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Abstract

Introduction/Aims: Diaphragm ultrasound is increasingly used in the diagnosis of

diaphragm dysfunction and to guide respiratory management in patients with neuro-

muscular disorders and those who are critically ill. However, the association between

Abbreviations: AIC, Akaike's information criterion; BMI, body mass index; ICC, Intraclass correlation coefficient; ICU, intensive care unit; NMD, neuromuscular disorder; Tend-exp, diaphragm

thickness at resting end-expiration; Tmax-insp, diaphragm thickness at maximal end-inspiration.
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diaphragm ultrasound variables and demographic factors like age, sex, and body mass

index (BMI) are understudied. Such relationships are important for correct interpreta-

tion of normative values and comparison with selected patients groups. The aim of

this study was to determine the associations between diaphragm ultrasound variables

and subject characteristics.

Methods: B-mode ultrasound was used to image the diaphragm at the zone of appo-

sition in 83 healthy subjects. Diaphragm thickness at resting end-expiration (Tend-exp),

diaphragm thickness at maximal end-inspiration (Tmax-insp), diaphragm thickening ratio

(Tmax-insp/Tend-exp), and diaphragm echogenicity were measured. Multivariate linear

regression was used to explore the associations between diaphragm ultrasound vari-

ables and subject characteristics.

Results: Tend-exp, Tmax-insp, and thickening ratio do not change with age whereas

diaphragm echogenicity increases with age. The thickening ratio had a weak negative

association with BMI, while Tend-exp was positively associated with BMI. Men had a

larger Tend-exp and Tmax-insp than women (Tend-exp 1.6 ± 0.5 and 1.4 ± 0.3 mm;

p = .011, Tmax-insp 3.8 ± 1.0 and 3.2 ± 0.9 mm; p = .004), but similar thickening ratios.

Discussion: Diaphragm thickness, thickening, and echogenicity measured with ultra-

sound are associated with factors such as age, BMI, and sex. Therefore, subject char-

acteristics should be considered when interpreting diaphragm ultrasound

measurements. In the absence of normative values, matched control groups are a

prerequisite for research and in clinical practice.

K E YWORD S

diaphragm, intensive care unit, neuromuscular disorders, normative values, ultrasound

1 | INTRODUCTION

Diaphragm weakness is a common feature in patients with neuromus-

cular disorders (NMDs) and those who are critically ill. In many NMDs,

weakness of the diaphragm leads to dyspnea, sleep disturbances, and

lung infections, and is a major contributor to death.1 In critically ill

patients, mechanical ventilation induces diaphragm injury and atrophy,

leading to ventilator dependency and difficult weaning.2 In both set-

tings, reliable assessment of diaphragm function is to identify early

signs of respiratory insufficiency, monitor disease progression, and

guide individual respiratory management.

Ultrasound is increasingly used as tool to assess diaphragm func-

tion and structure in NMD patients and critically ill patients.3,4 The

costal diaphragm can be visualized at its insertion in the anterior tho-

racic wall, the so-called zone of apposition. The change in thickness

from expiration to inspiration is used to quantify diaphragm func-

tion.3,4 The assessment of the muscle ultrasound gray level, or

echogenicity, reflects structural alterations in muscles due to, for

example, fibrosis and inflammation.5 Echogenicity analysis of skeletal

muscles is a well-known and reliable tool for screening, diagnosing,

and follow-up of NMDs.5,6

Thickness and echogenicity of peripheral muscles are dependent

on subject characteristics such as age, body mass index (BMI), and

sex.7 However, it is unknown if diaphragm thickness and echogenicity

also depend on these characteristics. Such relationships are important

to identify those subject characteristics that should be taken into

account when interpreting diaphragm ultrasound measurements in

clinical practice or research. The aim of this study was to determine

the association of diaphragm thickness and echogenicity with age,

sex, and BMI using a standardized approach.

2 | METHODS

This is a retrospective study of data collected as part of a project to

determine reference limits for clinical practice at the Radboud Univer-

sity Medical Center, Nijmegen, The Netherlands, and was, therefore,

exempt from ethical approval. All subjects provided their informed

consent and procedures were performed in accordance with the ethi-

cal standards as laid down in the declaration of Helsinki. Ultrasound

examinations were carried out by five laboratory technicians, each

with 5–10 y of experience in muscle ultrasound.

Sample size estimation yielded a need for 80 subjects for

regression-based reference limits.8 A decision was made to aim to

enroll 10 healthy subjects, 5 males and 5 females, for each 10 y age

category to ensure a balanced age and sex distribution. Subjects with
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any condition affecting the respiratory or skeletal muscle system were

excluded. Demographic factors including age, sex, and BMI were col-

lected. Subjects were recruited via advertisements on social media.

An Esaote MyLab Twice ultrasound machine (Esaote SpA, Genoa,

Italy) equipped with a 3–13 MHz LA533 linear transducer was used

to assess diaphragm thickness at resting end-expiration (Tend-exp) and

at maximal end-inspiration (Tmax-insp). Measurements were performed

according to previously published methodology (See Supporting Infor-

mation Methods, which are available online).9 Thickening ratio was

calculated as Tmax-insp divided by Tend-exp.

Diaphragm echogenicity values were calculated from the images

used for measurements of Tend-exp. Using custom developed software

in Matlab (R2018a, Mathworks, Natick, MA, USA) and the trace

method, a region-of-interest of diaphragm muscular tissue was manu-

ally selected.10 Echogenicity was calculated as the mean pixel gray-

value of this region-of-interest and averaged over three measurements.

After checking linearity, independency, homoscedasticity, and

normality, a stepwise multivariate linear regression was performed for

echogenicity, thickening ratio, Tend-exp, and Tmax-insp using R soft-

ware.11 A full factorial model was explored with age, sex, and BMI as

covariates and their quadratic terms. To uphold independence

between the covariates and their quadratic terms, age and BMI were

centered. Akaike's information criterion (AIC) was used to determine

the best fit.12 This approach allows covariates to be included in the

final regression model when they have considerable impact on model

fit, even when there is no significant association between the covari-

ate and the dependent variable.

Intraclass correlation coefficients (ICCs) were calculated on the

three repeated measures during one session to assess intra-rater

reliability. ICC values below 0.50 were considered as poor reliability,

0.50–0.75 moderate, 0.76–0.90 good, and 0.91–1.00 excellent.13

3 | RESULTS

83 healthy subjects were recruited, as listed in Table 1. Tmax-insp was

missing in one subject. Four diaphragms, with a Tend-exp <1 mm, were

too thin to permit determination of a reliable region-of-interest, and

were excluded from echogenicity analysis.

Table 2 and Figure 1 present the regression analyses, and the

specifications are presented in the supplement. Group average values

were different between sexes for Tend-expand Tmax-insp. An increase in

age was associated with an increase in echogenicity. Age and age

squared were not associated with thickening ratio, although they were

included in the regression model based on AIC. An increase in BMI

TABLE 1 Subject characteristics and outcomes for different categories

Category Sex (M/F) Age (y) BMI (kg/m2) Echogenicity (0–255) Thickening ratio Tend-exp (mm) Tend-insp (mm)

Age (y): 0–9 7/5 6.2 (2.3) 16.6 (2.8) 56.9 (9.1) 2.4 (0.5) 1.4 (0.4) 3.2 (0.7)

Age (y): 10–19 4/6 16.5 (3.6) 19.0 (2.4) 64.5 (8.9) 2.6 (0.5) 1.3 (0.4) 3.3 (0.6)

Age (y): 20–29 6/6 24.7 (3.1) 21.6 (2.1) 67.2 (7.8) 2.3 (0.6) 1.6 (0.4) 3.5 (1.1)

Age (y): 30–39 5/5 35.3 (2.8) 23.0 (3.0) 69.8 (15.8) 2.5 (0.5) 1.6 (0.5) 3.8 (1.2)

Age (y): 40–49 5/5 45.9 (2.9) 23.7 (2.9) 76.7 (13.6) 2.4 (0.6) 1.5 (0.4) 3.4 (1.1)

Age (y): 50–59 4/5 55.9 (2.3) 24.3 (2.1) 75.3 (14.2) 2.6 (0.5) 1.5 (0.4) 3.8 (0.9)

Age (y): 60–69 5/6 65.4 (3.0) 24.3 (4.3) 81.4 (9.5) 2.4 (0.7) 1.4 (0.4) 3.3 (0.7)

Age (y): 70–80 4/5 74.3 (3.3) 23.0 (1.8) 84.3 (14.8) 2.2 (0.6) 1.8 (0.3) 4.1 (1.4)

Sex: M 40/0 38.2 (23.0) 21.8 (4.0) 70.4 (13.5) 2.5 (0.6) 1.6 (0.5) 3.8 (1.0)

Sex: F 0/43 39.7 (23.2) 21.8 (3.6) 72.3 (15.0) 2.3 (0.5) 1.4 (0.3) 3.2 (0.9)

Age (y): 0–19 9/8 10.9 (6.0) 17.7 (2.8) 60.1 (9.6) 2.5 (0.5) 1.4 (0.4) 3.3 (0.7)

Age (y): 20–80 31/35 49.2 (17.6) 23.3 (2.9) 75.5 (13.5) 2.4 (0.6) 1.6 (0.4) 3.6 (1.1)

Sex: M, age (y): 0–19 9/0 11.2 (5.4) 17.7 (3.2) 60.3 (6.2) 2.6 (0.6) 1.4 (0.5) 3.5 (0.7)

Sex: M, age (y): 20–80 29/0 48.5 (18.1) 23.3 (3.1) 74.2 (13.6) 2.5 (0.6) 1.7 (0.5) 4.0 (1.1)

Sex: F, age (y): 0–19 0/9 10.6 (6.8) 17.7 (2.5) 60.0 (12.2) 2.3 (0.3) 1.3 (0.2) 3.0 (0.6)

Sex: F, age (y): 20–80 0/32 49.8 (17.5) 23.2 (2.8) 76.7 (13.6) 2.3 (0.6) 1.4 (0.3) 3.3 (1.0)

Total 40/43 39.0 (22.9) 21.8 (3.8) 71.4 (14.3) 2.4 (0.6) 1.5 (0.4) 3.5 (1.0)

Note: Data are presented as mean (SD). Total mean values were used to center age and BMI.

TABLE 2 Regression models fitted to echogenicity, thickening ratio,
Tend-exp, and Tmax-insp

Outcome Regression formula

Echogenicity 71:443þ0:390�cAge
Thickening

ratio
2:560�0:056�cBMIþ0:006�cAgeþ0:0003�cAge2

Tend-exp 1:325þ0:041�cBMIþ0:211�Sex Mð Þþ0:0001�cAge2

Tmax-insp 3:237þ0:049�cBMIþ0:613�Sex Mð Þ

Note: cAge: centered age, calculated by subtracting 39.0 from age in years.

cBMI: centered BMI, calculated by subtracting 21.8 from BMI in kg/m2.

cAge2: centered age squared.
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was associated with an increase in thickening ratio and a decrease in

Tend-exp.

Intra-observer reliability of the three echogenicity measurements,

Tend-expand Tmax-insp were all excellent, with ICCs of 0.93 (0.89–0.96),

0.92 (0.89–0.94), and 0.93 (0.91–0.95), respectively.

4 | DISCUSSION

In healthy subject across a wide age range, we found that diaphragm

thickness and thickening do not change with age, whereas diaphragm

echogenicity increases with age. Sex and BMI have small effects on

diaphragm thickness, but not on diaphragm thickening.

Diaphragm thickness and thickening ratio values presented in this

study are comparable to previously reported values.14–18 Interestingly,

Boon and colleagues, using an apparently similar approach reported a

Tend-exp of 3.3 mm compared to 1.6 mm in our adult population.9 Note

that BMI in our adult population was considerably lower (23.3

vs. 27.2 kg/m2). Although we and others9,19 found an association

between BMI and diaphragm thickness, this cannot fully explain the

relatively large difference. Small differences in methodology may also

contribute to differences in thickness. The variability in reported

values for diaphragm thickness highlights the importance of collecting

center-specific normative values. The larger variation in Tmax-insp com-

pared to Tend-exp is in accordance with other reports.20 This may be

attributed to variation in subjects’ performance of the maneuver to

take a deep breath and affects the level of diaphragm recruitment and

the anatomical position of the diaphragm relative to the ultrasound

probe.

Our study shows that diaphragm thickness is constant over a

wide age range. This differs from skeletal limb muscles that generally

increase in thickness until 30–40 y, after which muscle thickness

decreases (sarcopenia).7 Apparently, changes in respiratory demand

with aging, for example due to decreased respiratory compliance, do

not seem to be accompanied by changes in diaphragm muscle mass

but other mechanisms, like changes in motor control.21

In agreement with previous studies, diaphragm thickness was larger

in men than women.9,15,20 The calculation of thickening ratio cancels

out sex differences. We also identified BMI as significant predictor of

Tend-exp and thickening ratio, but the size of this effect was small. The

F IGURE 1 Graphical representation of fitted regression models. Each dot represent the measurement of a single subject, the line represents
predicted values for each subject, where BMI was set fixed at the adult group mean of 23.3 kg/m2, and the shaded area represents the 95%
prediction interval. A, Diaphragm echogenicity. B, Diaphragm thickening ratio. C, End-expiratory diaphragm thickness. D, End-inspiratory
diaphragm thickness
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latter may result from the narrow range of BMI in our adult popula-

tion (23.3 ± 2.9 kg/m2). It has been shown that outside this range

BMI has larger effects on diaphragm thickness and thickening ratio.19

Overall, little variance in thickening ratio was explained by our regres-

sion model. Thus, the lower limit of normal (5th percentile) of our

healthy population, ie, 1.6, can be used as cut off value for a normal

diaphragm thickening ratio regardless of the subjects’ age, sex, and

BMI.22

The absence of changes in diaphragm thickening with age is in appar-

ent contrast to age-related changes in pulmonary function and respiratory

muscle strength.23,24 Furthermore, diaphragm function, as assessed with

transdiaphragmatic pressure, is only weakly correlated with diaphragm

thickening.25 Therefore, the relationship between the pressure generating

capacity of the diaphragm and diaphragm thickening warrants further

research. This may be better reflected by other ultrasound modes such as

strain imaging or shear wave elastography.26,27

Different ultrasound devices produce different grayscale

images, meaning that our diaphragm echogenicity values cannot be

used with different ultrasound devices.5,28 However, the observed

association with age is expected to exist with values obtained from a

different machine, as sarcopenia is an inherent property of aging

muscle.7 Normative values should be collected for each different

ultrasound device, and age-matched controls should be included

when normative values are unavailable. For example, a recent study

on diaphragm echogenicity compared mechanically ventilated

patients, median age 59 y, with healthy controls, median age 27 y.29

Our data imply that such a comparison is likely not valid. Further-

more, multiple ultrasound devices were used, complicating compari-

son of echogenicity values.

This study has limitations. First, the range in BMI was narrow.

This impairs the interpretation of diaphragm ultrasound data of a

patient outside this range. Second, normative data as presented in this

study may have low generalizability to other centers. However, the

associations with age, sex, and BMI are independent of measurement

technique and device settings.

5 | CONCLUSIONS

The associations between diaphragm thickness, thickening, and

echogenicity and age, BMI, and sex highlight the importance of taking

subject characteristics into account when interpreting diaphragm

ultrasound measurements in clinical practice and research.
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Abstract

Introduction/Aims: Posterior antebrachial cutaneous (PABC) nerve conduction stud-

ies could be useful for distinguishing PABC neuropathy from C7 radiculopathy. In the

conventional method using an antidromic method, the sensory nerve action potential

(SNAP) is sometimes followed by a large volume-conducted motor potential. In this

report we describe a reliable nerve conduction study using an orthodromic method

for recording SNAPs of the PABC nerve.

Methods: Thirty-six healthy volunteers participated in this study. PABC SNAPs

were recorded by placing a surface-active electrode 2 cm anterior to the lateral

epicondyle. The PABC nerve was stimulated 10 cm distal to the active recording

Abbreviations: CV, coefficient of variation; NCS, nerve conduction study; PABC, posterior antebrachial cutaneous; SCV, sensory nerve conduction velocity; SNAP, sensory nerve action potential.
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