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Reductive soil disinfestation (RSD) and soil fumigant chloropicrin (SFC) are two
common agricultural strategies for the elimination of soil-borne pathogens. However, the
differences in soil environmental factors, soil bacterial microbiome, and root performance
between SFC and RSD are poorly understood. In this study, three soil treatments,
untreated control (CK), SFC with 0.5 t·ha−1 chloropicrin, and RSD with 15 t·ha−1 animal
feces, were compared. We evaluated their effects on soil environmental factors, bacterial
community structure, and root activity using chemical analysis and high-throughput
sequencing. RSD treatment improved soil composition structure, bacterial diversity, and
root performance to a greater extent. Carbon source utilization preference and bacterial
community structure were strikingly altered by SFC and RSD practices. Bacterial
richness, diversity, and evenness were notably lowered in the SFC- and RSD-treated soil
compared with the CK-treated soil. However, RSD-treated soil harbored distinct unique
and core microbiomes that were composed of more abundant and diverse potentially
disease-suppressive and organic-decomposable agents. Also, soil bacterial diversity
and composition were closely related to soil physicochemical properties and enzyme
activity, of which pH, available Na (ANa), available Mg (AMg), available Mn (AMn), total
Na (TNa), total Ca (TCa), total Cu (TCu), total Sr (TSr), urease (S-UE), acid phosphatase
(S-ACP), and sucrase (S-SC) were the main drivers. Moreover, RSD treatment also
significantly increased ginseng root activity. Collectively, these results suggest that RSD
practices could considerably restore soil nutrient structure and bacterial diversity and
improve root performance, which can be applied as a potential agricultural practice for
the development of disease-suppressive soil.

Keywords: reductive soil disinfestation, soil fumigant chloropicrin, bacterial community, environmental factors,
ginseng

INTRODUCTION

Ginseng (Panax ginseng C. A. Meyer) is a perennial herb with a long history in the world and is
one of the important cash crops (In-Ho and Seung-Ho, 2013). Driven by the rapid development
of economy and technology and the shortage of land resources, intensive cropping systems and
commercial production mode characterized by continuous monoculture have become an important
part of the ginseng industry and have been widely used in the world (Banerjee et al., 2019). However,
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with the obvious increase of the highly intensive cropping degree
and long-term single continuous monoculture trend, ginseng’s
dependence on pesticides has been increasing, which poses a
serious threat to the environment and product safety. Problems
such as degradation of soil quality, serious soil-borne diseases,
and inhibition of crop growth are common (Li et al., 2020). This
may be caused by decomposable plant residues, root exudates,
rainwater leachates, monocropping, and other reasons (Semenov
et al., 2020; Vicente et al., 2020). These reasons not only increase
the number of pathogens in the soil but also change soil nutrients
and plant root activity, which is not conducive to the growth of
ginseng and makes them prone to soil-borne diseases (Bulgarelli
et al., 2013; Wei et al., 2015). For example, Cylindrocarpon
destructans was the pathogenic bacteria most seriously causing
ginseng root rot, and its incidence could be as high as 70% after
continuous implantation (Rahman and Punja, 2005). Worse still,
the incidence of ginseng is proportional to the number of years
of continuous cultivation, which severely limits the sustainable
development of the ginseng industry. Therefore, measures to
overcome or alleviate soil degradation and soil-borne diseases
have become an urgent concern.

Soil fumigation is the most widely used method to control
soil-borne pathogens (Strauss and Kluepfel, 2015). Chloropicrin
is one of the commonly used soil fumigants (Jackson, 1934).
Studies have shown that the chloropicrin fumigant can kill more
than 85% of bacteria, fungi, and actinomycetes in soil (Gullino
et al., 2002) and also has certain control effects on weeds and
nematodes (Haar et al., 2003; Yan et al., 2012). However, with the
increasing concern for the sustainable development of agriculture
and human health, the traditional chemical fumigants have
been gradually phased out. Therefore, screening a non-chemical,
green, efficient and practical method that can effectively replace
soil fumigation is the focus of research. In this case, reductive soil
disinfestation (RSD), also known as biological soil disinfestation
(BSD) or anaerobic soil disinfestation (ASD), independently
developed by scientists from Japan (Momma et al., 2013)
and Netherlands (Blok et al., 2000), has attracted widespread
attention. It is a method that uses ecological principles to
treat soil before plants are planted, by enriching soil organic
carbon sources to create soil environments that are favorable
for crop growth but unfavorable for pathogen growth, making
the beneficial microorganisms in the soil occupy a favorable
ecological niche and thus inhibiting the growth of harmful
microbes, to reduce the incidence rate of soil disease spread and
to increase crop yield (Di Gioia et al., 2017; Ueki et al., 2018;
Zhou et al., 2019). At present, it has been applied to a variety of
crop production systems, such as Salvia miltiorrhiza Bunge (Yang
et al., 2021), Lilium brownii var. viridulum (Zhou et al., 2019),
and Panax notoginseng (Burk.) F. H. Chen (Li et al., 2019), and
has been confirmed as an effective practice for extensive control
of plant pathogens.

Soil microorganisms are the most active component in the soil
microecological environment. They maintain multiple ecological
processes such as decomposition of soil organic matter, formation
of humus, material circulation, and energy exchange between
plants and the environment and play an indicator role in
soil fertility and soil environment (Goldford et al., 2018). At

the same time, most of the soil enzymes are secreted by soil
microorganisms (Ahmed et al., 2018), while a few are secreted
by plant roots and soil animals (Burns, 1982). These enzymes
are closely related to soil nutrients (Allison et al., 2010), which
together constitute the soil microecological environment and
affect the root activity of plants (Bowles et al., 2014). Recently,
the results showed that both chemical soil disinfestation (CSD)
and RSD have excellent ability to inhibit pathogens and strikingly
alter the bacterial preference for carbon source utilization
preference and bacterial community structure (Zhao et al., 2018;
Huang et al., 2019). Soil fumigant chloropicrin (SFC) is the most
widely used technique in CSD. However, knowledge regarding
the influence of SFC and RSD on soil bacterial microbiota is
still limited. In addition, soil microbial community is sensitive
to changes in the external environment (Balser and Firestone,
2005), and changes in the soil oxygen environment will inevitably
affect the diversity, composition, and structure of soil bacterial
community. Studies have shown that soil aeration can effectively
improve the number of soil microorganisms and soil enzyme
activities (Li et al., 2016). At the same time, the roots of plants also
need oxygen for respiration (Armstrong et al., 2019). However,
RSD treatment mainly creates anaerobic conditions by adding
organic matter and then flooding the soil with water and covering
it with a plastic film (Nevein et al., 2007). Therefore, it is
particularly important to identify the changes in soil bacterial
community, soil enzyme activity, and soil nutrients in SFC and
RSD in an anaerobic environment.

Due to the differences in materials used and mechanisms
involved between SFC and RSD, we hypothesized that (1) SFC
and RSD differentially impact the soil bacterial community
structure and diversity; (2) RSD could increase the number of
antagonistic bacteria and root activity, compared with CSD; and
(3) the anaerobic environment may indirectly affect plant root
activity by changing the soil microecological environment. To
test these hypotheses, chemical analysis and high-throughput
sequencing technology were used to study the relationship
between the ginseng rhizosphere bacterial community and soil
environmental factors under different anaerobic conditions, and
ginseng root activity was measured. The relationship between the
change in soil bacterial community and ginseng root activity was
further analyzed.

MATERIALS AND METHODS

Field Experiment Description and Design
The field experiment was performed in Zuojia Town, Changyi
District, Jilin City, Jilin Province, China (44◦02′N, 126◦15′E, 237-
m altitude), which is characterized by a temperate continental
monsoon climate with a mean annual temperature and
precipitation of 5.8◦C and 550 mm, respectively. There are an
average of 2,530 h of sunshine and approximately 128 growth
days per year. The soil is dark-brown forest soil. Before the
experiment, ginseng was planted continuously for 3 years, and
the soil sickness was serious. Physical and chemical properties
of soils were as follows: pH value 5.81; soil electric conductivity
(EC) 70.45 µs·cm−1; available Na (ANa) 0.1279 mg·g−1; available
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Mg (AMg) 0.4074 mg·g−1; available K (AK) 0.2043 mg·g−1;
available Ca (ACa) 0.9485 mg·g−1; available Mn (AMn)
0.06725 mg·g−1; available Fe (AFe) 0.4363 mg·g−1; available Cu
(ACu) 0.00322 mg·g−1; available Sr (ASr) 0.01871 mg·g−1; total
Na (TNa) 3.4875 mg·g−1; total Mg (TMg) 0.6475 mg·g−1; total
K (TK) 20.15 mg·g−1; total Ca (TCa) 0.47725 mg·g−1; total Mn
(TMn) 0.55625 mg·g−1; total Fe (TFe) 13.64 mg·g−1; total Cu
(TCu) 0.01775 mg·g−1; total Zn (TZn) 0.0665 mg·g−1; and total
Sr (TSr) 0.01175 mg·g−1.

Three treatments were employed in this study: (1) untreated
control (CK), soil was untreated; (2) SFC, soil was injected
with 0.5 t·ha−1 chloropicrin (Dalian Lufeng Chemical Co., Ltd.,
Liaoning, China) and covered with a 0.04-mm blue plastic
film; and (3) RSD, soil was added with 15 t·ha−1 animal feces
(chicken feces, cow feces, and pig feces = 1:1:1), irrigated to
100% water holding capacity, and covered with a 0.04-mm
blue plastic film. Each treatment contained three replicates, and
each replicate covered an area of 30 m2 (2 m × 15 m) in a
randomized complete block design. The treatments, except for
the control, lasted for a period of 4 weeks under strict anaerobic
conditions. The soil temperature ranged from 30 to 40◦C. After
the 4-week treatment, the plastic films were removed, and the
soil was overturned after 2–3 days of natural drying. Ginseng
transplanting was carried out on October 20, 2019, and 2-year-
old healthy ginseng seedlings of similar size were transplanted.
During the experiment, the field management measures were
consistent with local production practice.

Sample Collection and Processing
Soil samples and plants were collected during the first harvest
period (October 1, 2020). Twenty soil sampling points were set
up according to the “S” shape in each treatment, and five soil
sampling points were mixed into one composite sample after the
soil was collected. This method meant that four composite soil
samples were obtained from each treatment. As a result, a total
of 12 soil composite samples were collected from 3 treatments
at a depth of 0–20 cm. Subsequently, roots and impurities were
removed from soils. One fraction was air-dried and ground
to pass through a 2-mm mesh size sieve for subsequent soil
property and enzyme activity analyses, while the remaining
fraction was taken to the laboratory in cool boxes with ice bags
and stored at low temperature (−80◦C) for high-throughput
sequencing analysis. At the same time, six plants were randomly
selected from each treatment and labeled. The aboveground and
underground parts of the plants were separated and washed
gently, and the roots were dried with absorbent paper and used
for an analysis of root activity.

Soil Property Analyses
Soil pH was determined by a pH meter (soil-to-water ratio was
1:5). Soil EC was measured by a conductivity meter (soil-to-water
ratio was 1:5). The metal ions ANa, AMg, AK, ACa, AMn, AFe,
ACu, available Zn (AZn), and ASr were extracted by the M3
method and determined by inductively coupled plasma–optical
emission spectrometry (ICP-OES). The metal ions TNa, TMg,

TK, TCa, TMn, TFe, TCu, TZn, and TSr were determined by
ICP-OES with a concentrated nitric acid method.

Soil Enzyme Activity Analysis
Important enzymes involved in soil nutrient cycle processes and
microbial metabolism include urease (S-UE), acid phosphatase
(S-ACP), sucrase (S-SC), catalase (S-CAT), and laccase (SL).
These enzymes were measured using a kit produced by the
company Solarbio. Enzyme activity was determined using 96-well
microtiter plates and followed the product manual provided by
Solarbio. Each sample was repeated five times. S-UE activity was
defined as 1 µg of NH3-N produced per gram of soil per day.
S-ACP activity was defined as 1 nmol of phenol released per gram
of soil per day at 37◦C as one enzyme activity. S-SC activity was
defined as 1 mg of reducing sugar per gram of soil per day at 37◦C.
S-CAT activity was defined as catalytic degradation of 1 µmol of
H2O2 per gram of air-dried soil sample per day. SL activity was
defined as the amount of enzyme required to generate 1 nmol
of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)
free radical per minute per gram of soil.

Soil DNA Extraction and Sequencing
Total DNA was extracted from 0.5 g of soil per replicate, using
the E.Z.N.A. R© Soil DNA Kit (Omega Bio-tek, Norcross, GA,
United States) according to the manufacturer’s instructions.
The integrity of DNA was validated by 1% agarose gel
electrophoresis. The DNA concentration and purity were
determined with a NanoDrop 2000 UV–vis spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE, United States).
An Illumina MiSeq PE300 platform (Illumina, United States)
was used to measure diversity and composition of bacterial
community. The universal 16S rRNA gene primers 338F
(5′-ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) were chosen for the
amplification and subsequent high-throughput sequencing of
the polymerase chain reaction (PCR) products. Each 20-µl PCR
mixture contained 4 µl of FastPfu buffer (5 × Transgen), 2 µl
of dNTPs (2.5 mM), 0.8 µl of forward primer (5 µM), 0.8 µl
of reverse primer (5 µM), 0.4 µl of TransStart FastPfu DNA
polymerase, 10 ng of template DNA, and 0.2 µl of ddH2O.
The PCR amplification of 16S rRNA gene was performed as
follows: initial denaturation at 95◦C for 3 min, followed by 27
cycles of denaturing at 95◦C for 30 s, annealing at 55◦C for
30 s and extension at 72◦C for 45 s, a single extension at 72◦C
for 10 min, and ending at 4◦C. The raw reads were deposited
into the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) database (accession
number: PRJNA765568).

Root Activity
The obtained roots were carefully washed, and the aboveground
parts were removed from the stem base. The fresh plant root
sample was used to assess root activity by the 2,3,5-triphenyl
tetrazolium chloride (TTC) method. The oxidation state of TTC
is colorless in itself. We soaked the roots in a TTC aqueous
solution, and TTC entered the root cells. This test is based on
dehydrogenase in live roots (especially succinate dehydrogenase

Frontiers in Microbiology | www.frontiersin.org 3 December 2021 | Volume 12 | Article 796191

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-796191 December 9, 2021 Time: 15:36 # 4

Zhan et al. Reductive Soil Disinfestation

in mitochondria) reducing colorless TTC to red triphenyl
formazan. The latter compound is then extracted after a fixed
incubation period and by spectrophotometry at 485 nm. Root
activity is expressed as the mass triphenyl formazan produced in
milligrams per gram fresh root per hour.

Statistical Analysis
We used FLASH V1.2.11 software filtering under the condition
of certain filtering of the original data and quality control
in accordance with QIIME V1.9.1 high-quality data. Sequence
length <200 bp, average quality <20 bp or containing a
small number of bases, effectively using the RDP Classifier
algorithm and SILVA database to chimerically detect and
remove, after similarity, >97% of the sequences classified
into the same operating classification unit (OTU) for each
filtered OTU on behalf of the sequence and annotation.
OTUs were used to generate rarefaction curves and Shannon–
Wiener curves. Bacterial Shannon diversity, richness (Sobs),
and evenness (shannoneven) and coverage were calculated
based on the rarefied OTU table at a depth of 60,000
sequences per sample. Principal coordinates analysis (PCoA)
and hierarchical cluster analysis were conducted using the Bray–
Curtis distance matrix. Permutational multivariate analysis of
variance (PERMANOVA) (adonis) and permutational analysis of
multivariate dispersions (PERMDISP) were applied to investigate
the bacterial community differences among treatments and
the homogeneity of replicate dispersions, respectively. The
treatment-shared OTUs and treatment-unique OTUs were
analyzed by retaining the OTUs that consistently appeared in
the four biological replicates for each treatment. The shifts in
the relative abundance of the bacterial families were displayed
by a heat map. The correlation between soil environmental
factors (soil properties and soil enzyme activity) and bacterial
community structure was analyzed by redundancy analysis
(RDA). The Pearson correlation coefficient of the top 20
abundant bacterial families and soil environmental factors is
displayed on the heat map.

Experimental data were organized using Microsoft Excel. The
statistical software SPSS 21.0 was used for one-way analysis of
variance (ANOVA), and the p-value threshold of <0.05 was used
to characterize significant differences between the three groups of
data. All graphics are built using the drawing software GraphPad
Prism 8.01 and the Majorbio platform.

RESULTS

Physicochemical Properties of
Rhizosphere Soils
One-way ANOVA revealed that most of the soil properties were
changed significantly under different treatments except AMg
(Table 1). Soil pH value, EC, AK, AFe, AZn, TNa, TFe, TCu,
and TZn were increased but ACa, ASr, and TMn was decreased
by both RSD and SFC treatments, as compared with CK. In
particular, other indexes significant differences except soil pH
value, AFe, and AZn, and AK, ACa, ASr, TNa, TFe, TCu, and
TZn content showed SFC > RSD, and EC and TMn showed

TABLE 1 | Physicochemical properties and nutrient content of the soil samples
under different treatments.

Soil physicochemical properties and

nutrient content

Parameter 1 pH value EC (µs·cm−1) AK
(mg·g−1)

TK
(mg·g−1)

Treatment CK 5.180 b 47.035 c 0.151 c 20.800 b

SFC 6.110 a 131.775 b 0.179 a 16.193 c

RSD 6.123 a 159.025 a 0.167 b 21.685 a

Parameter 2 ANa
(mg·g−1)

AMg (mg·g−1) ACa
(mg·g−1)

AMn
(mg·g−1)

Treatment CK 0.129 b 0.477 a 1.037 a 0.061 b

SFC 0.136 a 0.482 a 0.969 b 0.084 a

RSD 0.128 b 0.487 a 0.942 c 0.061 b

Parameter 3 AFe
(mg·g−1)

ACu (mg·g−1) AZn
(mg·g−1)

ASr
(mg·g−1)

Treatment CK 0.353 b 0.004 b 0.008 b 0.021 a

SFC 0.407 a 0.004 b 0.010 a 0.019 b

RSD 0.402 a 0.005 a 0.010 a 0.018 c

Parameter 4 TNa
(mg·g−1)

TMg (mg·g−1) TCa
(mg·g−1)

TMn
(mg·g−1)

Treatment CK 3.615 c 1.031 b 0.664 b 0.595 a

SFC 4.315 a 0.356 c 0.412 c 0.477 c

RSD 4.145 b 1.103 a 0.715 a 0.544 b

Parameter 5 TFe
(mg·g−1)

TCu (mg·g−1) TZn
(mg·g−1)

TSr
(mg·g−1)

Treatment CK 14.500 c 0.019 c 0.062 c 0.019 b

SFC 22.155 a 0.020 b 0.092 a 0.009 c

RSD 15.015 b 0.023 a 0.081 b 0.019 a

Data in the table represent three repeated means. There were significant
differences between different letters in different treatments (p < 0.05).

RSD > SFC. Furthermore, RSD and SFC treatments were slightly
different compared with CK treatment. Soil pH value, EC, ANa,
AK, AMn, AZn, TNa, TFe, TCu, and TZn were increased but
ACa, ASr, TMg, TK, TCa, TMn, and TSr were decreased by the
SFC treatment. Soil pH value, EC, AK, ACu, AZn, TNa, TMg,
TK, TCa, TFe, TCu, TZn, and TSr were increased but ACa, ASr,
and TMn were decreased by the RSD treatment.

Enzyme Activities of Rhizosphere Soils
One-way ANOVA revealed that the activities of S-ACP, S-CAT,
and SL were significantly lower than those in the CK treatment,
except S-UE and S-SC, and they were in the order of
CK > RSD > SFC (Table 2). In addition, compared with those in
the RSD, the activities of five soil enzymes changed significantly
in the SFC treatment. In particular, activities of five soil enzymes
in the SFC treatment was significantly lower than those in
the RSD treatment.

Diversity, Composition, and Structure of
Soil Bacterial Community
Bacterial α-Diversity and β-Diversity
A total of 870,064 high-quality 16S rRNA gene sequences were
obtained from 12 soil samples in 3 different treatments (ranging
from 70,712 to 74,932 across different samples) in this study,

Frontiers in Microbiology | www.frontiersin.org 4 December 2021 | Volume 12 | Article 796191

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-796191 December 9, 2021 Time: 15:36 # 5

Zhan et al. Reductive Soil Disinfestation

TABLE 2 | Enzyme activities of the soil samples under different treatments.

Parameter S-UE (U·g−1) S-ACP (nmol·d·g−1) S-SC (U·g−1) S-CAT (µmol·d·g−1) SL (nmol·min·g−1)

CK 3,692.63 b 31,244.57 a 24.46 a 24.79 a 137.95 a

SFC 3,809.80 b 18,222.54 c 12.58 b 17.77 c 93.92 c

RSD 4,739.95 a 26,276.62 b 21.50 a 22.59 b 100.29 b

Data in the table represent three repeated means. There were significant differences between different letters in different treatments (p < 0.05).

FIGURE 1 | Rarefaction curves (A) and Shannon–Wiener curve (B) of the bacterial communities under different treatments.

TABLE 3 | Soil bacterial richness, diversity, evenness, and coverage under different treatments.

Treatment Sobs Shannon Shannoneven Coverage

CK 2,986.8 ± 160.58 a 6.6383 ± 0.10 a 0.82967 ± 0.01 a 0.99032 ± 0.00 b

SFC 1,758.0 ± 74.33 c 5.7475 ± 0.03 c 0.76928 ± 0.00 c 0.99478 ± 0.00 a

RSD 2,751.8 ± 136.39 b 6.4211 ± 0.07 b 0.81082 ± 0.00 b 0.99053 ± 0.00 b

Values (means ± SD, n = 4) within the same column followed by different letters are significantly different at p < 0.05 according to the Fisher least-significant difference
(LSD) post hoc test.

which were obtained from MiSeq sequencing. These sequences
were distributed among 5,401 different OTUs at 97% similarity.
The rarefaction curve showed that the sequencing work was
relatively comprehensive in covering the bacterial diversity, as
the rarefaction curves tended to approach saturation (Figure 1A).
The Shannon curve indicated that the data set from the diversity
analysis was large enough to reflect the bacterial diversity
information of samples (Figure 1B).

To some extent, the RSD treatment significantly (p < 0.05)
decreased the observed bacterial richness (Sobs), Shannon
diversity, and evenness (shannoneven) compared with the CK
treatment (Table 3). In contrast, the RSD treatment significantly
(p < 0.05) increased the bacterial richness, diversity, and
evenness and decreased bacterial coverage compared with the
SFC treatment. The numbers of bacterial OTUs accumulated to
1,870, among the 3 treatments (Figure 2).

Bacterial Community Composition
Soil fumigant chloropicrin and RSD treatments significantly
altered the soil bacterial community composition from

the family to phylum levels, in particular the top 20
bacterial families (Figures 3, 4). Compared to those in
the CK soil, the relative abundances of Comamonadaceae,
Chitinophagaceae, Xanthobacteraceae, Rhodanobacteraceae,
Bacillaceae, Gemmatimonadaceae, Sphingomonadaceae, and
Nocardioidaceae increased significantly in the SFC-treated
soils, whereas the relative abundances of Intrasporangiaceae,
Micrococcaceae, Chthoniobacteraceae, Ktedonobacteracea, and
Gaiellales decreased significantly (p < 0.05). However, the
relative abundances of Sphingomonadaceae, Micrococcaceae, and
Nocardioidaceae increased markedly in the RSD-treated
soil, whereas the relative abundances of Gaiellales and
Xanthobacteraceae decreased significantly (p < 0.05) (Figure 4).

Moreover, SFC and RSD treatments also considerably shaped
the shared and unique bacterial microbiomes (Table 4 and
Figure 5). The number of shared OTUs was 1,870, which
accounted for 34.62% of the total retained OTUs (5,401) and
43.66, 67.75, and 45.28% of the retained OTUs for CK-, SFC-,
and RSD-treated soils, respectively (Table 4). The majority
of the shared OTUs was classified into 46 bacterial families,
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FIGURE 2 | Venn diagram of the bacterial communities under different
treatments.

and the relative abundance of 42 families shifted considerably
(p < 0.05) among treatments (Figure 5A). In particular, the
families Gemmatimonadaceae, Bacillaceae, Comamonadaceae,
Xanthomonadaceae, Rhodanobacteraceae, Chitinophagaceae,
Micropepsaceae, Paenibacillaceae, Caulobacteraceae,
Streptosporangiaceae, Micromonosporaceae, Planococcaceae,
Sporolactobacillaceae, Clostridiaceae, Rhizobiaceae, and
Beijerinckiaceae were significantly enriched in the SFC treatment,
whereas the families Micrococcaceae, Chthoniobacteraceae,
Ktedonobacteraceae, Intrasporangiaceae, Gaiellaceae,
Nitrosomonadaceae, Geodermatophilaceae, Solibacteraceae, and
Solirubrobacteraceae were significantly (p < 0.05) depleted. The
families Sphingomonadaceae, Nocardioidaceae, Micrococcaceae,
Intrasporangiaceae, Geodermatophilaceae, Oxalobacteraceae,
and Solirubrobacteraceae were significantly enriched in
the SFC treatment, whereas the families Bacillaceae and
Xanthobacteraceae were significantly (p < 0.05) depleted.

The number of total treatment-unique OTUs was 1,499 and
occupied 27.75% of the total retained OTUs. The number of
OTUs unique to the CK, SFC, and RSD treatments accounted
for 15.97, 14.75, and 9.88% of the retained OTUs, respectively
(Table 4). Furthermore, the sequences that belonged to the
treatment-unique OTUs were affiliated into 48 bacterial
families, and the CK-, SFC-, and RSD-treated soils harbored
39, 24, and 42 families, respectively (Figure 5B and Table 5),
suggesting that the RSD treatment is capable of reassembling
a more diverse unique microbiome than the SFC treatment.
In particular, the families Methylophilaceae, Nocardioidaceae,
and Dongiaceae were only observed in the SFC-treated soil,
and the norank_o__B12-WMSP1, norank_o__Subgroup_2,

Herpetosiphonaceae, and norank_o__Armatimonadales
were found only in the RSD-treated soil. Furthermore, the
families Alicyclobacillaceae and norank_o__Oligoflexales
were observed only in the SFC- and RSD-treated soils,
whereas BIrii41, norank_o__norank_c__norank_p__WS2,
and norank_o__norank_c__Subgroup_22 were found in the SFC-
and RSD-treated soils. Despite the unique bacterial families
that appeared in the RSD treatment, several different families
were enriched after each of the soil disinfestation treatment. For
instance, the families Gemmatimonadaceae, Paenibacillaceae,
Alicyclobacillaceae, Methylophilaceae, Nocardioidaceae,
and Dongiaceae were enriched in the SFC-treated soil,
while the families Chloroflexaceae, Hungateiclostridiaceae,
Herpetosiphonaceae, Longimicrobiaceae, and Sumerlaeaceae
increased largely in the RSD-treated soil.

Bacterial Community Structure
In the PCoA, the principal coordinates explained 75.78
and 10.79% of the total variation in bacterial communities
(Figure 6A). Bacterial communities in the SFC, RSD, and CK
treatments distinctly clustered into three groups, indicating
that anaerobic treatment and fumigant treatment restructured
the bacterial community in soil. However, the soil bacterial
community structures of the three treatments were well grouped
and separated from each other; the bacterial community
structures of CK and RSD treatments were similar, indicating
that the SFC treatment significantly (PERMANOVA, p < 0.001)
altered the soil bacterial community structure. Similarly,
hierarchical cluster analysis further showed that the CK treatment
had an effect on the soil bacterial community structure similar
to that of the RSD treatment, which together formed a cluster
distinct from that of the SFC treatment (Figure 6B).

Correlation Between Soil
Physicochemical Properties or Enzyme
Activities and Bacterial Community
Composition at the Family Level
Environmental factors were selected by the functions of envfit
(permu = 999) and vif.cca, and the environmental factors with
p > 0.05 or variance inflation factor (VIF) >10 were removed
from the following analysis. The VIF values of EC, AK, ACa,
AFe, ACu, AZn, ASr, TMg, TK, TMn, TFe, TZn, S-CAT, and
SL were higher than 10 and removed (Table 6). The correlation
between soil environmental factors (soil properties and soil
enzyme activity) and bacterial community structure was analyzed
by RDA (Figure 7). For soil bacterial communities, soil S-ACP,
S-SC, TCa, TSr, S-UE, and TCu were positively correlated with
the relative abundances of norank o_ Gaiellales; soil TSr, S-UE,
TCu, AMg, pH, TNa, ANa, and AMn were positively correlated
with the relative abundances of Sphingomonadaceae; soil pH,
TNa, ANa, and AMn were positively correlated with the relative
abundances of Gemmatimonadaceae and Bacillaceae; soil S-ACP,
S-SC, TNa, ANa, and AMn were positively correlated with the
relative abundances of Xanthobacteraceae. However, soil S-ACP
and S-SC were negatively correlated with the relative abundances
of Sphingomonadaceae, Gemmatimonadaceae, and Bacillaceae;
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FIGURE 3 | Relative abundances of dominant bacterial phylum (A) and classes (B) in different treatments. Error bars indicate the standard errors of the means of
four replicates. The letters indicate significant difference at p < 0.05 according to one-way analysis of variance (ANOVA) among treatments.

soil AMn, ANa, TNa, and pH were negatively correlated with the
relative abundances of norank o_ Gaiellales; soil TCa, TSr, S-UE,
TCu, AMg, and pH were negatively correlated with the relative
abundances of Xanthobacteraceae.

Ginseng Root Morphology and Activity
Plant root is an active absorbing organ and synthetic organ; its
growth and activity directly affect the level of plant nutrition and
yield. Compared with CK, SFC, and RSD treatments promoted
root morphology and activity (Figures 9, 10). However, in root
morphology, SFC treatment was significantly better than RSD
treatment, which showed that the ginseng fibrous root was
dense; tuber expansion was normal, and disease spots were
reduced (Figure 9). In root activity, triphenyl formazan content
of RSD treatment was significantly higher than that of SFC

treatment, and triphenyl formazan content was 2.38 times that
of SFC treatment (Figure 10). In general, the root morphology
of ginseng treated with SFC was better, and the root activity of
ginseng treated with RSD was stronger.

DISCUSSION

Reductive Soil Disinfestation and Soil
Fumigant Chloropicrin Altered the
Bacterial Community Structure and
Diversity Differently
Numerous studies have reported that soil microbiomes are
considerably influenced by RSD and SFC (Huang et al., 2016a;
Zhang et al., 2021; Zhu et al., 2021). In this study, we observed
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FIGURE 4 | Heat map displaying the average relative abundance of the top 20 bacterial families for all treatments. The key from blue to red represents the least
abundant to most abundant in each row for a given family. The letters above the treatments indicate significant difference at p < 0.05 among treatments according
to one-way analysis of variance (ANOVA).

that SFC treatment significantly modified the soil bacterial
community structure compared with the CK treatment, which
is consistent with several other studies that showed remarkable
shifts in soil bacterial communities after chemical fumigation
(Yan et al., 2019; Sun et al., 2020). This is likely due to the direct
toxicity of chloro-nitromethane and nitromethane generated
by chloropicrin degradation, which has a broad-spectrum

TABLE 4 | The number of unique OTUs for each treatment and overlapped OTUs
for every pair of treatments per 60,000 sequences.

Treatment CK SFC RSD

CK 684

SFC 180 407

RSD 1,549 303 408

Shared OTUs 1,870 1,870 1,870

Total OTUs 4,283 2,760 4,130

Values in bold italics represent unique OTUs in each treatment, and italics represent
overlapped OTUs between two treatments. Only the OTUs present in four biological
replicates of each treatment were retained for analyses.

biocidal activity against indigenous soil microbes (Wilhelm,
1997; Gan et al., 2000). The destructive influences on original
soil microbial community during chloropicrin fumigation may
prevent the successful recovery of soil bacterial communities
(Fang et al., 2018).

Moreover, the impact of RSD on microbial activity,
community structure, and functional groups such as pathogenic
and beneficial microorganisms has been extensively investigated
in the past two decades (Sun et al., 2016; Ueki et al., 2018).
Previous studies showed distinct differences in bacterial
community structure after incorporation of different organic
substrates (Sun et al., 2016; Zhou et al., 2019). For this study,
bacterial communities treated with SFC and RSD were well
grouped and separated from each other and considerably shaped
the shared and unique bacterial microbiomes. It is possibly
attributed to the differences in the degradability and carbon
composition among the various organic substrates (Liu et al.,
2016; Tan et al., 2019).

The degradability of materials is an inherent property that
may induce profound changes in the composition and structure
of the microbial community (Liu et al., 2016). In SFC and RSD
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FIGURE 5 | Relative abundance of bacterial families (RA > 1%) in the shared OTUs (A) and unique OTUs (B). The * above the taxon in the shared OUT indicates
significant difference at p < 0.05 among treatments according to one-way analysis of variance (ANOVA).

treatments, soil bacterial α-diversity and β-diversity changed
notably. It is assumed that this phenomenon was mainly due to
the degradability of the materials (pure chemicals of chloropicrin
vs. organic residues) used rather than the disinfestation methods
used. It is likely that pure chemicals of chloropicrin are more
easy to decompose, thereby killing all the microorganisms, and
the soil microbial community may not be able to recover or
may need a long time to recover, leading to a considerable
decline in bacterial richness, diversity, and evenness (Zhao et al.,
2018). The results are consistent with those of Zhang et al.
(2021) that is, soil treated with fresh chicken manure not only
improved the respiration rate of soil microorganisms but also
shortened the recovery time of beneficial soil microorganisms

and increased taxonomic diversity. This is possibly because fresh
chicken manure is rich in organic matter and will form dissimilar
soil bacterial microbiomes by stimulating different bacterial taxa
to participate in the decomposition and reductive processes
under anaerobic conditions.

Relationships Between Soil
Environmental Factors and Bacterial
Community
Soil environmental factors play a critical role in bacterial
community; in particular, soil physicochemical properties
and enzyme activities have been found to greatly affect its
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TABLE 5 | Relative abundance of bacterial families in the unique OTUs
in each treatment.

Bacterial families Treatment

CK SFC RSD

Gemmatimonadaceae 1.46 61.07 1.19

Diplorickettsiaceae 6.50 3.32 3.38

Paenibacillaceae 0.13 5.77 3.32

unclassified_k__norank_d__Bacteria 6.96 0.46 1.72

norank_o__Saccharimonadales 1.66 0.07 6.63

LWQ8 0.80 1.72 2.25

Alicyclobacillaceae ND 4.64 0.13

norank_o__C0119 0.46 0.07 3.71

Chloroflexaceae 0.33 ND 3.85

norank_o__0319-6G20 2.19 0.33 1.66

Chitinophagaceae 2.19 1.46 0.27

norank_o__Vicinamibacterales 3.45 ND 0.07

Myxococcaceae 1.59 0.07 1.79

JG30-KF-AS9 0.20 0.46 2.65

norank_o__B12-WMSP1 ND ND 3.12

norank_o__norank_c__JG30-KF-CM66 0.20 ND 2.79

Chthonomonadaceae 1.06 ND 1.86

unclassified_o__Gammaproteobacteria_Incertae_Sedis 2.25 ND 0.53

Methylophilaceae ND 2.72 ND

Roseiflexaceae 1.79 ND 0.86

unclassified_o__Saccharimonadales 0.99 ND 1.53

norank_o__Subgroup_2 ND ND 2.39

BIrii41 2.32 ND ND

Chthoniobacteraceae 1.79 ND 0.40

Nocardioidaceae ND 2.19 ND

unclassified_p__Chloroflexi 0.33 0.40 1.39

norank_o__norank_c__bacteriap25 1.86 ND 0.27

Pedosphaeraceae 1.66 0.20 0.20

norank_o__norank_c__norank_p__Latescibacterota 1.72 ND 0.20

Hungateiclostridiaceae 0.13 0.20 1.53

Herpetosiphonaceae ND ND 1.79

norank_o__Armatimonadales ND ND 1.66

A4b 1.26 ND 0.40

norank_o__DS-100 0.13 ND 1.53

Dongiaceae ND 1.66 ND

[-0.8pt] Longimicrobiaceae 0.13 ND 1.46

norank_o__Elev-1554 0.07 ND 1.46

Microscillaceae 1.39 0.07 0.07

WD2101_soil_group 0.33 0.07 1.13

Sumerlaeaceae 0.27 0.07 1.13

norank_o__Chloroplast 0.07 0.13 1.19

norank_o__norank_c__Parcubacteria 1.19 0.07 0.07

norank_o__norank_c__Lineage_IIa 0.07 ND 1.26

Solimonadaceae 1.06 ND 0.20

norank_o__norank_c__norank_p__WS2 1.26 ND ND

unclassified_o__Oxyphotobacteria_Incertae_Sedis 0.07 ND 1.19

norank_o__Oligoflexales ND 0.07 1.06

norank_o__norank_c__Subgroup_22 1.06 ND ND

others 47.61 12.73 34.75

ND indicates not detected.

bacterial community (Lin et al., 2021; Zhao et al., 2021).
However, soil salinization and acidification are known as
two characteristics of soil degradation in intensive agricultural

systems (Shi et al., 2009); a degraded soil environment always
facilitates the proliferation of soil-borne pathogens (Liu et al.,
2014). In the present study, pH exhibited a significant increase
in SFC- and RSD-treated soil, especially in RSD-treated soil,
compared to that of CK-treated soil, which is consistent with
previous reports (Meng et al., 2019). Likewise, further analysis
showed a positive correlation between soil pH and the relative
abundances of Sphingomonadaceae, Gemmatimonadaceae, and
Bacillaceae and a negative correlation between soil pH and
the relative abundance of Xanthobacteraceae. These results
demonstrated that pH was an important factor in the
transformation of microbial communities by RDA and strongly
related to microbial richness and diversity (Kim et al.,
2016). There are a number of soil characteristics (e.g.,
nutrient availability, cationic metal solubility, and organic C
characteristics) that are often directly or indirectly related to
soil pH, and these factors may drive the observed changes in
community composition (Bissett et al., 2011; Suleiman et al.,
2013). High soil salinity is an important factor leading to soil
salinization that occurs easily, particularly due to the heavy use
of fertilizers (Shi et al., 2009). Previous studies found that, as a
consequence, soil salinity (indicated by EC) markedly decreased
after RSD treatment, which was inconsistent with our results
(Huang et al., 2016b). This dramatic increase was possibly driven
by the decrease of nirK-, nirS-, and nosZ-type denitrifies in soil
with the extension of planting time.

Furthermore, the effects of different treatments on trace
elements in soil and their transformation are not consistent
across different studies. In our study, SFC and RSD treatments
increased the contents of AK, AZn, TNa, TFe, TCu, and
TZn, while decreasing the contents of ACa, ASr, and TMn
compared with CK. Likewise, RDA also showed that TCu
was positively correlated with the relative abundances of
norank o_ Gaiellales and Sphingomonadaceae and negatively
correlated with the relative abundance of Xanthobacteraceae.
The relative abundance of TNa was positively correlated
with Sphingomonadaceae, Gemmatimonadaceae, Bacillaceae,
and Xanthobacteraceae. This change may be caused directly
by chloropicrin and anaerobic degradation of animal
feces or indirectly by nutrient cycling (Zhao et al., 2018;
Zhang et al., 2021). In short, change of soil properties
depends on soil background and type of material used
(Di Gioia et al., 2017).

Soil enzyme is important for organic substrate decomposition
and biogeochemical cycling and is a useful biological indicator
of soil functions (Fioretto et al., 2000; Xu et al., 2010). Soil
enzyme activity is closely related to soil properties and bacterial
community. In our study, the activities of S-ACP, S-CAT, and SL
were significantly lower than those in the CK treatment except
S-UE and S-SC, and they were in the order of CK > RSD > SFC.
Further analysis showed that S-ACP and S-SC were positively
correlated with the relative abundances of norank o_ Gaiellales
and Xanthobacteraceae, and S-UE was positively correlated
with the relative abundance of Sphingomonadaceae. However,
the relative abundances of S-ACP and S-SC were negatively
correlated with Sphingomonadaceae, Gemmatimonadaceae, and
Bacillaceae, and S-UE was negatively correlated with the relative
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FIGURE 6 | Principal coordinates analysis (PCoA) (A) and hierarchical cluster analysis (B) of the bacterial community based on the Bray–Curtis distance in the soil
samples under different treatments.

TABLE 6 | Environmental factor VIF value.

Item Treatment

pH ANa AMg AMn TNa TCa TCu TSr S-UE S-ACP S-SC

VIF 5.74 1.25 4.38 2.16 1.56 2.76 1.09 2.36 1.06 7.14 7.26

abundance of Xanthobacteraceae. This may depend on soil
properties (especially pH and contents of available and total
trace elements) and the specificity of different microorganisms
to soil enzyme activities. Most enzymes in soil are secreted by
soil microorganisms (Ahmed et al., 2018). However, bacteria
that act as activators of some enzymes may act as inhibitors of
others (Park et al., 2021). At the same time, when the abundance
of the same flora is different, it can both activate and inhibit
(Hu et al., 2021).

Therefore, it is still a complex and difficult task to fully clarify
the driving factors and mechanisms of diversity and composition
of the soil bacterial community. Further studies are needed to
link the observed changes in the structure of soil microbial
communities with soil functionality and to determine the core
microbial community that would allow maintenance of at least
some soil ecosystem services.

Furthermore, the top 20 bacterial family clusters could
be divided into 6 subclusters (Figure 8). Subclusters 1 and
2 were positively correlated with S-ACP, S-SC, and TCa,
while being negatively correlated with ANa, AMn, pH, and
TNa. However, Subclusters 4, 5, and 6 were negatively
correlated with S-ACP, S-SC, and TCa, while being positively
correlated with ANa, AMn, pH, and TNa. Subcluster 3 for
Xanthobacteraceae has demonstrated a significant negative
correlation with TCa.

Reductive Soil Disinfestation Practice
Incorporated With Organic Residue
Combination Had Synergetic Effects on
Soil Functionality Restoration and Plant
Growth More Than Soil Fumigant
Chloropicrin
Changes in bacterial community composition mainly depend
on shifts in soil microbial diversity, and bacterial community
composition-driven enhancements of soil nutrient cycles are
typically associated with high levels of microbial diversity
(Chen et al., 2010; Campos et al., 2014). In this study, SFC
and RSD treatments dramatically altered core bacterial
microbiomes and, similarly, the 20 most abundant bacterial
families. Strikingly, we observed that the bacterial families
Comamonadaceae, Chitinophagaceae, Xanthobacteraceae,
Rhodanobacteraceae, Bacillaceae, Gemmatimonadaceae,
Sphingomonadaceae, and Nocardioidaceae were considerably
enriched in the SFC-treated soil. Members of the genus
Bacillus, belonging to the family Bacillaceae, are known
to produce various antibiotics, including lipopeptides and
bacillibactin, that suppress a wide range of soil-borne plant
pathogens (Xu et al., 2002; Li et al., 2014). Numerous studies
have demonstrated that antibacterial substances produced
by Bacillus can control a variety of plant diseases. Some
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FIGURE 7 | Redundancy analysis (RDA) of bacterial communities based on relative abundances at the family level and soil properties in individual samples.

biocontrol strains of Bacillus have been commercialized or
licensed for limited commercial production and application
(Wang et al., 2013). Interestingly, we observed that the
bacterial families Sphingomonadaceae, Micrococcaceae, and
Nocardioidaceae were considerably enriched in the SFC-
treated soil. Sphingomonadaceae is known to be a class of
microorganisms that can degrade PAHs and phenols and
can survive under poor and harsh conditions with good
environmental adaptability and tolerance (Baboshin et al., 2008;
Liu et al., 2018).

In addition, the abundance, diversity, and activity of specific
microbial taxa are also important factors in determining specific
soil functions (Silva et al., 2004). Therefore, manipulation
of the core microbiome for a given soil is a potential
strategy for achieving the desired soil functionalities that could
be beneficial for plant health and productivity (Chaparro
et al., 2012). In this study, the majority of the shared
OTUs was classified into 46 bacterial families, and the
relative abundance of 42 families shifted considerably among
treatments. It is likely due to the fact that the combination
of different organic residues could stimulate a combined
group of microbial taxa, thus resulting in higher microbial

diversities. Meanwhile, Methylophilaceae and Nocardioidaceae
were found only in the unique microbiomes of the SFC-
treated soil, whereas Alicyclobacillaceae was found only in
the unique microbiomes of the RSD-treated soil. Oxygen and
nitrate are important determinants of microbial community
structure. Methylophilaceae is the dominant microbial type
in oxygen-rich culture environments containing nitrate (Beck
et al., 2013; Chistoserdova et al., 2013). Nocardioidaceae and
Alicyclobacillaceae members of these two families are reported
to be linked to decomposition activity (Packard et al., 2019;
Yoon et al., 2021). Previous studies have also found that the
fungal genera Penicillium and Chaetomium, which are important
decomposers, were enriched in the unique microbiomes of RSD-
treated soil (Zhao et al., 2018; Huang et al., 2019). These results
corresponded with our research.

Furthermore, studies have shown that plants change the
composition of the soil community, and this change must then,
in turn, affect the rate of growth of the plant or population
(Bever, 1994). Microbial community is an indicator of soil
health and quality (Schloter et al., 2003; Feng et al., 2019).
A healthy soil will guarantee normal growth of plants. SFC and
RSD are considered to be efficient pre-planting management
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FIGURE 8 | Heat map of the Spearman correlation coefficient between soil environmental factors and abundant bacterial family. Each value represents the mean of
four replicates. The ∗, ∗∗, and ∗∗∗ represent 0.01 < p ≤ 0.05, 0.001 < p ≤ 0.01, and p ≤ 0.001, respectively.

FIGURE 9 | Root morphology of the ginseng under different treatments.

practices to alleviate detrimental soil chemical properties and
control soil-borne diseases. However, whether they can benefit
the growth of crop plants is not yet known. Our results

indicated that CK-treated ginseng root had more disease spots
and lower root activity. However, after the application of SFC
and RSD technology, the growth of ginseng was facilitated,
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FIGURE 10 | Root activity of the ginseng under different treatments. Error
bars indicate the standard errors of the means of three replicates. The letters
indicate significant difference at p < 0.05 according to one-way analysis of
variance (ANOVA) among treatments.

and root performance was improved, which is consistent with
previous studies (Yang et al., 2021), but there are significant
differences between the effects of the two treatments. In
general, the root morphology of ginseng treated with SFC
was better, and the root activity of ginseng treated with RSD
was stronger. Generally speaking, the pathogens that infect the
root of ginseng mostly invade in the case of poor growth of
ginseng or root injury. This may be because the untreated
ginseng root lacks the protection of mechanical tissue and is
prone to infection of pathogens and harm by adverse factors
in the growth process, which is also the main reason for
serious ginseng root disease (Li et al., 2021). However, some
diseases are caused by some harmful substances in the soil.
At the beginning, the damage of these diseases is serious,
but later, the harmful substances are gradually degraded, and
the diseases are also reduced or even disappeared, which is
closely related to the mechanism of RSD technology. A large
number of studies have shown that the interactions among
plant roots, soil bacteria, and soil properties modulate plant
performance by promoting or suppressing soil-borne pathogens,
soil organic matter decomposition, and nutrient circulation
and utilization (Wang et al., 2018; Feng et al., 2019). We
speculate that the altered soil properties and enzyme activity
inevitably affected soil microorganisms, soil animals, and plant
roots. Meanwhile, a change in soil enzymes in turn affects
soil microorganisms, the transformation of soil nutrients,
and root growth.

While SFC has major effects on the soil microbial community,
these effects decrease slowly over time, as reinfestation by
pathogens occurs after host plant cultivation. Therefore, RSD can
be used as a potential agricultural practice for the development
of resistant soils. Although the effect of RSD on agricultural
sustainability is intriguing, more attention needs to be given
to the persistence of RSD effects on soil properties and
host plant growth.

CONCLUSION

We investigated the different responses of soil environmental
factors, soil bacterial community, and root performance to RSD
and SFC. This research provides evidence that both SFC and RSD
treatments could improve soil properties and root performance
via the alteration of bacterial microbiomes. RSD-treated soils,
incorporated with organic residues, harbored distinct bacterial
microbiomes with lower bacterial richness, diversity, and
evenness. In addition, they exhibited higher functional richness
and diversity compared with SFC with chloropicrin-treated soil.
Moreover, RSD alleviated unfavorable soil properties, fostering
more diverse disease-suppressive and organic-decomposable
agents, restructured the bacterial community, and improved root
performance. Thus, RSD is an effective and environmentally
friendly pre-planting management practice to counteract some
of the negative effects of ginseng production on soil. It can be
applied as a potential agricultural practice for the development of
disease-suppressive soil.
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