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MRA‑free intracranial vessel 
localization on MR vessel wall 
images
Weijia Fan1, Yudi Sang2, Hanyue Zhou2, Jiayu Xiao3, Zhaoyang Fan3,4,5 & Dan Ruan2,6*

Analysis of vessel morphology is important in assessing intracranial atherosclerosis disease (ICAD). 
Recently, magnetic resonance (MR) vessel wall imaging (VWI) has been introduced to image ICAD and 
characterize morphology for atherosclerotic lesions. In order to automatically perform quantitative 
analysis on VWI data, MR angiography (MRA) acquired in the same imaging session is typically used 
to localize the vessel segments of interest. However, MRA may be unavailable caused by the lack 
or failure of the sequence in a VWI protocol. This study aims to investigate the feasibility to infer 
the vessel location directly from VWI. We propose to synergize an atlas‑based method to preserve 
general vessel structure topology with a deep learning network in the motion field domain to correct 
the residual geometric error. Performance is quantified by examining the agreement between the 
extracted vessel structures from the pair‑acquired and alignment‑corrected angiogram, and the 
estimated output using a cross‑validation scheme. Our proposed pipeline yields clinically feasible 
performance in localizing intracranial vessels, demonstrating the promise of performing vessel 
morphology analysis using VWI alone.

Intracranial atherosclerosis disease (ICAD) is a common cause of ischemic stroke in the United States and 
 worldwide1,2. Luminal imaging approaches, such as computed tomographic angiography (CTA) and magnetic 
resonance angiography (MRA), are routinely used for the diagnosis of ICAD by detecting arterial lumen steno-
sis and evaluating stenotic severity. However, high-risk atherosclerotic lesions may present with a large plaque 
burden in the vessel wall in the absence of severe luminal  stenosis3.

MR vessel wall imaging (VWI) is a non-invasive approach to directly image the vessel wall of large intracranial 
arteries. It has been shown to be useful in characterizing ICAD lesions by providing qualitative or quantitative 
morphological  measurements4–6. There are recent efforts to automate VWI analysis for improved efficiency and 
 consistency7. MRA that is acquired in the same imaging session is typically used to localize the vessel segments of 
interest. However, there is a chance of the MRA sequence missing due to scan failure or significant displacement 
between the VWI. Another disadvantage of using the time-of-flight (TOF) MRA is the prolonged acquisition 
 time8. Therefore, it would be highly desirable if pre-contrast VWI could be used alone without MRA, to reduce 
complexity and time cost.

This study addresses this challenging need for the first time and investigates the feasibility of localizing intrac-
ranial blood vessels using VWI directly. Figure 1 illustrates the envisioned modification to the current workflow.

Method
Initial investigation, identification of bottleneck, and overall design rationale. The most direct 
approach to label vessels is by segmentation. Typical segmentation methods include thresholding, clustering, 
edge-based  detection9,10, or deep learning methods using fully convolutional network (FCN), U-Net, and Seg-
Net, etc.11–14.

An alternative is to mimic clinical workflow by synthesizing an intermediate MRA-like image, hoping that 
this synthesis would alleviate the segmentation challenge. Synthesis has been used to either transfer information 
across subcategories within the same general modality, such as different dose levels for  PET15 or  CT16,17, different 
beam geometry in CT vs  CBCT18, different field in  MRI19, or across different imaging modalities amongst CT, 
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MR, and  PET20–22. Synthesis can be performed either with direct  modeling23 or data-driven learning using Con-
volutional Neural Networks (CNN)24, with variations including U-Net25,26, or various adversarial  logics15,19,27,28.

A less popular approach nowadays is the atlas-based approach, where the new test input is registered to a set of 
atlases with known labels, and the atlas labels are populated to the test coordinate, with possible  fusion29, to create 
the test label estimate. Major factors affecting the efficacy of atlas-based approaches include atlas  selection30–32, 
registration approach and  setup33, and fusion  scheme33,34. The central registration process is often performed in 
an optimization setting, where the deformation vector field (DVF) is sought to maximize an alignment metric. 
Multi-resolution or hierarchical schemes are commonly used to enhance the robustness to local  optimality35. 
Recently, deep networks have been developed to perform registration in either  supervised36,37 or unsupervised 
 fashions38–40. Scale adaptation, auxiliary structure labels, and sophisticated priors have been adopted to further 
improve registration  performance41–44.

Atlas-based approach has the benefit of being more interpretable and may be better controlled by imposing 
complexity conditions on the registration modules. Furthermore, adopting a general atlas-based paradigm does 
not necessarily exclude the use of certain deep learning techniques, as we will demonstrate with our design in 
this study.

Figure 2 shows examples of preliminary test results using typical Otsu’s thresholding, U-Net, and GAN for 
vessel synthesis and segmentation. It can be observed that the lack of consistent contrast between the black 
blood vessels and the surrounding tissues, the ambiguity in interpreting low intensity values, and the strong 
appearance heterogeneity and inconsistency across different scans had virtually rendered these results useless. 
Even if certain vessel segments were rendered correctly, it is hard to interpret them confidently without any 
larger-scale vessel structure context. While it is possible that a more advanced acquisition in combination with 
investigational post-processing may render VWI of higher quality and consistency in order to work with direct 
synthesis  methods26, it is important to avail the large community with a working approach compatible with the 
typical, less-demanding, and clinically-accessible scanning protocol.

Therefore, we propose to develop the vessel localization with a registration core in an atlas-based setting, so 
that the vasculature system integrity is implicitly “imposed” by that of the atlas, in combination with a controlled 
DVF estimate, as shown in Fig. 3. In particular, we propose a two-stage sequential pipeline: stage one performs 

Figure 1.  Schema for proposed modification and its impact on the current workflow for vessel wall imaging. 
Typical workflow for quantitative plaque assessment (a) acquires both VWI and MRA in the same session, (b) 
extracts and locates vessel segments of interest, and (c) identifies the corresponding region in VWI, performs 
detailed lumen, vessel wall segmentation to quantify plaque burden, and identifies the most stenotic slice. This 
study investigates the feasibility to rid the MRA module in this procedure.

Figure 2.  Challenges with vessel identification and failure of common direct segmentation or synthesis 
approaches. (a) VWI has low contrast and heterogenous signal strength, challenging vessel segmentation; (b) 
the Otsu algorithm fails to differentiate vessels from rest of the brain; the MRA-like image synthesized by (c) 
U-Net and (d) GAN all result in fragmented and inconsistent vessel segmentation.
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a coarse registration with a low degree of freedom to both set up the general correspondence and identify the 
most relevant atlases; and stage two performs DVF refinement to correct for residual registration error. Stage 
one uses a model-driven approach for complexity control and regularization, and stage two uses a customized 
deep learning network where the magnitude of the adjustment is controlled. We purposely use two different 
approaches (model-driven vs data-driven) in these two stages, so that errors may be considered as approximately 
uncorrelated, allowing us to train the stage two network and perform the corresponding inference without con-
cerns for confounding behaviors from stage one. Finally, the post-correction DVF is applied to the vessel tree 
extracted from atlas MRA to localize the vessel structure for the target test case.

Stage one: model‑based low‑complexity registration and adaptive atlas selection. For the 
test subject with VWI, affine registration is performed between the test VWI and the VWI of all atlas cases, 
and the post-rigid adjustment similarity is assessed. For each given target subject, a subset of the top matching 
atlases with high mutual information to the target VWI, and low degree-of-freedom B-spline-based deform-
able registration is performed between each atlas in this subset and the target test VWI. In this way, the atlases 
are customized to each subject: if the input is a normal subject, it is highly possible that the selected atlases are 
also normal; on the other hand, if the subject exhibits occlusion, then chances are that the relevant atlases have 
occlusion presence. The initial rigid transformation and the subsequent B-spline parameterized deformation are 
combined to generate a DVF for each of the selected atlas and take its aligned VWI and MRA simultaneously to 
the test subject coordinate.

Stage two: deep learning‑based refinement for DVF residual correction. A supervised deep 
learning neural network is designed for correcting the residuals in DVF from the low complexity deformable 
registration in stage one. During training, the target MRA is known, and we generate the “ground truth” DVF by 
performing an intensity-based deformable registration between the atlas MRA and the target MRA. While we 
realize the limited quality of this vector field estimate, vessel boundaries coincide with high local MRA contrast, 
where high accuracy is expected from the deformable registration. Therefore, such DVF suffices for the purpose 
of warping the atlas vessels to estimate the target one. In particular, the high blood contrast in angiograms auto-
matically focuses non-rigid registration matching effort to vessel neighborhoods. We develop and investigate 
two different correction network models—the DVF2∆DVF and IM2∆DVF model—they share a common net-
work structure with different specific configurations.

Common network scheme. Both DVF2∆DVF and IM2∆DVF models use a common network structure consist-
ing of a 3D U-Net  backbone25,45 with residual  blocks46,47 and an attention  pathway48. The soft attention mecha-
nism is employed to encourage the network to focus on local regions with greater errors. We modify the atten-
tion gate in the U-Net so that in addition to the inherited information from the corresponding layer in the 
decoding pathway, an auxiliary attention path is introduced, as shown in Fig. 4. The input from the auxiliary 
attention pathway is gradually down-sampled, alongside the encoding pathway in the U-Net backbone. In the 

Figure 3.  Design rationale. The two-stage pipeline consists of using conventional B-spline model for coarse 
registration and a deep-learning based refinement network for correcting registration error. Stage 1 is based 
on classic well-controlled registration, while stage 2 utilizes a deep network for registration refinement to map 
VWI-derived DVF to MRA-derived DVF. Red frames in the schema indicates modules only available and used 
during training.
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modified ResUnet, in each encoding unit, two 3D convolution layers of kernel size 3 are followed by one max-
pooling layer to down-sample the volume by a scale of 2. The number of filters starts at 16 in the first layer and 
doubles in each subsequent encoding unit. In each decoding unit, an upconvolution layer of kernel size 2 is fol-
lowed by two convolution layers of kernel size 3. The skip connections are used both within blocks and between 
encoding–decoding pathways. Within each block, the input before the first convolution layer is added voxel-
wise to the output of the second convolution layer. The output of each encoding unit, after passing through the 
attention gate with the attention information, is concatenated to the corresponding unit in decoding pathway. 
One 1 × 1 × 1 convolution layer is used at last to recover the three-channel result. ReLU activation is used in each 
convolution layer except the last one.

Parallelogram masks from the stage one affine transformation indicating the region of interest (ROI) in 
angiograms are provided to the network from additional input channels. The mean-squared discrepancy between 
the predicted DVF residual and ground truth residual in the masked region is used as the training objective.

Two different DVF refinement structures. Figure 5 illustrates the two different DVF refinement structures both 
utilizing the common attention-enhanced network structure shown in Fig. 4. Figure 5a shows the DVF2∆DVF 
pipeline where the initial DVF from deformable registration is taken as the U-Net input, and the residual between 
original DVF and ground truth DVF is the output. The target VWI, and intensity difference between the target 
VWI and the atlas VWI warped by initial DVF are used as the input to the attention pathway. The IM2∆DVF 
network in Fig. 5b uses the stacked target and atlas VWI as the input, and the residual between original DVF and 
ground truth DVF as the output. The original DVF, along with the intensity difference between the target VWI 
and the atlas VWI warped by initial DVF, is input into the attention pathway.

Hybrid atlas integration for individual segments. Using a single deformed atlas is susceptible to esti-
mation artifact from inter-subject anatomical variation and registration uncertainty, and it is desirable to inte-
grate the inferred vessel structure from multiple atlases. However, it is nontrivial to perform fusion on a whole 
vessel tree without sacrificing anatomical geometry. In clinical tasks, it is typical that a local fragment is of inter-
est, and it could be beneficial to choose an atlas based on the ROI. For each segment candidate specified by the 
clinician, local normalized cross-correlation is evaluated between the target VWI and each warped atlas, and the 
one corresponding to the highest correlation is used to render the local fragment estimate.

Figure 4.  Common network scheme. (a) Common network structure for estimating the residual DVF using 
U-Net backbone with residual blocks and an auxiliary attention path. (b) The schema for attention gate at each 
block, with h representing gate signal from encoding pathway, g representing gate signal from auxiliary attention 
path, and x representing the layer at decoding pathway. The resulted x̂ will be concatenated to the decoding 
pathway.
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Data description and experiment details
Dataset. Under Cedar-Sinai Institutional Review Board approval #Pro00055925, a retrospective deidenti-
fied dataset containing VWI and MRA images from 30 subjects was used in this study. The need for informed 
consent was waived, and all methods were carried out in accordance with relevant guidelines and regulations. 
The images had been acquired on a 3.0  T MRI scanner (MAGNETOM Prisma, Siemens Healthineers, Ger-
many) with a 64-channel head-neck coil. The imaging protocol consisted of 3D time-of-flight (TOF) MRA and 
pre-contrast MR-VWI. Imaging parameters for MR-VWI were as follows: repetition time, 900 ms; echo time, 
15 ms; field of view, 170 × 210 mm2; 240 slices; voxel size, isotropic 0.55 mm; scan time, 8 min. An experienced 
clinician identified segments for possible plaque presentations in the basilar artery (BA), left or right vertebral 
artery (LVA/RVA), left or right middle cerebral artery (LMCA/RMCA), and left or right internal carotid artery 
(LICA/RICA).

Experimental details. All registration other than the refinement was performed using the SimpleITK 
 toolkit49. 3D rigid registration was first performed between paired (MRA, VWI) volumes to transform MRA to 
the VWI coordinate. Offset parameters were initialized to zero and mutual information was maximized with a 
multi-resolution scheme. Three-layer B-spline models with control points every 12 pixels were applied to per-
form the nonrigid registration.

For deep network based refinement, the image volume for each patient was acquired with 240 × 384 × 318 
voxels. In order to save computational memory, the outer regions of the images without major vessels were 
excluded from the training dataset and the volumes were down-sampled. Each image volume was first cropped 
to 192 × 384 × 320 voxels and then rescaled to 48 × 96 × 80 voxels.

Vessel extraction was performed using a tubular filter based on local  Hessian50. The input MRA images were 
first resampled to a higher resolution and manual seed points were provided at the interior of a vessel. The mini-
mum roundness of the tube’s cross-section was set to 0.2 to reflect reasonable circular symmetry in most vessels. 
The scale for tube radius was estimated recursively by starting from a large candidate value of 1.5 mm until a 
tubular vessel was found. The vessel was incrementally grown, whereupon extraction of a tubular segment, its 
endpoints were added to the sets of seed points for the next iteration. A few rounds of scanning were repeated 
to capture finer tertiary branching.

Six-fold cross-validation has been performed on the acquired datasets. With 30 subjects in total and three 
atlases for each subject, 25 subjects were used for training and 5 subjects were used for testing each time. With 
the use of a Unet infrastructure to be context-conscious and given the spatially varying anatomy of intracranial 
vessel tree topology, we took a conservative option and did not perform any transformation-based augmenta-
tion. A GAN-type augmentation has the potential to be useful and we will investigate its role in future work.

Performance evaluation. The accordance of vessels localized from VWI to the vessels extracted from 
corresponding ground-truth angiograms was assessed using one-direction Hausdorff Distance  (HD). Given 
two point sets GT = {x1, x2, x3, . . . , xn} and PRED =

{

y1, y2, . . . , yn
}

 , representing the point sets for ground 
truth vessel structures and estimated vessel structures respectively, the one-direction Hausdorff Distance 
H(GT , PRED) is defined as:

and percentile HD is the percentile of the distribution for min
y∈PRED
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Figure 5.  Two DVF refinement structures. (a) DVF2∆DVF with DVF input and images to drive attention; (b) 
Im2∆DVF with image input and DVF as well as residual error from stage 1 to drive attention.
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plaque or abnormal morphology were identified by an experienced clinician. Percentile HD metrics were also 
assessed on each of the four segments for local evaluation.

A clinical validation test was also performed on the estimated vessels. In the clinical pipeline in Fig. 1, the 
estimated vessels are intended to track the vessel centerline to render cross-sectional views that will be used as 
input for segmentation. Therefore, the deviation between the centerline of estimated vessel tubes and that of 
the ground truth vessel tubes should be small enough for automatic cross-section generation and a maximal 
tolerance of 10 mm is a reasonable threshold. We assessed the odds of successfully accomplishing this task for 
each segment.

Results
Root-mean-squared-error (RMSE) and mean-absolute-error (MAE) are defined in the following equations for 
each image volume of dimension n1 × n2 × n3 , and were used to evaluate the result of six-fold cross-validation, 
in the unit mm.

where dxi1 , dy
i
1 , dz

i
1 are the predicted ∆DVF residual in x, y, z direction for voxel i  , while dxi2 , dy

i
2 , dz

i
2 are the 

corresponding ground truth ∆DVF.
Cross-validation shows that registration performance in RMSE and MAE (both in mm) are 6.15 ± 3.35 and 

3.86 ± 2.05 before any refinement, and they reduce to 5.70 ± 2.57 and 4.37 ± 1.68 using the DVF2∆DVF refine-
ment network, and to 5.05 ± 2.58 and 3.62 ± 1.63 using the IM2∆DVF refinement network. Two-sample t-tests 
have been performed of the results before any refinement network both with that after DVF2∆DVF refinement 
network and with that after IM2∆DVF refinement network. The resulted p-values are 0.31 and 0.01 on RMSEs, 
and are 0.07 and 0.39 on MAEs.

Table 1 shows the distribution of 80% HD, 90% HD, and 100% HD over the whole vessel structure for all 
deformed atlas vessels after registration only, after Im2∆DVF network, and after DVF2∆DVF network. The dif-
ference between the performance of these two models is very minimal.

Figure 6 shows the distribution of 80% HD, 90% HD, and 100% HD for the results from the top atlas and the 
results from atlas integration. The blue bars in each graph are the distribution of the metric after a refinement 
network (IM2∆DVF or DVF2∆DVF), while orange bars indicate the distribution of the same metric after that 
refinement network + atlas integration. Comparing the blue and orange bars in each subplot, we observe that 
with atlas integration, the distribution of the metric has a smaller mean value, indicating that atlas integration 
would result in better accuracy of estimating vessel segments.

The percentages of valid segments upon clinical tests after no refinement network, using DVF2∆DVF 
for correction, using DVF2∆DVF + atlas integration method, using IM2∆DVF for correction, and using 
IM2∆DVF + atlas integration method are 75.8 ± 7.4%, 79.2 ± 5.8%, 86.7 ± 7.5%, 77.5 ± 8.8%, and 84.2 ± 9.7%, 
respectively. Two-sample t-tests have been performed between the result from no refinement network and the 
result after each other method, and the resulted p-values are 0.41, 0.03, 0.73, and 0.13.

Figure 7 shows an illustrating example case where taking segments from different atlas sources clearly improve 
local segment identification accuracy. The estimated vessel structure has universally less than 5 mm deviation 
from the ground truth on all segments, successfully differentiating the target vessel fragment from any adjacent 
vessel structure, supporting subsequent proper rendering of cross-sectional views for further quantitative analysis 
of plaque characteristics.

RMSE =

√

√

√

√

∑

i

(

(

dxi1 − dxi2
)2

+
(

dyi1 − dyi2
)2

+
(

dzi1 − dzi2
)2
)

n1 × n2 × n3

MAE =

∑

i

√

(

dxi1 − dxi2
)2

+
(

dyi1 − dyi2
)2

+
(

dzi1 − dzi2
)2

n1 × n2 × n3
,

Table 1.  Distribution of 80% HD, 90% HD, and 100% HD evaluated between the whole estimated vessel 
structure and ground truth vessel structure. (unit: mm).

Metric 80% HD 90% HD 100% HD

Model Reg Only DVF2∆DVF Im2∆DVF Reg Only DVF2∆DVF Im2∆DVF Reg Only DVF2∆DVF Im2∆DVF

mean 6.15 6.16 6.34 11.90 11.20 11.48 33.53 32.82 30.00

std 3.58 3.03 2.84 5.95 5.41 5.43 9.02 8.39 8.38

min 1.73 2.54 3.19 3.54 4.67 4.41 13.90 18.80 19.94

25% 3.84 4.42 4.99 7.43 7.36 7.62 27.36 25.82 27.32

50% 4.95 5.36 5.55 10.33 11.04 10.94 33.59 31.53 32.37

75% 7.36 6.56 7.15 14.63 13.13 13.80 40.02 39.09 38.13

max 18.44 17.17 18.41 29.58 28.21 29.85 60.83 51.00 51.11
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Discussions and conclusions
Registration errors in both RMSE and MAE have been reduced by both refinement networks. In particular, 
IM2∆DVF refinement network has reduced RMSE by 1 mm, with statistical significance. Examining 80%, 90% 
and 100% HD metrics alone reveal only moderate improvement by introducing the refinement network. However, 
when considering the performance in the clinical context of valid vessel localization and detection, DVF2∆DVF 
network with a simple atlas integration has increased the success rate from 76 to 87%, with statistical significance. 

Figure 6.  Vessel estimation accuracy when using a segmentation. The distribution of 80% HD, 90%HD, and 
100% HD between the estimated vessel structure and the ground truth vessel structure before and after the 
DVF2∆DVF (a-c) or IM2∆DVF (d-f) refinement network. The distribution of 80% HD values for using no 
refinement network, using DVF2∆DVF, using DVF2∆DVF + atlas integration, using IM2∆DVF, and using 
IM2∆DVF + atlas integration are 2.92 ± 2.68, 3.33 ± 2.60, 3.67 ± 2.55, 289 ± 2.30, 3.50 ± 2.54, respectively. 
The distribution of 90% HD evaluated for these methods are 3.51 ± 2.87, 3.94 ± 2.76, 4.30 ± 2.69, 3.48 ± 2.40, 
and 4.14 ± 2.75, respectively. And the distribution of 100% HD evaluated for these methods are 5.12 ± 3.82, 
5.54 ± 3.73, 5.98 ± 3.80, 5.10 ± 3.38, 5.83 ± 3.84, respectively.

Figure 7.  An example case illustrating atlas integration. The target vessel structure (white), with four clinically 
significant vessel segments (red), is overlapped with top three estimated vessel structures from atlas (green). The 
yellow circles highlight the chosen segment estimate(s) from each atlas. In this specific example, (a) the right 
middle cerebral artery (RMCA) was obtained from atlas 1, (b) the right vertebral artery (RVA) was obtained 
from atlas 2, and (c) the right internal carotid artery (RICA) and basilar artery (BA) were obtained from atlas 
3. (d) The resulted vessel information has smaller than 5 mm deviation from the ground truth vessel on all 
segments.
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This shows that while RMSE and MAE for ∆DVF, and Hausdorff distances for set accordance are reasonable 
surrogates, our proposed methods may behave differently from the intended clinical endpoint.

While it is possible that a more advanced acquisition in combination with investigational post-processing 
may render VWI of higher quality and consistency to work with direct synthesis  methods26 that overcomes the 
observed limitations, the method developed in this work is compatible with common, less-demanding, and 
clinically-accessible scanning protocol.

Our results, though still have room for improvements, have shown a first breakthrough to generate mor-
phologically robust and clinically usable vessel identification. It provides a coarse-level localization to generate 
attention to the segment of interest and feeds it into the subsequent plaque quantification analysis. It serves the 
purpose of rough identification and exclusion of disruptive textures such as excessive bifurcations or adjacent 
vessels. The achieved sub-cm accuracy suffices those purposes. Typical subsequent vessel segmentation develop-
ment usually involves augmentation methods that mitigate strict requirements on precise centerline identification 
or  tracing51–53.

In short, the proposed combination of atlas-based framework manages to regulate vessel topology while pre-
serving the target’s specific appearance, and the deep correction network on the DVF domain further accounts for 
DVFs heterogeneity and focal vessel performance for each target case. Although there are remaining geometric 
residuals in precise labeling of intracranial vessel voxels, the proposed approach achieves promising results for 
vessel localization to support cross-sectional rendering for further plaque quantification. We are actively working 
on integrating the current module into an analytical pipeline to perform end-to-end analysis, and conducting 
ablation studies and statistical analysis in a multi-institutional validation  setting51,54.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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