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Despite significant understanding of the genetic mutations involved in ovarian epithelial
cancer and advances in genomic approaches for expression and mutation profiling of tumor
tissues, several key questions in ovarian cancer biology remain enigmatic: the mecha-
nism for the well-established impact of reproductive factors on ovarian cancer risk remains
obscure; cell of origin of ovarian cancer continue to be debated; and the precursor lesion,
sequence, or events in progression remain to be defined. Suitable mouse models should
complement the analysis of human tumor tissues and may provide clues to these ques-
tions currently perplexing ovarian cancer biology. A potentially useful model is the germ
cell-deficient Wv (white spotting variant) mutant mouse line, which may be used to study
the impact of menopausal physiology on the increased risk of ovarian cancer.The Wv mice
harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about
1–5% (it is not a null mutation). Homozygous Wv mutant females have a reduced ovarian
germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproduc-
tive maturity, but other biological phenotypes are minimal and the mice have a normal life
span. The loss of ovarian function precipitates changes in hormonal and metabolic activity
that model features of menopause in humans. As a consequence of follicle depletion, the
Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to
surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongo-
ing work will test the possibility of converting the benign epithelial tubular adenomas into
neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the
genotype and biology of serous ovarian cancer. Model based on the Wv mice may have
the potential to gain biological and etiological insights into ovarian cancer development and
prevention.

Keywords: ovarian cancer, epithelium, menopause, mouse models, ovarian follicles, pre-malignant lesions,Tp53

INTRODUCTION
Most ovarian cancers are epithelial-derived, and of the four major
histological subtypes, serous ovarian cancer accounts for approx-
imately 70% of the tumors (1–4). Serous ovarian carcinomas
usually present as high-grade, with limited therapy options (5–
7). Standard treatment regimens involve surgery to remove all
visible disease, followed by a combination of taxane and platinum-
based chemotherapy. Most patients who respond to first line
chemotherapy will eventually relapse and die from drug-resistant
disease. Despite intensive research and improvements in surgery
and chemotherapy, the 5-year survival rate for ovarian cancer
patients has languished around 30% for the past 30 years (5–
7). This dismal survival rate attests to the urgency for a clear,
more accurate understanding of basic ovarian cancer biology and
etiology.

In the last several decades, great effort has been devoted to
understanding ovarian cancer and the research has yielded signif-
icant knowledge and information about the biology and genetics
of the disease (1–4). BRCA1 and BRCA2 mutations are asso-
ciated with hereditary breast and ovarian cancers (1–4), which

account for only a small fraction (estimated to be around 5–10%)
of ovarian cancer cases. Recently, the Cancer Genome Atlas Project
has provided a molecular profile of serous cancers (8): the tumor
suppressor Tp53 is frequently mutated, but no other somatic
mutation is consistently or frequently found. Nevertheless, Tp53
deletion alone is insufficient to induce epithelial tumors in mouse
models (9–14). Thus, the molecular mechanism of ovarian serous
cancer is not completely understood. In all the many types of
ovarian tumor mouse models published so far, none reflects
both the genetic (p53 mutation) and serous histology of human
cancer.

Another key question in ovarian cancer biology related to
reproductive etiology remains unanswered (1–4). Reproductive
factors, such as increased parity and use of oral contraceptives,
reduce the risk of ovarian cancers. Age and menopausal statues
are even more important factors in ovarian cancer risk (1–4). Most
ovarian cancers are diagnosed in menopausal women; fewer than
15% are diagnosed in women younger than 50 years of age, and
the histological subtype of those cancers may not be epithelial but
derived from germ cells or granulosa cells (15). The risk of ovarian
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cancer increases greater than fivefold during the peri-menopausal
years (16–23).

In laboratory studies, few of the developed ovarian tumor mod-
els incorporate the epidemiological evidence that reproductive
factors and age influence the risk of ovarian cancer. Consequently,
the mechanism for the well-established impact of reproductive fac-
tors on ovarian cancer risk remains obscure and not well explored.
Thus, a reasonably good model to understand the etiology of
ovarian cancer should incorporate the genetics and the repro-
ductive physiology of the disease, such as menopausal stage. Here,
we discuss the development of a unique mouse model to study
menopausal ovarian cancer.

OVARIAN CANCER EPIDEMIOLOGY AND ETIOLOGY
Epidemiological evidence suggests that the risk of ovarian cancer
associates with reproductive history and hormonal factors (16–
23). Increased parity decreases the risk by 50% over nulliparity,
as does oral contraceptive use for 5 years (17, 19, 20). The most
significant risk factors for developing ovarian cancer are age and
menopausal status (16–23). The majority of ovarian cancers are
diagnosed in post-menopausal women in their late 50s and early
60s. The average age of diagnosis for sporadic ovarian cancer is
about 63 years, although women with genetic or familial risk fac-
tors tend to be diagnosed at a younger age (average age of diagnosis
is 54 years). Thus, it appears that age and menopausal status closely
associate with ovarian cancer risk.

Several theories have been proposed to explain the epidemi-
ological data associated with ovarian cancer risk. One idea holds
that incessant ovulation,or the repeated wounding and subsequent
proliferation that occur to repair the surface epithelium at the site
of ovulation, results in mutations accumulating in the ovarian
surface epithelial cells (24–26). Ultimately a tumor mass devel-
ops. This idea would explain the reduction of risk associated with
pregnancy, extended breastfeeding, some oral contraceptive for-
mulations, and early menopause, all of which reduce the number
of ovulatory events.

Supported by the same epidemiological evidence, the
gonadotropin stimulation hypothesis postulates that the surges of
pituitary gonadotropins [including follicle stimulating hormone
(FSH) and luteinizing hormone (LH)] that initiate each ovula-
tion also stimulate the ovarian surface epithelium and induce cell
transformation (20, 21). The speculated role of gonadotropins is
also consistent with the fact that ovarian cancer occurs most fre-
quently in post-menopausal women, when ovulation ceases yet
plasma gonadotropins are elevated (21–23). However, since FSH
and LH have unremarkable effects on growth of ovarian surface
epithelial cells in culture (27–29), a direct effect of the hormones
on ovarian epithelial transformation is unlikely to be sufficient.
Thus, neither theory completely or satisfactorily explains the epi-
demiological observation of an association between ovarian cancer
incidence and the menopausal transition.

A more recent idea posits that the depletion of ovarian folli-
cles disrupts ovarian epithelial homeostasis and may be the true
cause of an increased cancer risk in menopause (30). The idea
that loss of ovarian function may underlie the link between repro-
ductive factors and ovarian cancer was also proposed previously
(31). The follicle depletion hypothesis explains the association

between menopause and ovarian cancer risk, and can potentially
unify “incessant ovulation” and “gonadotropin stimulation” as
mechanisms. Specifically, incessant ovulation leads to the deple-
tion of the ovarian reserve, which in turn leads to the increased
level of gonadotropins that characterize menopause. Thus, the
two theories explain the cause and consequence, respectively, of
ovarian follicle depletion. The studies of a germ cell-deficient Wv
mouse line provided basis for the follicle depletion theory (30, 31).

BIOLOGY OF MENOPAUSE
By the end of the reproductive age, germ cells and follicles are
depleted from the ovaries and the ovulatory cycle ceases, resulting
in menopause. Menopause is defined as the permanent cessation
of menstruation resulting from depletion of germ cells and loss
of ovarian follicular activity (32–34), and has become a woman’s
health issue as a by-product of modern health advances and the
extension of lifespan that occurred in the last century (32–34).
The peri-menopausal period commences when the first features
of menopause begin until at least 1 year after the final menstrual
period, generally lasting an average of 5 years. In humans, the tran-
sition to menopause is a set of gradual changes, in which ovarian
function, reproductive capacity, and hormonal status are altered
long before menses stops completely. Menopause generally occurs
between 45 and 55 years of age, and the symptoms vary among
women.

Hormonal changes characterize the menopausal transition. In
the normal reproductive ovary, following ovulation and release of
the ovum, the follicle converts into a corpus luteum, where sex
steroids, predominately estrogen and progesterone, are produced
and released. The steroid hormones act to inhibit the release of
FSH and LH. With the depletion of follicles and cessation of ovu-
lation, estrogen and progesterone levels fall and normal feedback
inhibition of FSH and LH release stops. As a result, FSH and LH
reach highest serum levels in peri- and post-menopausal periods
and remain elevated (32–34). These changes precipitate a number
of menopausal-associated symptoms and disorders.

MECHANISMS FOR MENOPAUSE AS A RISK FACTOR
Among the physiological changes associated with menopause, the
ovarian tissues undergo morphological transformation, known as
“ovarian aging”(25), and this is implicated in the high incidence of
ovarian cancer that occurs during the peri-menopausal and imme-
diate post-menopausal periods (30, 31). One feature associated
with ovarian aging is the accumulation of ovarian morpholog-
ical changes such as deep invaginations, surface papillomatosis,
and inclusion cysts (35–37), which are thought by some to be
the histological precursors of ovarian cancer (38–43). Presumably,
acquisition of an oncogenic mutation (such as Tp53 mutation)
in these proliferative ovarian epithelial cells would promote the
development of ovarian cancer.

From the analysis of pre-cancerous ovarian tissues obtained
from prophylactic oophorectomies, pre-neoplastic lesions and
microscopic carcinomas were identified in the ovaries or fimbria
of fallopian tubes from women with a family history of ovarian
cancer or identified BRCA mutations (38, 44, 45). Several studies
reported the increased ovarian morphological changes in high-
risk ovaries (35, 37, 38, 46, 47), though some found negative results
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(48–50). In one analysis, we found that no significant increase in
the presence of non-neoplastic ovarian morphological changes is
associated with BRCA1/BRCA2 mutations (35). Rather, the fre-
quency of these histological features, especially inclusion cysts,
associates with age or menopausal status. We propose that ovarian
morphological changes increase in the peri-menopausal period,
and these histological features may promote the transformation
of genetically compromised epithelial cells in the development of
ovarian cancer. The results suggest age-dependent pre-neoplastic
morphological changes may be a risk factor, and support the
idea that ovarian aging-related epithelial morphological changes
provide precursor cells that may transform upon acquisition of
oncogenic mutation(s) (42).

The fallopian tube origin of ovarian cancer suggests that tubal
epithelial cells from the normal fimbria, which envelops the ovary
and contacts the ovarian surface, dislodge and seed, or implant on,
the surface of the ovary (51–58). Inclusion cysts form by mem-
brane engulfment. Likewise, transformed cells of the fimbria may
shed and implant on the ovarian surface. The tumor that estab-
lishes appears to arise from the ovary but originates, in fact, from
the fallopian tube. It may be that age and follicle depletion alter
the receptivity of the ovarian surface to seeding by the fallopian
fimbria epithelial cells, i.e., its ability to accept the fimbria cells,
and also make it a more permissive substratum for engulfment or
proliferation of the seeded cells. Thus, the idea of follicle deple-
tion as a risk factor for ovarian cancer may also be adapted to the
fallopian tube cell of origin model, in addition to that originally
proposed considering only cancer derived from the ovarian sur-
face and/or surface-derived inclusion cysts (30, 31). Additionally,
follicle depletion may also encourage the proliferation of stromal
epithelial cells of Müllerian origin, which have also been consid-
ered to be possible cells of origin of ovarian serous carcinomas (59,
60). The epithelial cells of both fallopian tube fimbria and extra-
ovarian Müllerian glands may be responsive to the menopausal
increase of gonadotropins.

MOUSE MODELS IN OVARIAN CANCER RESEARCH
In the past decade, a number of technical breakthroughs have
led to the establishment of several mouse models as described
briefly here. First, a genetically defined model of ovarian cancer
was established by Orsulic and colleagues (13), in which mouse
ovarian surface epithelial cells were isolated and transfected with
defined genetic changes such as k-Ras, v-Akt, v-myc, etc. The cells
were then re-implanted into the ovarian bursa of mice and malig-
nant ovarian tumors developed. Using the MIS II R promoter,
a mainly ovarian-restricted transcript, Connolly, Hamilton and
colleagues developed the T-antigen transgenic line that develops
malignant bilateral ovarian tumors (61). Presumably, T-antigen
expression results in the inactivation of both p53 and Rb. Indeed,
using adenoviral delivery of cre to ovaries of mice with floxed
p53 and Rb, Flesken-Nikitin et al. demonstrated the development
of malignant ovarian tumors when both p53 and Rb are deleted
(11). Mice with conditional expression of K-ras and deletion of
pten in ovarian surface epithelial cells were made and found to
develop endometriosis and endometrioid carcinomas (62). Since
both mutations are associated with endometriosis and endometri-
oid ovarian cancer in humans, this model appears to recapitulate

the genotype and histomorphology of the human disease. Another
mouse model of endometrioid carcinomas was established by
combining beta-catenin activation and pten loss (63). Based on the
understanding that the majority of serous ovarian cancer may be
derived from fallopian tube fimbria, the reproductive tract tumor
models were produced by targeting SV40T using the promoter of
the mouse oviduct-specific glycoprotein (OGP) (64). In another
study, fallopian tube-derived tumors were produced by Amhr2-
Cre mediated deletion of pten and Dicer (65). Likely there are
additional ovarian cancer animal models that are not mentioned
here (66–69).

However, the modeling of genotype and phenotype of human
serous cancer has not been successful. Although p53 mutation is
the only common genetic mutation in ovarian cancer (8), p53 null
mice do not develop ovarian cancer. When p53 null ovaries were
transplanted into wild type mice to allow prolonged aging, the
tumors that developed were of granulosa rather than epithelial
origin (9). In several recent studies, concomitant inactivation of
Tp53 and BRCA1 produced leiomyosarcomas, which likely orig-
inated from the ovarian bursa (10, 12–14). Further investigation
of these animal models should lead to a better, more thorough
understanding of ovarian cancer development. Nevertheless, none
of these models has components related to the etiology of ovarian
cancer. Also, few investigations on early lesions or cells of origins
were reported in these ovarian tumor models.

To investigate reproductive factors, mouse models that mimic
or incorporate menopausal biology may be useful. Most female
mammals, except for humans, live only a relatively short time
after ceasing reproduction, and normal rodents or other ani-
mals do not adequately model the menopausal state (32). In the
laboratory setting, surgical removal of ovaries is used to mimic
menopause on the physiology. Another method is to kill germ
cells and ovarian follicles using toxins such as such as busulfan
and 4-vinylcyclohexene diepoxide (70–72). These “menopausal
mouse models” may be useful for some purposes, for example,
to investigate breast tumor xenografts under menopausal condi-
tions and to study chemical-induced breast carcinogenesis (73,
74). Mutant mice that contain gene mutation affecting ovarian
function were also suitable to investigate ovarian cancer. A notable
mouse model of restricted BRCA1 deletion in granulose cells was
produced to investigate the association between menstrual cycle
and ovarian cancer risk (75, 76). Mice with FSH receptor knock-
out were reported to exhibit some phenotype of ovarian failure
and have been proposed as a potential model of menopause (77).
In this article, we highlight the use of a natural mutant mouse
line, the white spotting variant (Wv) mouse, to model menopause
and associated ovarian cancer risk. In the Wv females, the ovarian
follicles are gradually depleted early in life because of a reduced
c-kit activity and resulted oocyte reserve, and the mice mimic
the phenotypes in both the cause (ovarian follicle depletion) and
many consequences (such as changes in heart, bone, lipids, ovarian
epithelia) of menopause (78, 79).

THE Wv GERM CELL-DEFICIENT MOUSE MODELS
The Wv mice harbor a point mutation in the kinase domain
of the c-kit gene, resulting in developmental defects in germ
cells, pigment-forming cells, red blood cells, and mast cells in
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homozygous mutant mice (68–83). The Wv/Wv mice have a sim-
ilar lifespan as wild type, are sterile, white-coated with black eyes,
and predisposed to ovarian neoplasms (84). The Wv/Wv mice
contain less than 5% of the normal number of oocytes at birth
and the remaining germ cells are depleted by about 8 weeks of
age (Figure 1). Consequently, ovulation ceases to occur and an
increase in pituitary gonadotropins follows (85). Compared to
wild type littermates, in which ovaries contain a large number of
follicles at various developmental stages, Wv ovaries are depleted
of follicles by 2–3 months of age (Figure 1). Ovarian surface
epithelial dysplasia and tubular adenomas develop in Wv/Wv mice
(79, 85). The Wv mice appear to model several aspects of post-
menopausal biology, including a long post-reproductive lifespan,
increased serum gonadotropins, decreased sex steroids, and phys-
iological changes, such as decreased bone density, elevated serum
cholesterol, and altered cardiac function (78).

The ovarian lesions in the Wv mice distribute throughout the
ovarian stroma, and are known as stromal tubular adenomas (85).
The contiguous connection to ovarian surface epithelium is evi-
dent (Figure 2), and is especially pronounced in early ovarian
lesions from younger (7–10 weeks) mice when lesions begin to
develop (79). The majority if not all the tubular adenomas in
Wv/Wv ovaries appear to be derived from ovarian surface epithe-
lial cells. However, rete ovarii structure is also very prominent in
Wv ovaries. At 4 months, epithelial lesions permeate the entire
ovary, and rete ovarii appear to form distinct lesions (Figure 2,
arrow). At 8 months of age, the Wv ovarian tumor is extensive,
and surface versus rete ovarii epithelia are no longer distinguish-
able. The majorities of the lesions either exhibit inclusion cyst-like
structures or resemble surface deep invaginations/papillomatosis
(Figure 2) (79).

FIGURE 1 | Germ cell deficiency in Wv ovaries. Ovaries from 6-week-old
wild type and Wv/Wv littermates were harvested and subjected to
histological analysis. PGC7 staining was used as a marker for germ cells
and follicles (86, 87). Wild type ovaries contain abundant PGC7-positive
germ cells and follicles of various developmental phases, and in particular,
germ cells and primary follicles are found immediately beneath the surface.
Wv/Wv mutant ovaries are smaller and contain a greatly reduced number of
germ cells.

POTENTIAL DEVELOPMENT OF THE Wv MICE TO MODEL
MENOPAUSAL OVARIAN CANCER
The germ cell-deficient Wv mutant mouse line mice may be
explored to gain additional understanding and verification of the
impact of menopausal physiology on the increased risk of ovarian
cancer.

Tp53 deletion, alone or in combination with other genetic
changes, does not seem to produce ovarian epithelial tumors in
mouse models. Since mutations in Tp53 that result in accumula-
tion of mutated Tp53 protein occur frequently in ovarian cancer
and are more relevant than deletion (8, 88), it may be possible
to add the Tp53 mutation in the Wv ovarian tubular adenomas
to test if Tp53 mutation can convert the benign epithelial tumors
to malignant adenocarcinomas (Figure 3). If successful, such a

FIGURE 2 | Epithelial ovarian tumors in Wv/Wv mice. Ovarian tissues
were harvested and subjected to histological analysis. Cytokeratin-8
staining was used as a marker for epithelial cells. Representative ovaries
are shown for 8-, 12-, 16-, and 35-week-old Wv/Wv mice, indicating the
progressive increase in epithelial lesions. In comparison, a wild type ovary
from a 16-week-old littermate has a single layer of cytokeratin-8-positive
ovarian surface epithelium. The arrows in the two left panels indicate the
putative lesions that developed from rete ovarii.

Mature ovary 
Follicle-depleted 

ovary 
Aged ovary 

Cancer 

Tp53 Mutation  

follicles 

ro 

ro 

Ovarian aging 

FIGURE 3 | Working model for follicle depletion and ovarian aging in
ovarian tumorigenesis. A schematic illustration of the consequences of
follicle depletion in the development of ovarian tumors is presented. Upon
depletion of ovarian follicles, ovarian surface and rete ovarii (ro) epithelia
undergo remodeling and morphological changes. Wv ovarian epithelial
tumors may be derived from both surface and rete ovarii (ro). Genetic
mutations, such as Tp53 mutation, will promote the benign epithelial
lesions to develop into malignant tumors.
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model may mimic the development epithelial ovarian cancer in
both genetic and reproductive aspects. Using the Wv mice, we are
currently performing experiments to determine if adding a Tp53
point mutation in the epithelial cells of the Wv ovarian tumor
generates a malignant tumor that resembles ovarian cancer.

By deleting a transcription stop signal in the floxed
Tp53 mutant (88) in ovarian surface epithelial cells through
injection of adenovirus expression Cre, we predict that the
model mimics both reproductive factors (postmenopause) and
genetic mutation (Tp53). Preliminary studies indicate that these
Wv/Wv:p53(R172H) (fl/fl):Adv-Cre ovarian epithelial tumors
appear malignant. We are currently characterizing in more detail
these mouse ovarian epithelial models and expect to report these
findings in the near future.

POSSIBLE STRATEGIES FOR DELAYING MENOPAUSE AND
OVARIAN CANCER RISK REDUCTION
The neoplastic ovarian tumor models following addition of Tp53
mutation in the benign Wv tumors may be used to explore several
questions regarding the etiology and possible preventive strategies
for ovarian cancer. Several potential preventive approaches, such
as inhibition of cyclooxygenases and use of progestin to mimic
oral contraceptive usage, have been proposed and can be tested in
Wv mouse models.

Genetic suppression of cyclooxygenase 2 produced a significant
alleviation of ovarian lesions in the Wv/Wv:Cox-2 (±) ovaries
analyzed, although the degree to which the tumor phenotype was
suppressed varied greatly (79). Hemizygous reduction of the Cox-2
gene resulted in a complete or partial rescue from the epithe-
lial adenoma phenotype. Thus, a reduction in Cox-2 gene dosage
rescued the ovarian epithelial morphological alteration, but dele-
tion of both copies was less sufficient in reversing the adenoma
phenotype. Reducing the Cox-2 gene dosage on ovarian tumor
phenotype can be achieved by using pharmacological agents. Thus,
cyclooxygenase inhibitors are able to prevent ovarian epithelial
morphological transformation and tumor phenotypes. Inhibition
of both Cox-1 and Cox-2 with indomethacin is more effective than
inhibition of Cox-2 alone with celebrex. When indomethacin was
given for a period of 1 month to Wv/Wv mice at 3 months of
age when ovarian tumors were already established, the tumors
were not reduced compared to controls, suggesting inhibition of
cyclooxygenases prevents the development of ovarian tumors but
has no suppressive effect on established tumors (79). Further-
more, inhibition of Cox-1 was superior to inhibition of Cox-2,
and inhibition of Cox-1 reduced the development of ovarian ade-
nomas in Wv mice by delaying ovarian follicle maturation and thus
depletion (89) occurs. The conclusions of these studies are con-
sistent with the notion that the ovarian follicle depletion, rather
than ovulation and gonadotropin stimulation, is a major deter-
minant of an increased ovarian cancer risk in menopause. The
experimental results provide explanation for the epidemiological
observations that use of non-steroidal anti-inflammatory drugs
(NSAIDs) reduce ovarian cancer risk (90–96). Inhibition of Cox-1
and Cox-2 may have different mechanisms. Cox-1 inhibition may
delay follicle depletion and ovarian cancer risk. Cox-2 inhibitors
may reduce the cancer promoting activity of the inflammation-
like ovulatory processes that are stimulated by gonadotropins (95,

96). The mechanism predicts that use of NSAIDs may be more
effective in reducing the risk of ovarian cancer in pre-menopausal
compared to post-menopausal women, since Cox-1 inhibition can
delay ovarian follicle depletion (89). In post-menopausal women,
inhibition of Cox-2 may slow epithelial remodeling and thus still
reduce ovarian cancer risk.

Because endogenous hormones play a major role in the risk
of breast, endometrial, and ovarian cancer, the impact on risk
for oral contraceptives and hormonal therapy given at about the
time of menopause has been a major concern (97, 98). Numer-
ous studies provide insights into cancer risk associated with use of
these preparations. Generally, use of oral contraceptives reduces
ovarian cancer risk (19, 99). Many studies attribute the preventive
effect on its suppression of gonadotropin level and ovulation. Also,
this risk reduction may differ between pre- and post-menopausal
women. Recent studies suggest that prolonged oral contraceptive
pill use provided a greater protective effect against pre-menopausal
ovarian cancer than against post-menopausal cancer (100). Fur-
thermore, suppression of pituitary gonadotropin release with hor-
mone replacement therapy may not reduce ovarian cancer risk in
post-menopausal women (97, 100). These findings substantiate
that intact ovarian function may be an important determinant of
ovarian cancer risk, and the timing of progesterone administration
may differentially alter its preventive capacity depending upon fol-
licle reserve and menopausal status. The Wv mouse model will be
useful in experiments to test the suppressive activity of proges-
terone/progestin on gonadotropin levels and the role of increased
gonadotropins on ovarian tumorigenesis.
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