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Coronavirus disease–2019 (COVID-19), a disease caused by Severe Respiratory Syndrome Coronavirus 
2 (SARS-CoV-2) infection, has become an unprecedented global health emergency, with fatal outcomes 
among adults of all ages in the United States, and the highest incidence and mortality in adult men. 
As the pandemic evolves there is limited understanding of a potential association between sympto-
matic viral infection and age. To date, there is no knowledge of the role children (prepubescent, ages 
9-13 years) play as “silent” vectors of the virus, with themselves being asymptomatic. Throughout 
different time frames and geographic locations, the current evidence on COVID-19 suggests that 
children are becoming infected at a significantly lower rate than other age groups—as low as 1%. 
Androgens upregulate the protease TMPRSS2 (type  II transmembrane serine protease-2), which 
facilitates efficient virus-host cell fusion with the epithelium of the lungs, thus increasing suscepti-
bility to SARS-CoV-2 infection and development of severe COVID-19. Owing to low levels of steroid 
hormones, prepubertal children may have low expression of TMPRSS2, thereby limiting the viral 
entry into host cells. As the world anticipates a vaccine against SARS-CoV-2, the role of prepubescent 
children as vectors transmitting the virus must be interrogated to prepare for a potential resurgence 
of COVID-19. This review discusses the current evidence on the low incidence of COVID-19 in chil-
dren and the effect of sex-steroid hormones on SARS-CoV-2 viral infection and clinical outcomes of 
pediatric patients. On reopening society at large, schools will need to implement heightened health 
protocols with the knowledge that children as the “silent” viral transmitters can significantly affect 
the adult populations.

© Endocrine Society 2020.
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In February 2020 the World Health Organization (WHO) formally named the novel coro-
navirus outbreak triggered by 2019-nCoV as coronavirus disease–2019 (COVID-19). The 
Internal Committee of Taxonomy of Viruses then named the disease severe respiratory 

https://doi.org/10.1210/jendso/bvaa106
http://orcid.org/0000-0002-9382-9664
http://orcid.org/0000-0002-9382-9664
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 | Journal of the Endocrine Society | doi: 10.1210/jendso/bvaa106

syndrome coronavirus 2 (SARS-CoV-2), another β-coronavirus cluster related to the severe 
acute respiratory syndrome (SARS) of 2003 and Middle East respiratory syndrome (MERS) 
of 2012 (1, 2). As of May 5, 2020, the global pandemic had caused more than 3.5 million 
cases and 240 000 deaths, with numbers rising each day [3].

Person-to-person transmission of the virus includes droplet inhalation transmis-
sion and contact transmission through oral, nasal, and eye mucous membrane contacts 
[4]. Symptoms of the virus vary depending on the patient but often include fever and dry 
cough, whereas others suffer from fatigue, dyspnea, nasal congestion, nausea, or diarrhea 
[5]. The inflammation-driven damaging phase involves viral-induced tissue destruction, 
compounded by the development of cytokine-release syndrome causing debilitating effects 
[6]. Cases worsen and lead to acute respiratory distress syndrome or the development of 
pneumonia. However, diagnosis is often complicated by a large portion of patients who are 
asymptomatic [7]. Those with preexisting conditions, such as diabetes, hypertension, and 
pulmonary, cardiac, and kidney disease, are considered to be at higher risk of developing a 
severe form of the disease [8-10]. Sex and age have also been important risk factors because 
men and older populations are most at risk of contracting the infection and developing 
more serious disease [11-14]. The potential involvement of certain human leukocyte an-
tigen haplotypes in increasing susceptibility to infection supports a genetic predisposition 
[6]. This review discusses the current evidence on the incidence of COVID-19 in children 
and the role of sex-steroid hormones in the rate of SARS-CoV-2 infection and the clinical 
outcomes in pediatric patients.

1.  Coronavirus Disease–2019 Clinical Presentation in Pediatric Patients

The incidence of COVID-19 in children has been significantly lower compared to adults, with 
clear underrepresentation when taking into account the age proportions of the overall popu-
lation. Comprehensive Centers for Disease Control and Prevention (CDC) data reported that 
between February 12 and April 2, 2020, patients younger than 18 years accounted for only 
1.7% of US cases [11]. Among all 2572 COVID-19 cases in children younger than 18 years, 
the median age was 11 years (range, 0-17 years); 59% were age 10 to 17 years, 26% were age 
1 to 9 years, and 15% were younger than 1 year [11]. Early reports from China echoed the 
recent US findings. A study presenting the 72 314 cases diagnosed by the Chinese Center 
for Disease Control and Prevention showed that most cases were in the adult age range of 
30 to 79 years (87%), with only 1% age 10 to 19 years, and 1% age 9 years or younger. There 
were also no deaths that occurred in children younger than 9 years [15]. The current evi-
dence on COVID-19 indicates that children are becoming infected at a significantly lower 
rate than other age groups—as low as 1% of reported cases in most case studies [11, 16, 17]. 
Similar trends were seen during the SARS epidemic, as children younger than 12 years had 
less-severe cases of the disease, no deaths reported, and the disease was seen to increase in 
severity with age [18].

This trend may be due in part to the lack of testing in pediatric patients, as a large 
number of infected individuals are asymptomatic [5, 11, 16, 19, 20]. Children are just as 
likely to be exposed to and contract SARS-CoV-2 but are less likely to be symptomatic for 
COVID-19 and thus are less likely to be tested as well [21]. As similar rates were detected 
among the pediatric population during the SARS epidemic, there may also be an underlying 
molecular mechanism decreasing the susceptibility of children to developing a severe form 
of COVID-19 disease. Thus, case count is not always an accurate measurement of incidence, 
because there are asymptomatic children who are affected by COVID-19 but are not part 
of the case count because of the lack of testing [19, 20]. Among symptomatic children who 
were tested, the incidence of COVID-19 was still low. In an early report from the Wuhan 
Children’s Hospital, 1391 children who had upper respiratory symptoms resembling those 
of SARS-CoV-2 infections were assessed and only 171 (12.3%) had COVID-19, with the me-
dian age of COVID-19–positive patients being 6.7 years, a younger median age than the 
CDC report from the United States because of the younger population studied [17]. Death 
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count, which is another more standardized measurement that has been used to control for 
testing capabilities, has also been low in the pediatric population, with some case reports 
reporting 0% to 0.2% deaths in patients younger than 19 years [11, 22]. Furthermore, 80% 
of the CDC-reported severe cases in children were those who had an underlying condi-
tion, with the most common being chronic respiratory problems like asthma [11]. The inci-
dence, case count, severity of symptoms, and death rate are all lower in pediatric patients 
compared to adult populations (Table 1) [22-28].

The pediatric experience at Mount Sinai supports the concept that children are less se-
verely affected by COVID-19 than adults. Between March 1 through April 24—representing 
the height of the pandemic in New York City—29 children were admitted to the Kravis 
Children’s Hospital at Mount Sinai with COVID-19. Ages ranged from 4 weeks to 21 years. 
There were 16 male and 13 female patients. The average length of stay for this group was 
4.5 days. Five of the 29 patients received intensive care unit (ICU)-level care. None required 
intubation and there were no deaths in the cohort. Two of the patients were babies in the ne-
onatal intensive care unit, where the average length of stay was 2 days. At the end of April 
2020, past the initial adult peak in New York City, reports began emerging of children with 
symptoms unlike the respiratory symptoms of cough and shortness seen in adults. Children 
have presented with skin rashes, conjunctivitis, and an inflammatory vascular phenom-
enon that involves the heart. Initially high fever, tachycardia, and hypotension were noted, 
in some cases precipitous decompensation requiring ICU admission occurred. As of this 
report, 7 patients with this syndrome have required ICU care, including 1 who required 
extracorporeal membrane oxygenation; no fatalities have been seen. Resemblance to the pe-
diatric illness Kawasaki disease has been noted. Interestingly, one of these patients tested 
negatively on 3 occasions for COVID-19, only to have a later bronchial lavage sample be 
positive. On May 3, 2020, an international conference confirmed the pathophysiology in a 
similar cohort of pediatric patients in Europe.

Typical symptoms in children include fever, cough, and shortness of breath (Table  1) 
[11, 22, 23, 29]. Symptoms among pediatric patients tend to compare in nature to those in 
adults, though the overall severity of the symptoms and frequency of manifestation is lower 
[22]. However, the sex discrepancy in the incidence of COVID-19 among adults is not re-
flected in the pediatric population. Men have a significantly higher risk of ICU admission 
and death than women diagnosed with COVID-19 [12]. In the pediatric population, there 
have been no significant differences in the number or severity of COVID-19 cases across sex 
(Table 1) [16]. Thus, the different incidence rates between sexes appears only with adult-
hood, suggesting hormonal changes and sexual maturity may affect viral transmission and 
clinical symptom manifestations.

The low case number for pediatric patients being treated for COVID-19 presents a limi-
tation in determining transmission patterns among this young population. In a case report 
tracing the transmission cluster of one pediatric case in France, a child who tested positive 
for COVID-19 visited 3 schools, and 169 individuals had been in contact with the student. 
Of these contacts, 70 individuals presented with respiratory symptoms. After testing 73 
of these contacts, only 13 tested positive for COVID-19 [30]. The low incidence among the 
contacts of confirmed positive children raises the possibility that SARS-CoV-2 follows a 
transmission process different in children from that in adults, affecting the rate of viral in-
fection and clinical manifestation of COVID-19 [22, 30]. Moreover, it was reported that the 
virus in pediatric patients is present in higher levels in stool samples than in the respira-
tory epithelium, raising the possibility that the virus may be transmitted through fomites 
from contaminated feces instead of the suspected transmission through respiratory droplets 
in this population [31].

In efforts to define the transmission dynamic among pediatric patients, one must also 
consider the potential spread through expecting mothers. A  recent systematic review of 
cases in pregnant women recommended that pregnant women be treated as high-priority 
patients because of their immunosuppression [32, 33]. Others have reported no severe or le-
thal cases in pregnancy, with some even suggesting a protective effect of pregnancy [34-37]. 
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In one report, it was suggested that there was no vertical transmission of the viral from 
mother to fetus because of the absence of the virus in the amniotic fluid, cord blood samples, 
and breast milk, as well as swabs from the newborns [37]. Of the reported cases of vertical 
transmission, the positively testing neonates recovered safely [22, 38, 39]. Similar patterns 
were also shown in SARS, with no evidence of vertical transmission from infected mothers 
to their children [18].

The question thus arises as to a cutoff age for children for SARS-CoV-2 infections and 
viral propagation. In addition to the lower case counts among pediatric patients, there is 
a particularly lower incidence among younger children. In a large CDC cohort, 25% of pe-
diatric patients were age 1 to 10 years, whereas nearly 60% of pediatric patients were age 
10 to 19 years [11]. This could be caused by the immunological changes and increasing hor-
mone levels associated with puberty, but it is also important to understand the effects of 
adrenarche and the production of androgens in this process. Adrenarche is an early stage 
in sexual maturation in both sexes, in which the adrenal glands secrete increased levels of 
weak adrenal androgens including DHEA (dehydroepiandrosterone), DHEA-S (dehydroep-
iandrosterone sulfate), and A4 (androstenedione) without increased cortisol levels [40]. It 
is a process related to puberty but distinct from hypothalamic-pituitary-gonadal axis mat-
uration and function [41]. Adrenarche occurs on average at age 6 to 8 years and precedes 
puberty by about 2 years [40]. Puberty in girls usually lasts from around age 8 to 14 years, 
and for boys, it lasts from age 10 to 16 years on average. The similar sex compositions across 
ages among COVID-19 pediatric patients suggest effects from adrenarche rather than pu-
berty, as the synchronous hormonal changes increase susceptibility across both sexes until 
adulthood when men are at increased risk because of higher androgen levels [42, 43].

2.  Molecular Mechanisms of Severe Respiratory Syndrome 
Coronavirus 2 Infection

Structural Spike (S) proteins drive entry of coronaviruses SARS-CoV and SARS-CoV-2 into 
target host cells by engaging the cellular receptor angiotensin-converting enzyme 2 (ACE2) 
and facilitating the viral attachment to target cells [44]. This step is also functionally asso-
ciated with activation of cellular TMPRSS2, a type II transmembrane serine protease that 
drives the entry of virus into the target cell and is regulated by androgen receptor signaling. 
Successful SARS-CoV infection is dependent on the proteolytic activity of TMPRSS2, which 
results in cleavage of SARS S protein at multiple sites [45]. Proteolytic cleavage of SARS 
S protein by TMPRSS2, known as S priming, mediates efficient virus-host cell fusion and 
decreases virus sensitivity to neutralizing antibodies [46]. ACE2 depletes angiotensin I and 
II (Ang I and II) levels by directly catalyzing the compounds and converting Ang I to an-
giotensin 1 to 9 and Ang II to angiotensin 1 to 7, known vasodilators acting through Mas 
receptor with antifibrotic, antiproliferative, and anti-inflammatory effects [8, 47-49]. ACE2 
expression is elevated in patients with cardiovascular conditions, diabetes, and hyperten-
sion, comorbidities that confer a higher risk of mortality to COVID-19 [50-52]. Thus, inhi-
bition of the renin-angiotensin system may affect COVID-19 outcomes by decreasing the 
proinflammatory activity of Ang II or increasing virulence in the heart and lungs because of 
the increased ACE2 expression [10].

ACE2 and TMPRSS2 are both coexpressed on ciliated bronchial epithelial cells and type 
II pneumocytes, the epithelium of the small intestine, and podocytes and the brush border 
of proximal tubule cells of the kidney, facilitating routes for SARS-CoV-2 infection [53]. 
Compared to women, men have higher ACE2 expression and activity in the kidneys and 
higher expression of TMPRSS2 in the lungs [54, 55]. There is also the potential for sex 
hormones to affect levels of activity of these receptors [56]. Not only might this affect the 
sex disparities in disease incidence, it could also have implications for the infection rate in 
children who physiologically have low levels of sex hormones [57]. It is critical to under-
stand the underlying mechanisms of the low incidence of COVID-19 in pediatric patients 
and their capacity to be silent vectors while being asymptomatic [11, 16].
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3.  Mechanistic Considerations in Diagnosis in Children

ACE2 has been a common target of potential therapies against COVID-19; however, it is un-
known whether this important viral receptor contributes to the lower incidence of COVID-
19 in pediatric patients [58, 59]. Several studies have reported no significant differences in 
lung ACE2 expression levels across sexes, implying that sex-related differences in ACE2 
expression are not driving the sex-related difference in disease severity [55, 56]. Of the 3984 
exomes for ACE2 obtained from a large Italian cohort, there were no significant differences 
in the burden of rare deleterious variants as compared to European and East Asian cohorts 
[55]. The most common single-nucleotide polymorphism difference in variants between the 
European populations and East Asian populations was rs2285666 (also called G8790A) [55]. 
This variant has been studied as a potential risk factor for hypertension, type 2 diabetes, 
and coronary artery disease—comorbidities that increase susceptibility to SARS-CoV-2 in-
fection and severe virulence [60, 61]. Therefore, ACE2 and genetic variations of its target 
genes are important to the predisposition of certain populations to higher SAS-CoV-2 infec-
tion, although independent of sex-steroid hormones.

TMPRSS2 is essential for entry of a variety of viruses, such as SARS-Cov-2, MERS-Cov, 
human coronavirus  229E (HCov-229E), influenza A  virus, and influenza B virus, in the 
primary human type II pneumocytes and enhances the virulent effects on the host [46, 62, 
63]. Subsequently, there is emerging therapeutic potential of TMPRSS2 inhibitors in the 
treatment of COVID-19 [46, 64]. The TMPRSS2 gene, located on human chromosome 21, 
has several androgen receptor elements and TMPRSS2 protein is expressed in an androgen-
dependent manner both in prostate and lung cancer cells [65, 66]. Androgen-regulated 
TMPRSS2 in prostate cells has been demonstrated to play a role both in normal male re-
production and in the progression and metastasis of prostate cancer [67]. Its expression 
in the lung and sputum has been found to be higher in men than in women [62, 68]. This 
is consistent with the increased susceptibility of men to COVID-19 because the increased 
TMPRSS2 allows for increased viral entry [64]. TMPRSS2 also has an estrogen-responsive 
promoter, a mechanistic step that may be of significance in the hormonal control in pedi-
atric patients as compared to adults [69]. Because prepubertal children have lower levels 
of sex-steroid hormones, they have lower TMPRSS2, resulting in a lower disease incidence 
and severity in this age population.

Although there is evidence that estrogens may influence TMPRSS2 activity, the main 
driver of expression of TMPRSS2 appears to be androgens [62]. Adrenarche, as mentioned 
previously, is then an important time marker for increasing susceptibility in pediatric 
patients. Data support that children ages 10 years and older of both sexes have a higher 
incidence of COVID-19, suggesting the entrance into adrenarche and production of an-
drogen may increase susceptibility to the virus [11]. The presence of androgens may be even 
more important than preexisting conditions, such as asthma, in the pediatric population. 
The TMRPSS2 expression in sputum was found to be no different in asthma patients as 
compared to healthy patients, yet was still increased in adult men as compared to adult 
women [68]. Because of these androgenic effects, there is the potential to decrease the viral 
entry of host cells and prevent severe disease in high-risk individuals through the use of 
androgen-synthesis inhibitors, used in the treatment of advanced prostate cancer [70]. The 
evidence so far supports the idea that with lower levels of androgens and estrogens, pedi-
atric patients have a low expression of TMPRSS2, limiting the extent of viral entry into host 
cells because of decreased protease activity; the lower viral load would lead to less-severe 
symptoms among children [71].

4.  Severe Respiratory Syndrome Coronavirus 2 Infection in Children: 
Environmental and Hormonal Reasoning

In addition to the potential molecular mechanisms contributing to the decreased incidence 
and severity of COVID-19 in pediatric patients, other physiological and environmental 
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factors may be at play. In general, the pediatric population is exposed to fewer harmful en-
vironmental factors, such as smoke and air pollution, which allows them to have healthier 
respiratory tracts [72]. However, prior studies in low-income communities have shown dif-
ferential susceptibility to some infectious diseases in children based on existing environ-
mental, economic, and psychological factors [73, 74]. Psychological stress is higher among 
low-income families and their children, resulting in impaired immune function and hence 
higher susceptibility to epidemic diseases [75, 76]. Malnutrition in children is also a driving 
mechanism for acute respiratory infection and related mortality [77-79]. Disparities in vac-
cine uptake rates could cause differential susceptibility once exposed to the virus. Vaccine 
uptake rates are likely to differ by socioeconomic status, including access to health insur-
ance [73, 74].

The child population is constantly exposed to a variety of coronaviruses that make up 
colds and flus that circulate endemically. These prior exposures could increase the resil-
ience of children’s immune systems [18]. A study in France tracking infections spread 
among schools and family clusters found greater dissemination of picornaviruses and 
influenza among the pediatric population of both groups. The results suggest these 
infections are more easily transmitted and potentially more infectious than COVID-19 
in children [30]. These results were confirmed in a hospital study of pediatric patients 
in a hospital in Wuhan, China. Of 366 patients with respiratory infections, 6.3% were 
detected to have influenza A, 5.5% had influenza B, and only 1.6% tested positive for 
COVID-19 [80]. Inversely, exposure to other viruses and viral interference could po-
tentially make these patients more susceptible to contracting the novel coronavirus, a 
trend seen by the interaction between H1N1 influenza virus and respiratory syncytial 
virus [81].

5.  Coronavirus Disease–2019 and Educational and Psychosocial Health 
Challenges in Pediatric Patients

Despite the lower incidence in the pediatric population, children have suffered from the 
disease in other indirect ways. Global preventive measures of COVID-19 through social 
distancing have prompted the closure of schools [82]. Though reducing COVID-19 incidence 
and mortality rates, the impact of school closures can have significant health, economic, and 
societal consequences for children [85, 86]. These effects are likely to be more prominent 
in disadvantaged families and their children and may result in mental health challenges, 
more compromised nutrition, and economic costs to families who have suffered wage loss 
because of COVID-19 [84, 87]. For many children, the COVID-19 crisis will mean falling 
academically further behind their peers, further increasing existing gaps in educational 
inequalities because of the lack or limitation of internet access and availability of learning 
materials. In spite of the reduced COVID-19 risk in children, reopening schools may in-
crease the risk of this disease in teachers and ultimately increasing the risk for the larger 
community [86].

According to the Human Rights Watch, even though children are less likely to experience 
severe symptoms of or die with COVID-19 compared to different age groups, job and income 
loss and economic insecurity among families are likely to increase rates of child labor and 
sexual and physical exploitation (87). The high rates of COVID-19 mortality are also likely 
to result in large numbers of children losing close family members, thereby increasing their 
psychological and physical vulnerability. For children living in institutional environments 
such as refugee camps, justice systems, immigration detention centers, or orphanages, the 
risk of COVID-19 and its physical and psychological consequences are higher because of the 
close proximity to other infected individuals, limited access to water and sanitation, and 
other environmental and health conditions that contribute to the lack of proper health care 
[87].
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6.  Future Directions

The concept that androgens correlate directly with TMPRSS2 activity and vulnerability to 
severe SARS-CoV-2 infection requires evaluation at the cellular and epidemiological level. 
It will be significant to determine whether children with higher androgen levels—whether 
endogenous, as in intersex/disorders of sex development conditions (congenital adrenal hy-
perplasia) or exogenous, as in transgender adolescents who undergo cross-sex induction of 
puberty—demonstrate increased susceptibility to COVID-19 compared to their age- and 
chromosomal–sex-matched peers. Conversely, children with hypogonadism, whether nat-
ural or induced by puberty blockade, may be relatively protected from infection. If patients 
with hyperandrogenism are determined to be more vulnerable to infection, they and their 
families would be empowered to assume extra precautions.

When proposing the study of sex-gender minority populations, especially children who 
cannot provide their own informed consent to research, it is vital to consider not only the 
scientific merit of the project, but also its moral ramifications. For patients with intersex/
disorders of sex development and transgender conditions, COVID-19 reinforces the social 
isolation and alienation from a culture that conflates sex with gender and perceives both as 
male/female binary. Historically, many of these patients experienced their involvement in 
research and clinical care as stigmatizing and traumatic, issues that are further challenged 
by the isolating measures of the ongoing pandemic [88].

As the COVID-19 pandemic evolves globally, the current knowledge at the molecular level 
implies that this disease is biologically under sex-steroid control, allowing investigators to 
better understand why most children are clinically “silent” carriers of the virus. In addi-
tion to TMPRSS2 activity, driving increased susceptibility to and cell internalization of 
SARS-CoV-2, further mechanistic insights into the hormonal regulation of immunological 
responses also invite an exploration of sex- and age-related differences. The direct action of 
androgens (driven by local precursor synthesis and metabolic alterations) in human lungs 
must be investigated. The strategy to address these issues will involve the potential use of 
induced pluripotent stem cell technology as a means to develop individual-specific lung epi-
thelial cell lines and organoids that could be used to exploit SARS-CoV-2 entry into human 
cells directly. Infected patients’ specific derived alveolar cells dully differentiated under 
“reprogramming factors” could potentially populate tissue-engineered lungs, providing a 
cell model for functional interrogation of lungs from COVID-19 patients and drug testing 
against the disease [89]. Induced pluripotent stem cells can be differentiated to alveolar epi-
thelium through exposure to a variety of different culture conditions and growth media. The 
ultimate success of differentiated cells for translational medicine applications will depend 
on further advances in the understanding of the effect of steroid hormones and SARS-CoV-2 
infection in human lungs, using in vitro cultures and organoids, from different induced plu-
ripotent stem cells to cells resembling respiratory epithelium in vitro.

At the time of submission of this review (early May 2020), there were emerging reports 
on a pediatric multisystem postinfectious inflammatory syndrome (myocarditis, high fever, 
and hypotension) resembling the pediatric Kawasaki disease in SARS-CoV-2–infected chil-
dren; this clearly merits further investigation immediately. Global initiatives and policies 
are needed to understand the COVID-19 pandemic to strengthen the health protection and 
social wellness for the most innocent and yet apparently most resilient members of our pop-
ulation, the children.
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