (321) 294 (190) 276 (133) 143 (50) 4158 (1758)
KEGG ID¢ 2390 5908 3770 1185 799 894 343 14745
KEGG Pathway? 2758 4812 2628 1972 952 1266 317 9382
Organisms® 15158200 13 201872321193 15165208 1 135 131251414 16109 83 6 181195312 75747 242613912213
Arc Bac Euk Arc Bac Euk Arc Bac Euk Arc Bac Euk Arc Bac Euk Arc Bac Euk Arc Bac Euk Arc Bac Euk Unk
Vir Unk Vir Unk Vir Vir Vir Vir Vir

4Four-level EC numbers are distributed according to the 7 EC classes: EC1-Oxidoreductases, EC2-Transferases, EC3-Hydrolases, EC4-Lyases,EC5-Isomerases, EC6-Ligases, EC7-

Translocases.

PRef Seq and Ref Str: number of reference sequences, and reference sequence with structure, respectively; number of polyfunctional enzymes are within brackets.
¢Pfam: models from Pfam (https://pfam.xfam.org); within brackets Pfams, where relevant sites (active, metal, ligand binding site) are annotated.

9KEGG ID: from UniProt annotation; KEGG pathway: from https://www.genome.jp/kegg/.

“number of organisms detailed for each kingdom. Arc: Archaea; Bac: Bacteria; Euk: Eukaryota; Oth: Others; Vir: Viruses. Unk: unknown. Annotation source: UniProt. Grand Total: 891.

Table 2. BENZ at work

is counter-balanced by a low ability to recognise enzymes
(TPR values).

Dataset Sequences (#)  Acc® (%) FNRf (%) FPRE (%)

Positive® 197 880 92.4 39 -

Negative® 12315 95.1 - 4.9 DISCUSSION

Polyfunctional® 10 764 93.7 5.0 - ) ) ) ) )
TrEMBL-human? 10 024 93.4 5.6 - A major problem in addressing EC code annotation is due

4Positive: the positive set contains complete SwissProt sequences without
any PDB counterpart and annotated with only four-level EC number.
YNegative: the negative set comprises complete SwissProt sequence with a
PDB counterpart, without EC codes.

“Polyfunctional: the set includes complete SwissProt sequence that are an-
notated with two or more four-level EC numbers.

dTrEMBL-human: the set contains complete TrEMBL sequences from
Homo sapiens annotated with a four-level EC number.

¢ Acc (Accuracy) measures the number of proteins correctly assigned. For
sets containing positive examples, it corresponds to the True Positive Rate
as evaluated at the level of four: EC annotation. For the negative set, it
corresponds to the True Negative Rate.

fFNR (False Negative Rate) measures the percentage of enzymes predicted
as non-enzymes.

SFPR (False Positive Rate) measures the percentage of non-enzymes pre-
dicted as enzymes.

We then compared BENZ with three state-of-the-art
tools: ECPred (15), DEEPre (16) and EFICAZz2.5 (25). Only
the reduced positive dataset was adopted since the selected
methods do not consider the seventh EC class. Results indi-
cate that BENZ outperforms the other tools in this bench-
mark (Table 3). TPR values of BENZ WS range from two-
fold up to four-fold those obtained by the other predictors,
increasing at increasing levels of EC. Concomitantly, BENZ
WS FNR values overpass other predictors values by at least
two or three times those of the other predictors (Table 3,
FNR column).

In the reduced set, BENZ achieves a better discrimina-
tion than the other methods (FNR) and a better EC as-
signment sensitivity, with a TPR value ranging from 79.2%
to 75% at increasing level of predicted EC (Table 3, TPR
columns), and it significantly overpasses the second best-
scoring method (DEEPre, 16). As to the correct recogni-
tion of non-enzymes (column FPR, Table 3), DEEPre and
EFICAZz2.5.1 show a better performance, which in turn

to the different levels of specificity that the code carries.
Only the complete four-level annotation fully characterises
the protein biochemical activity. However, due to evolution,
different active site architectures can catalyse the same bio-
chemical activity and/or the same active site can bind dif-
ferent substrates (26). These difficulties may hamper the EC
direct association to the protein sequence and rather suggest
a direct prediction of GO terms, like in the CAFA experi-
ments (3).

Here, we tackled the problem of the association of pro-
tein sequence with four-level EC code/s taking advantage
of two different types of HMMs. One, the cluster HMM
derives from a hierarchical clustering procedure that we
adopted before for generating a system (BAR 3.0) suited to
a general-purpose protein annotation and based on a rigor-
ous and statistically validated transfer of annotation. Clus-
ter HMMs model sequences, which have been clustered af-
ter constraining their identity (>50%) over 90% of the align-
ment length. By this, cluster HMMs retain sequences that
pairwise share a high level of similarity over a large portion
of the alignment length, although belonging to different or-
ganisms. Furthermore, they may conserve relevant sites in
specific Pfam domains. Among the cluster-sequences, we se-
lect one reference sequence (the one with the highest score
of annotation) and define its architecture by mapping Pfam
domains to the chain. When present, all the relevant sites
(active, ligand and metal binding) are also mapped to the
corresponding Pfam domain/s. Finally, we associate each
representative, its architecture and EC code/s to a more
general representation, casted into the cluster HMM. In-
deed, structural matching for gaining the EC code of the
representative reference is checked by comparing the target
predicted architecture and the reference one.

Testing BENZ on selected sets of proteins (Table 2) in-
dicates that the system correctly rejects (97%) non enzymes
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Table 3. BENZ benchmarking

Method Data set® TPRf (%) 1 level TPRf (%) 2 level TPRF (%) 3 level TPRS (%) 4 level FNRE (%) FPR" (%)
BENZ WSP Full 87.5 87.5 87.5 85.0 12.2 3.0
BENZ WSP Reduced 79.2 79.2 79.2 75.1 20.2 3.0
ECPred® Reduced 437 34.7 23.8 13.1 45.6 12.2
DEEPred Reduced 38.8 35.2 27.9 20.8 51.1 2.4
EFICAZ2.5.1¢ Reduced 33.6 33.1 31.1 16.7 63.7 1.6

4Benchmark datasets are extracted by comparing SwissProt releases 2020_3 and 2019_11. The full dataset includes 607 proteins that have gained EC
annotation (7 EC classes); the reduced dataset includes a subset of 366 enzyme sequences without EC codes of the seventh class for comparing with the
other predictors. Both datasets comprise 1013 non-enzyme sequences as negative examples.

YA BENZ WS version including only sequences and annotations available in the SwissProt release 2019_11 has been used for this test.

¢ECPred (15) has been downloaded from https://github.com/cansyl/ECPred and run in-house; it does not provide multiclass predictions and the best match
between the output and the list of EC numbers has been considered for multiclass enzymes. It does not include enzymes of for EC class 7.

dDEEPre (16) predictions have been run on the webserver http://www.cbre kaust.edu.sa/DEEPre/ in modality ‘I’m not sure the sequence is an enzyme’; it
does not provide multiclass predictions and the best match between the output and the list of EC numbers has been considered for multiclass enzymes. It

does not include enzymes of the EC class 7.

CEFICAZ2.5.1 (25) has been downloaded from https://sites.gatech.edu/cssb/eficaz2-5/ and run in-house; it does not include enzymes of EC class 7.
fTPR (True Positive Rate) measures the number of enzymes assigned to the correct EC class. TPRs have been evaluated at the level of four-level EC

annotation.

2FNR (False Negative Rate) measures the percentage of enzymes predicted as non-enzymes.
hEPR (False Positive Rate) measures the percentage of non-enzymes predicted as enzymes.

and that it is efficient in retaining never seen before enzyme
sequences (Table 3). BENZ will eventually assign only EC
codes present in the system as specific four-level EC-Cluster
HMM-reference sequence association. This will be taken
care of with new BENZ releases, following new UniProt re-
leases.

When BENZ is benchmarked with other EC predictors,
based on first structural principles or machine and deep
learning methods, it is superior (Table 3). Predictors, which
we found available, are based on different methods and
not directly comparable. However, their poor performance
on the specific task of EC code prediction, including poly-
functional enzymes, suggests that fine-tuning of the protein
functional family representation is necessary and that ma-
chine learning, including end-to-end models, poorly cap-
tures it.

We introduce BENZ as a reliable method for transfer of
knowledge after generalisation over subsets of proteins be-
longing to specific functional and structural families.
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