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Common variable immunodeficiency (CVID) is the most common symptomatic primary
antibody immunodeficiency, characterized by reduced serum levels of IgG, IgA, and/or
IgM. The vast majority of CVID patients have polygenic inheritance. Immune dysfunction in
CVID can frequently involve the gastrointestinal tract and lung. Few studies have started to
investigate the gut microbiota profile in CVID patients. Overall, the results suggest that in
CVID patients there is a reduction of alpha and beta diversity compared to controls. In
addition, these patients can exhibit increased plasma levels of lipopolysaccharide (LPS)
and markers (sCD14 and sCD25) of systemic immune cell activation. CVID patients with
enteropathy exhibit decreased IgA expression in duodenal tissue. Mouse models for CVID
unsatisfactorily recapitulate the polygenic causes of human CVID. The molecular
pathways by which gut microbiota contribute to systemic inflammation and possibly
tumorigenesis in CVID patients remain poorly understood. Several fundamental questions
concerning the relationships between gut microbiota and the development of chronic
inflammatory conditions, autoimmune disorders or cancer in CVID patients remain
unanswered. Moreover, it is unknown whether it is possible to modify the microbiome
and the outcome of CVID patients through specific therapeutic interventions.

Keywords: common variable immunodeficiency, fecal microbiota transplantation, inflammation, mucosal
immunology, microbiota, probiotics
INTRODUCTION

Elie Metchnikoff, a founder of modern Immunology, suggested that indigenous microbiota provide
several pivotal functions for health and disease (1). However, only in recent years, due to the
growing access to DNA sequencing technology, important mechanistic insights have been clarified
(2). The human gut microbiota consists of 10-100 trillion symbiotic microbes (e.g., bacteria, yeast,
and viruses) within each individual (3), whereas the human microbiome encodes over 3 million
genes these cells harbor (4). New culture-independent techniques based on high-throughput or
org August 2021 | Volume 12 | Article 7129151
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next-generation sequencing (NGS) technologies have
revolutionized the knowledge of the gut microbiota (5). These
approaches have allowed comprehensive analysis of the gut
microbiota composition without the limitations of classic
culture methods. The most common omics quantification is
sequencing of the 16S ribosomal RNA subunit. Such
sequencing is relatively simple, but can miss potentially
relevant pathobions (6). The whole-community shotgun
sequencing (WCS) has been proposed to be a more accurate
technique (7). In addition, new omics technologies (e.g.,
metabolomics and proteomics) go beyond species abundance
and have enabled more comprehensive insights on microbiota
functions in health and disease (8, 9).

Gut microbiome composition is a dynamic process changing
through life. Colonization of the gut begins before delivery (10).
The most important contribution to the genesis of the
microbiome is vertical transmission of maternal microbiota
and the colonization process during delivery (10). Important
factors that can affect microbiome composition are type of
delivery (vaginal versus caesarean) and feeding (formula versus
breast). Early colonization of the gut microbiome has major
effects on its future composition (11). Diet, antibiotics and the
environment in early life have an essential role in determining
gut microbiota composition in adults (12). For instance, diet can
remarkably shape the gut microbiome, making results difficult to
interpret in the absence of dietary control.

The gut microbiota plays an important role in educating and
modulating the host innate and adaptive immune system (13,
14). The gut microbiome also maintains the intestinal epithelial
barrier homeostasis, defense against pathogens (15) and harvests
energy from food (16). Germ-free mice, lacking a gut microbial
flora, show defects in multiple immune cell populations, such as
TH2 cells, ILCs and have few IgA-producing intestinal plasma
cells, and generally, greater susceptibility to infections (17, 18).
Intestinal IgA maturation occurs in response to bacterial
colonization of the intestine (19). IgA deficiency causes
imbalance of the gut microbiota, resulting in activation of the
systemic immune system (20). These findings suggest a close link
between gut microbiota, and the local and systemic immune
system (21, 22).

Dysbiosis, any change in diversity of gut microbiome, is
characterized by loss of beneficial microbes (symbionts) and
expansion of potentially pathological organisms (pathobionts)
(23). The human gut microbiota is mainly composed of two
bacterial phyla: Bacteroidetes and Firmicutes, which are obligate
anaerobic bacteria and constitute approximately 90% of
microbial community. Additional phyla include Actinobacteria,
Proteobacteria, Verrucomicrobia and Fusobacteria. Quantitative
and qualitative changes of the gut microbiome are important
contributors not only to gastrointestinal disorders but also to
systemic metabolic (e.g., obesity, diabetes) and inflammatory
diseases (24). There is also evidence for a potential role in health
and disease of the viral (virome) and fungal community
(mycobiome) (25).

The aim of this review was to provide an overview of current
results and many outstanding questions related to the study of
Frontiers in Immunology | www.frontiersin.org 2
microbiome in common variable immunodeficiency (CVID).
We will outline the factors (e.g., decreased secretory IgA,
recurrent infections, antibiotics) that shape gut microbiota
composition in patients with CVID, and the potential clinical
interventions (e.g., diet, probiotics, prebiotics, drugs and fecal
microbiota transplantation) to re-establish and/or to promote a
“healthier” microbial community.
COMMON VARIABLE
IMMUNODEFICIENCY

Common variable immunodeficiency (CVID) is the most
common symptomatic primary antibody immunodeficiency
(PID) in adulthood with a prevalence of approximately
1/25,000 (26). CVID is characterized by low serum levels of
IgG, IgA, and/or IgM and impaired antibody synthesis in
response to vaccines and pathogens (27, 28). CVID may
present with a wide spectrum of clinical manifestations
including increased susceptibility to infections, inflammatory
and autoimmune diseases, sol id and hematological
malignancies (29, 30). The age of onset of CVID varies
between 20 and 40 years. The variable age of onset and the
heterogeneity of clinical manifestations, which can involve
various segments of the respiratory and gastrointestinal tract, is
consistent with different phenotypes of this PID.

CVID has complex pathogenic mechanisms resulting from
intrinsic or extrinsic defects in B cell differentiation and/or from
an impaired cross-talk between B and T cells (31–33). The
majority of CVID patients lack a monogenic basis and the
disease has probably polygenic inheritance (34). Monogenic
disorders involving mutations in genes necessary for B-cell
functions represent 2-10% of all CVID patients in different
cohorts (35–40).

With the advent of intravenous (i.v.) or subcutaneous (s.c.)
immunoglobulin replacement therapy (IgRT), CVID patients are
relatively free from life-threatening infections and have a more
prolonged survival than several years ago (26). However, IgRT
has no proven efficacy in the prevention/treatment of immune
dysregulation-related complications (41, 42). It has been
estimated that the vast majority (68 to 83%) of CVID patients
develop non-infectious complications such as autoimmunity,
granulomatous and lymphoproliferative diseases, or
malignancies, causing significant morbidity and mortality
(29, 42).

It has been suggested that environmental factors (e.g.,
microbial dysbiosis), via epigenetic mechanisms, play a role in
inflammatory and immune dysregulation in CVID (43).

Immune dysfunction in CVID can involve different
sections of the gastrointestinal tract and cause manifestations
including bloating, diarrhea, protein-energy malnutrition and
malabsorption (44, 45). Gastrointestinal involvement with
malabsorption (=∼ 6%), often complicated by nutritional
deficiency requiring total parenteral nutrition, is associated
with increased mortality and remains a major clinical challenge
(42). Moreover, protein-losing enteropathy (PLE) can cause
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therapeutic failure of the IgRT (46, 47), because circulating IgG,
as well as other plasma proteins, are lost through epithelial
exudation in the setting of mucosal inflammation and damage
(48). Gastrointestinal disorders in CVID can be classified into
five groups: infectious (Giardia lamblia, Cryptosporidium
parvum, Campylobacter jejuni, Salmonella species, Clostridioides
difficile, Cytomegalovirus, Norovirus), small intestinal bacterial
overgrowth (SIBO), inflammatory (celiac disease and celiac-like
villous atrophy, microscopic colitis, ulcerative colitis, Crohn
disease), malignant (gastrointestinal cancers, lymphoma), and
autoimmune disorders (pernicious anemia, autoimmune
thrombocytopenia and hepatitis, primary biliary cholangitis)
(44, 49, 50).

The gastrointestinal tracts involved in CVID display a wide
spectrum of histologic patterns. The intestinal mucosa can show
increased intraepithelial lymphocytes, villous blunting, crypt
distortion, overexpression of apoptosis, paucity of plasma cells
and nodular lymphoid hyperplasia, reflecting a mucosal response
to gut antigens (51, 52). Among this broad spectrum of
gastrointestinal manifestations, CVID-related enteropathy (E-
CVID) is characterized by villous atrophy, malabsorption and
diarrhea (48, 53).
GUT MICROBIOTA IN CVID

In the last decade, few studies have started to investigate the gut
microbiota profile in CVID patients. Gut microbial imbalance of
patients with CVID mainly includes changes in microbial
diversity, decrease in symbiotic beneficial bacteria, and increase
in pathobionts (22, 54–56). The term alpha diversity was
introduced to describe the mean microbial species diversity in
the gut (43). Higher species diversity leads to higher resilience in
the gut ecosystem. In other words, a healthy, resilient
gut microbiome relies on high richness and biodiversity (57).

Jørgensen and colleagues performed a 16S ribosomal RNA-
based profiling of stool samples in 44 patients with CVID, 45
patients with inflammatory bowel disease (IBD) and 263 healthy
controls (22). Alpha diversity of the gut microbiota was reduced in
patients with CVID and IBD. CVID patients were also different in
beta diversity compared to controls and IBD. Patients with very low
serum IgA had reduced alpha diversity. Increased plasma levels of
lipopolysaccharide (LPS) were associated with reduced alpha
diversity. Two biomarkers [i.e., soluble CD14 (sCD14) and
sCD25] of increased microbial translocation and immune cell
activation were increased in CVID patients. LPS and sCD25 levels
were strong determinants of reduced alpha diversity in a subgroup
of patients with inflammatory and autoimmune phenotype. In
particular, they found that certain Firmicutes of Clostridia class
(Lachnospiraceae Dorea and Lachnospiraceae Roseburia families),
Bacilli and certain Proteobacteria of Gammaproteobacteria class
were increased in CVID. Other Firmicutes of Clostridia class
(Christensenellaceae and Lachnospiraceae Blautia families),
Actinobacteria (Bifidobacteriaceae family) and other Proteobacteria
of Deltaproteobacteria class (Desulfovibrionales order) were reduced
in CVID. Overall, these results, including the decrease of beneficial
Frontiers in Immunology | www.frontiersin.org 3
taxa (e.g., Bifidobacteriaceae family) and the increase of the
detrimental classes Bacilli and Gammaproteobacteria, emphasize a
link between CVID, alterations of gut microbiota, and
systemic inflammation.

Shulzhenko et al. examined the duodenal microbiome in 7
patients with E-CVID and 8 patients without enteropathy (54).
Both groups had very low levels of serum IgA, but those with
enteropathy showed decreased mRNA levels of both IgA
subclasses in the duodenal mucosa. IGHA1 mRNA was
approximately 10 times higher than IGHA2 and =∼ 100 times
higher than for IgG genes suggesting that IgA in general and
IgA1 in particular is the dominant gut Ig immunoglobulin in
CVID small intestine. These data were extended by showing
reduced IgA expression, by immunohistochemistry, in the
duodenal tissues of CVID patients with enteropathy compared
to those without enteropathy. The authors, using transkingdom
network analysis of the duodenal microbiome found
Acinetobacter baumannii as a candidate microbe driving CVID
enteropathy. The authors also found that A. baumannii activated
the monocyte-derived THP-1 cell line, through the expression of
interferon (IFN) type I (IFNB1) and CXCL9, with the induction
of the Th1-driven inflammation found in CVID enteropathy (54,
58). In addition, type I and type II IFNs were responsible for the
shift to pro-inflammatory metabolism in the small intestine. The
authors suggested that A. baumannii was responsible for villous
atrophy and malabsorption in the absence of mucosal IgA. In
conclusion, this study suggests that patients with CVID and
enteropathy exhibit decreased duodenal IgA expression
compared to their counterparts without enteropathy.
Moreover, A. baumannii exhibited some of the criteria one
might expect of an enteropathy-inducing pathobiont.

Using 16S rRNA sequencing, Fiedorová et al. analyzed the
bacterial and fungal gut microbiota (mycobiota) in 27 CVID
patients and 28 matched healthy controls including 16 case-
control pairs living in the same household (55). The alpha
diversity of the CVID and control subjects gut community was
evaluated in terms of a number of observed OTUs (richness),
Shannon index and Chao1 index. All measured alpha diversity
indices were lower in the CVID cohort than in controls. In
particular, CVID patients with severe phenotype were associated
with lower alpha diversity indices. In this study, alterations of alpha
diversity were not associated with inflammatory and autoimmune
disorders. Interestingly, the authors did not find any significant
taxonomic differences of fungal microbiota between patients and
controls, suggesting that gut mycobiota may not affect the CVID
phenotype. More recently, the same group characterized the fecal
microbiota and stool metabolome in a cohort of 6 CVID patients
without gastroenterological symptoms and their healthy
housemates (56). CVID fecal microbiome showed increased
bacterial diversity and differences in several bacterial species
compared to controls. Moreover, CVID patients showed in the
stool samples decreased levels of adenosine and inosine, two
metabolites of purine metabolism, which modulate several aspects
of the immune response (59, 60).

The relationships between microbiota-specific systemic
IgG and mucosal IgA were examined by Fadlallah et al. (61).
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These authors demonstrated that serum IgG directed against
commensal microbiota are present in healthy subjects and are
increased in patients with selective IgA deficiency (SIgAd).
Serum IgG and secretory IgA target the same bacteria, and
each individual targets a diverse microbiota repertoire. Hence,
it is possible to hypothesize that IgRT with IgG preparations
from IgA-deficient patients could offer better protection against
gut microbial translocations in patients with CVID, especially for
treating gastrointestinal-related inflammation (61). In this study,
the authors also found that plasma levels of IL-6 and sCD14, two
markers of systemic inflammation, were increased in CVID
patients compared to healthy controls.

A fundamental question is whether microbiomes in other
niches (e.g., oral or respiratory tract), besides gut, can control the
immune dysregulation in CVID patients. A recent study
highlighted the possible involvement of oral microbiota in
CVID (62). The authors showed an increase of oral bacterial
load, alpha diversity, and abundance of bacteria from the
Prevotellaceae family in CVID patients with low serum IgA
compared to controls. In addition, decreased serum IgA and
expansion of Prevotellaceae bacteria were associated with lung
disease (62).

The molecular pathways by which gut microbiota contribute
to systemic inflammation in patients with CVID are of great
importance but remain poorly understood. CVID patients may
have increased intestinal permeability caused by a variety of
direct and indirect microbial and immunological mechanisms
associated to CVID-related enteropathy (44, 48, 63). This
condition provides an impairment of the gut barrier,
predominantly caused by disruption of intercellular tight
junctions. Increased intestinal permeability leads to
microbiota-host interactions involving a multitude of bacterial
products (e.g., lipopolysaccharides, peptidoglycan, flagellin,
RNA, and DNA) released into the portal circulation and
influences microbial sensing and systemic immune response
through recognition of microbe-associated molecular patterns
by the innate immune system (64, 65). On the other hand, gut
microbial dysbiosis and infectious triggers may further
exacerbate gut leakiness causing increased microbial
translocation and inflammation.

Jørgensen and collaborators carefully examined the role of gut
microbiota to different aspects of systemic inflammation. In a
first study, they confirmed that CVID patients have reduced gut
microbial diversity compared to healthy donors (66). Eight-week
administration of rifaximin, the oral non-absorbable intestinal
antibiotic, did not modify circulating markers (LPS, sCD14, and
sCD25) of inflammation in plasma of CVID patients. Rifaximin
treatment was associated with a significant change in microbial
alpha diversity (Chao1, Shannon index and OTUs). These results
support the hypothesis that systemic inflammation in CVID is
not influenced by rifaximin-sensitive bacteria. In another study,
the same group highlighted the importance of the gut
microbiota-dependent metabolite trimethylamine N-oxide
(TMAO) in CVID. They found that CVID patients had
significantly elevated plasma concentrations of TMAO and
trimethylamine (TMA) compared to healthy controls.
Frontiers in Immunology | www.frontiersin.org 4
Increased circulating levels of TMAO correlated with raised
LPS and increased inflammatory markers such as TNF-a and
IL-12 (67). Plasma TMAO concentrations correlated positively
with gut abundance of Gammaprobacteria. The authors
concluded that TMAO could be a link between gut microbial
dysbiosis and systemic inflammation.

In conclusion, there is evidence that the composition of the
gut microbiota in patients with CVID is significantly different
from healthy individuals (22, 55, 56, 63, 68). Whether changes in
the intestinal microbiota observed in CVID are cause or effect of
disease still needs to be determined.

Diarrhea is a common gastrointestinal symptom in CVID
patients (69–72). Gut-microbial diversity, evaluated by the 16S
rRNA gene sequencing, body mass index (BMI), spleen size, and
lymphocyte phenotypes were examined in 46 CVID patients
reporting ≥ 6 days/months of diarrhea (63). As expected, BMI
was lower and malabsorption more common in patients with
diarrhea vs. non-diarrhea patients. Patients with diarrhea had
reduced naïve CD4+ T cell counts. Alpha diversity was lower in
15 CVID patients with diarrhea compared to 12 healthy donors.
The colonic microbiota of CVID patients with diarrhea differed
from that of patients without diarrhea in beta diversity. Alpha
diversity was lower in CVID patients compared to controls.
There was no difference in alpha diversity between patients
with and without diarrhea. Very few CVID patients with
diarrhea tested positive for viruses (norovirus, adenovirus,
cytomegalovirus, sapovirus). Only one patient was positive for
Clostridioides difficile.

Figure 1 schematically illustrates some of the structural
features and the cells of the innate and adaptive immune
system in human colonic mucosa in normal subjects and in
CVID patients.
GUT MICROBIOTA IN EXPERIMENTAL
CD19 DEFICIENCY

CD19 deficiency is a risk factor for monogenic CVID in humans
(99). A mouse model of CVID (CD19−/− mice) is characterized
by intestinal malabsorption and defects in lipid metabolism and
transport (100). CD19−/− mice develop defective maturation,
proliferation, and selection of B cells in the intestinal germinal
center, thus resulting in impaired B cell memory and insufficient
synthesis of high-affinity antibodies (101) (102, 103). CD19−/−

mice had a B cell deficiency in gut-associated lymphoid tissue
(GALT) resulting in a dramatic decrease of fecal IgA, IgG, and
IgM compared to wild-type (WT) mice. As a consequence,
CD19−/− mice cannot bind intestinal bacteria with IgA with
subsequent expansion of fecal anaerobic bacteria. These mice
develop chronic intestinal malabsorption and altered microbiota
composition characterized by outgrowth of anaerobic bacteria
within the order Bacteroidales (e.g., Rikenellaceae and
Lachnospiraceae), in addition to specific species [Staphylococcus
spp., Sutterella spp., segmented filamentous bacteria (SFB), an
undescribed species of alphaproteobacteria, and Bilophila spp].
Intestinal malabsorption was associated with intestinal mast cell
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activation. In this study, treatment with metronidazole and the
subsequent reduction in the severity of malabsorption highlights
the hypothesis that expansion of anaerobic bacteria was driving
the malabsorption in CD19−/− mice. In order to determine
whether the intestinal malabsorption was due to dietary gluten
exposure, the authors applied a strict gluten-free diet (GFD). Five
weeks after initial GFD-exposure the intestinal mucosa
histologically showed a reduction of malabsorption. The
authors suggested that malabsorption in CD19−/− mice was, at
least in part, not only microbiota-dependent but also gluten-
sensitive. Of note, gluten sensitivity in patients with CVID is still
a matter of debate (100). The results of the previous study suggest
that gut microbiota could be an important co-factor in CD19−/−
Frontiers in Immunology | www.frontiersin.org 5
mice. Modification of gluten antigens by microbial
transglutaminase may enhance the immunogenicity of gluten
peptides, unleashing the inflammatory response (100). In this
scenario, the mucosal IgA seems to play an intriguing role as
modulators of the gut microbiota (104). In fact, secretory IgA
regulates the composition and functions of the gut microbiota
by promoting symbiosis between bacteria (105), whereas
commensal bacteria induce local IgA response. In addition,
IgA binds to members of the commensal gut microbiota
and affects colonization levels (106). IgA-coated species include
members of the Proteobacteria phylum (e.g., Enterobacteriaceae)
and Firmicutes phylum (e.g., Lactobacilli), which were relatively
increased in the CVID cohort studied by Fiedorová and
FIGURE 1 | Left side Gut homeostasis and healthy gut are maintained by the interplay between physical barrier (intact mucus layer and epithelial cells) and several
cells of the innate and adaptive immune system. In normal subjects four major phyla dominate the gut microbiome: Bacteriodetes, Firmicutes, Proteobacteria, and
Actinobacteria. Dendritic cells (DCs) are pivotal for sensing bacterial products and activating antigen-specific CD4+ T cell differentiation. DCs also promote TH17
immunity, Foxp3+ Treg induction, and IgA production by plasma cells (73). Approximately 5% of primary bile acids transit to the colon and can be metabolized by
commensal gut flora (74, 75). These secondary bile acids promote Treg generation and modulate the production of cytokines from DCs (76–78). Several other
immune cells (e.g., macrophages, mast cells, neutrophils, ILC3, TH1 cells, plasma cells) are sentinels in the mucosal system (79). Neutrophils exert anti-bacterial
effects through the release of their stored and newly synthesized mediators and the formation of neutrophils extracellular traps NETs (80). TH17 cells produce IL-22
that promotes secretion of anti-microbial peptides such as b-defensins by epithelial cells. ILC1 and ILC3 are present in human intestinal mucosa (81). ILC3 produces
IL-22, which plays a role in containing the commensal flora (82) and protecting epithelial cells (83). Paneth cells produce several molecules with antimicrobial activity
(a-defensin, REG3, ANG4, sPLA2) as well as cytokines that can recruit immune cells (84). The short thymic stromal lymphopoietin isoform (sfTSLP), constitutively
expressed by human epithelial cells, is crucial in preserving immune tolerance in the gut (85–87). Right side In patients with CVID, alpha and beta diversity of the gut
microbiota is reduced compared to healthy donors (22, 66). Repeated or chronic infections damage the intestinal epithelium (44). The disruption of the gut barrier
integrity and the reduction of secretory IgA (54) increase microbial translocation (88) and the permeability of pathogen-associated molecular patterns (PAMPs) such
as LPS (22, 66, 89). LPS activates TLR4 on human macrophages (90), neutrophils (91), and mast cells (92, 93) to release pro-inflammatory mediators and ROS. The
numbers of ILC3 and ILC1 are abnormally high in the inflamed intestinal mucosa (94). The long TSLP isoform (lfTSLP), induced by several components of gut
microbiota, exerts pro-inflammatory effects and contributes to intestinal damage (85–87). The passage of bacteria-derived products (e.g., LPS, butyrate, acetate
propionate, TMAO) into the circulation is one of the means of communication between the gut microbiota and the lung or the liver (2, 89, 95, 96). The three most
common short chain fatty acids (SCFAs) (butyrate, acetate, and propionate) can also exert immunomodulatory/anti-inflammatory roles (97, 98).
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colleagues. Hence, reduced secretory IgA in CVID patients with
enteropathy can lead to microbial dysbiosis.

The use of CD19-/- mice as a clinically relevant model for
CVID has been critically examined by Jorgensen and
collaborators (107). These authors emphasized that this mouse
model does not reflect the polygenic causes of the majority of
CVID patients. Therefore, animal models should be carefully
considered when studying the interplay between microbiota
and immunodeficiency.
SMALL INTESTINAL BACTERIAL
OVERGROWTH AND CVID

A recent cross-sectional study on a cohort of 27 CVID
individuals reported that symptoms of small intestinal bacterial
overgrowth (SIBO) were found in the majority (> 60%) of
patients (72). This disorder is characterized by the presence of
a pathological concentration of bacteria in the jejunal aspirate
equal to or greater than 105 colony-forming units (CFU) per ml.
Recognition of this syndrome is made possible by the non-
invasive hydrogen tests, such as glucose and lactulose breath tests
(108). Symptoms traditionally linked to SIBO include bloating,
diarrhea, and abdominal pain/discomfort (72). Steatorrhoea is
present in more severe cases. SIBO can contribute to or worsen
the nutritional status of CVID patients. In fact, bacterial
overgrowth can compromise the absorption of proteins, fats,
carbohydrates, vitamins, and other micronutrients. For example,
B-12 deficiency is caused by the consumption of cobalamin by
anaerobes, malabsorption of the vitamin due to competitive
binding with cobalamin from bacterially generated metabolites
of cobalamin at the ileal receptor, and in more severe
overgrowth, mucosal injury involving the binding site (109).
The excess of bacteria, in addition to competing for nutrient
intake, can also produce toxic metabolites (e.g., bile acids,
hydroxylated fatty acids, and other organic acids) and cause
direct damage to the enterocytes of the small intestine, leading to
increased intestinal permeability (110). Deconjugation of bile
acids by intestinal bacteria may result in malabsorption of fat and
fat-soluble vitamins with consequent steatorrhoea and fat-
soluble vitamin deficiencies. Bacterial synthesis of folic acid
may be responsible for the unusual combination of high folate
and B12 deficiency (72).
THE GUT-LUNG AXIS IN CVID

There is compelling evidence of bidirectional gut-lung axis in
CVID. Several studies have demonstrated that respiratory
infections, mostly prevalent in CVID, are associated with a
change in the composition of the gut microbiota (111–117). In
particular, many respiratory infections, common in CVID
patients, are often accompanied by gastrointestinal symptoms
(112, 118). In animal models, bacterial infections or intratracheal
instillation of LPS led to alterations in the intestinal microbiota
Frontiers in Immunology | www.frontiersin.org 6
(118, 119). On the other side, repeated and/or chronic
gastrointestinal infections can damage the intestinal epithelium
resulting in an increased microbial translocation (88). Soluble
microbial components (e.g., LPS, peptidoglycans) andmetabolites
(e.g., butyrate, acetate, propionate, TMAO) transported via the
circulation are one means of communication between the gut
microbiota and the lungs (2, 89, 95, 96). Immune cells can also
migrate from the intestine to the respiratory tract via the
circulation (120). Finally, the gut can modulate immunological
and non-immunological responses in the lungs via host-derived
inflammatory mediators (121). Further studies are needed to
ascertain the pathophysiological relevance of the routes of
communications within the gut-lung axis in CVID.
THE GUT-LIVER AXIS IN CVID

The microbiota-gut-liver axis might be a key player in the
pathogenesis of liver involvement in CVID (44), as the passage
of bacteria-derived products into the portal circulation can
activate specific receptors on cells of innate immunity (e.g.,
TLR4 receptors on macrophages and monocytes), leading to
liver inflammation (96).

The gut microbiota is now considered a “metabolic organ”
that not only facilitates harvesting of nutrients and energy from
the ingested food but also produces several metabolites (e.g., bile
acids) that signal through their cognate receptors to modulate
host metabolism (122) and immune system (123). One class of
such metabolites, primary bile acids, produced in the liver, is
metabolized to secondary bile acids in the intestine by the gut
microbiota (74, 75, 122). Secondary bile acids activate the plasma
membrane G protein-coupled bile acid receptor 1 (GPBAR1 or
TGR5) and the nuclear Farnesoid-X-Receptor (FXR) (74, 123).
GPBAR1 and FXR, highly expressed by intestinal epithelial cells,
are also present in immune cells, intestinal muscle cells and
neurons (123).

The interaction between the bile and the microbiota is
bidirectional. Bile acids can modulate the microbiota through
the engagement of FXR (124). GPBAR1 and FXR are expressed
by macrophages, DCs, NK cells (125–127), and T helper cells
(122). The activation of these receptors inhibits several aspects of
the inflammatory pathways (74, 123).

It is well established that Foxp3+ Treg cells play a
fundamental role in maintaining immune homeostasis in the
intestinal lamina propria (79, 128, 129). Bile acid metabolites
inhibited the differentiation of TH17 cells by binding to the
transcription factor retinoid-related orphan receptor-gt (RORgt)
(77). These authors also found that the bile acid metabolite
isoallolithocholic acid increased the differentiation of Treg cells
through the overexpression of Foxp3. More recently, it has been
demonstrated that secondary bile acids increased Foxp3
induction acting on DCs to diminish their immunosuppressive
properties (76). Ablating the FXR receptor in DCs enhanced the
generation of Treg cells in vitro and in vivo. Collectively, these
studies indicate that secondary bile acids are potent inducers of
August 2021 | Volume 12 | Article 712915

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Varricchi et al. Gut Microbiome and CVID
Tregs, suggesting that microbial metabolism of endogenous
steroids contributes to immunological balance in the gut.

These results have translational relevance. Song and coworkers
have demonstrated that both dietary and microbial factors
modulate bile acid composition and colonic Foxp3+ Tregs (130).
Importantly, genetic deletion of bile acid metabolic pathways in
gut symbionts decreased Treg cell population.

Further studies should investigate possible alterations of bile
acid metabolites and host immunological homeostasis in
CVID patients.
LOW-GRADE INFLAMMATION AND
CANCER IN CVID

Several studies reported an increased risk of malignancies in
CVID (131–134). Gastric cancer is the leading cause of death in
Italian CVID patients (135). The pathophysiological pathways
underlying the relationships between CVID and the increased
prevalence of cancers in CVID are of paramount importance but
not fully understood. It is well established that chronic low-grade
inflammation is a driving force of tumor initiation and
progression (136, 137). Moreover, inflammatory stimuli such
as LPS, activate immune cells (e.g., macrophages, neutrophils)
present in tumor microenvironment (90, 91) and play a role in
the switch between dormancy and proliferation of metastatic
cells (138, 139). CVID patients exhibit immunological evidence
of local and systemic inflammation (22, 61, 66, 67). Future
studies should evaluate whether the gut microbiome could be
used to identify CVID patients who may develop cancer.

The link betweenHelicobacter pylori (H. pylori) and gastric cancer
represents a prototype of interactions between chronic low-grade
inflammation caused by a pathobiont and cancer (140). H. pylori is a
pathogen recognized to play a role in gastric tumorigenesis. H. pylori
infection in CVID patients appears to facilitate the progression to
gastric atrophy and cancer with higher rates compared with the
general population, and this could be explained by impaired mucosal
immune response to pathogens (141). In particular, low mucosal IgA
levels (with bactericidal activity against H. pylori) and
hypochlorhydria may enhance H. pylori colonization and mucosal
inflammation, thus promoting gastric carcinogenesis (142). H. pylori
may not be the only microbe implicated in gastric cancer
development. Several studies demonstrate differences in the
microbiota of individuals with atrophic gastritis and gastric cancer,
suggesting that the alteration of gastric microbiomemodulates gastric
cancer initiation and progression (143–148). H. pylori colonization
gradually fades in the final steps of gastric carcinogenesis with H.
pylori frequently absent/undetectable at the cancer stage (143, 149,
150). Of note, progression to gastric cancer in some patients, can
occur after H. pylori eradication (135). The latter findings
highlight the involvement of additional factors (e.g., other
components of the gastric microbiota) in the carcinogenesis
process. The latter observation is clinically relevant because
follow-up strategies targeting gastric cancer secondary
prevention cannot rely exclusively on H. pylori identification but
also on implementation of upper endoscopies in CVID patients.
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Further studies appear necessary to identify an altered gastric
microbiome in CVID patients at risk of developing gastric cancer.
GUT MICROBIOTA AND ANTIBIOTICS

Despite adequate i.v. or s.c. IgRT, recurrent respiratory and
gastrointestinal infections are the commonest clinical features in
CVID (26, 151). Consequently, a significant percentage of CVID
patients are frequently treated with antibiotics to control acute
infections or as prophylaxis to reduce infection frequency (152).
Antibiotics have also detrimental effects inducing profound
alterations of the gut microbiota or dysbiosis and development
of bacterial resistance (153). Interestingly, some antibiotics might
also have beneficial effects on gut microbiota. For example,
rifaximin demonstrated to have eubiotic effect on gut microbiota
by increasing the abundance of some bacterial species considered
to be beneficial in patients affected by different gastrointestinal and
liver diseases (154). Early studies reported that rifaximin reduced
plasma endotoxin levels in patients with cirrhosis (155, 156). By
contrast, rifaximin had no effect on circulatingmarkers of systemic
inflammation (sCD14, sCD25 or LPS), whereas decreased
microbial alpha diversity in patients with CVID (66). Moreover,
none of the ten major bacteria hitherto indicated to differentiate
CVID patients and healthy controls, the CVID specific dysbiosis
index (22), was significantly modified by rifaximin. The CVID
specific dysbiosis index correlates with circulating biomarkers of
systemic inflammation and gut leakage. Hence, it is possible to
hypothesize that the lack of CVID specific dysbiosis index
modification could explain the absence of an anti-inflammatory
effect of rifaximin.

The term “gut resistome” describes the collection of genes or
genetic material of gut microbiota that confers antimicrobial
resistance (157, 158). Microbial genes conferring resistance to
antibiotics can be transferred to gut pathogens in a process
named horizontal gene transfer (HGT), thus inducing disease in
the host (159). Hence, gut microbiota can be considered as a
potential reservoir of antibiotic resistance particularly following
recurrent antibiotic therapy (160). Antibiotic-induced
resistances can be found even years after the drug
administration (161–164). These observations are relevant
because prolonged or recurrent antibiotic treatments are
frequently administered to CVID patients (152). Antibiotic
therapies can also induce impairment in an otherwise healthy
gut microbiota, thus contributing to Clostridioides difficile
infection (CDI) (165, 166). Several antibiotics (i.e.,
clindamycin, cephalosporins, penicillins, and fluoroquinolones)
have been associated with the development of CDI (167). Drug-
related factors (e.g., antibiotic class, duration, dose and route of
administration of therapy) and host-related factors can
profoundly influence the microbial composition. This post-
antibiotic dysbiosis can be expressed by loss of diversity, loss
of crucial taxa, shifts of metabolic pathways, and reduced
colonization resistance against invading pathogens. For these
reasons targeted therapies with narrow-spectrum antibiotics and
shorter treatment courses are advisable in CVID patients.
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ENGINEERED MODALITIES OF GUT
MICROBIOME

The human microbiological ecosystem changes in response to a
variety of environmental stimuli, making difficult to identify
specific microbiome signatures in human diseases. Assuming
that human microbiome is easily shaped, perhaps we could
modulate it to favor a desired outcome (168). The emerging
field of microbiome engineering is in its infancy and faces several
challenges (169). Figure 2 provides examples of treatments that
can modify the microbiome.

Despite increasing evidence involving gut microbiota in
CVID (54, 63, 66, 67), the therapeutic modulation of the gut
microbiome has not been investigated yet as a potential
treatment for these patients. Elie Metchnikoff first noted that
not all microbes are dangerous and envisioned that oral
administration of lactic acid-producing bacteria with food (e.g.,
soured milk) might improve health and longevity (1). Therefore,
Metchnikoff was acclaimed as a founding father of contemporary
probiotics. There is some evidence that probiotics exert
Frontiers in Immunology | www.frontiersin.org 8
immunomodulatory effects and are considered a promising
alternative for the prevention and treatment of certain
inflammatory disorders (183). Recent evidence indicates that
probiotic-derived metabolites promote differentiation of Foxp3+

Tregs (184). The latter observation deserves attention because
CVID patients have lower numbers of Treg cell compared to
healthy controls in their peripheral blood (185, 186).
DIET

Dietary contributions to health and chronic conditions, such as
obesity, cardiovascular and gastrointestinal disorders, and cancer
are of universal importance. Gut microbiome has been
implicated as one of several potentially causal human-
environment interactions in these disorders (187–189). Host
diet plays a fundamental role in shaping the gut microbiota
(170–172, 188, 189). Dietary antigens can induce Foxp3+ Treg
cells in the intestine (173), essential regulators of immunological
FIGURE 2 | Schematic representation of theoretically therapeutic approaches that can modify the gut microbiome in CVID patients. Diet is an important environmental
factor that shapes the microbiota composition (170–172) and can induce Foxp3+ Treg cells in the intestine (173). Another approach is the administration of prebiotics,
probiotics or synbiotics (174, 175). The different synbiotics, doses, and regimens makes it difficult to perform controlled clinical trials (176). Rifaximin, which is beneficial
in patients with certain gastrointestinal diseases (154), decreases alpha diversity in CVID patients without improving markers of systemic inflammation (66). It has been
suggested that the administration of specific bacterial products can selectively modulate colonic immune cells in CVID patients (177). Fecal microbiota transplant (FMT),
initially developed to treat recurrent C. difficile colitis (178, 179) is theoretically an appealing therapeutic tool. Genetically modified bacteria used to treat experimental
colitis (180) and phages (181, 182) could theoretically be used for treating microbiome-associated pathologies in CVID patients.
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homeostasis in the colon (190). Diet can modulate the population
of colonic Treg cells in mice (130). The relationships between
different habitual diets (e.g., healthy plant-based foods, animal-
based foods, and butyrate-producer foods), microbiome
composition and peripheral and colonic Treg cells in CVID are
presently unknown and should be investigated.
FECAL MICROBIOTA TRANSPLANT

Fecal microbiota transplant (FMT), which transfers an entire
microbiome from a healthy donor to a recipient, is a therapeutic
tool with several potential applications but numerous specific
caveats. Transplant can be performed via an oral capsule
containing fecal extracts (191–193), colonoscopy-guided
insertion (193, 194), or enema (195, 196). Healthy donors vary
widely in microbiome composition, and donor composition can
affect success rates (197, 198). FMT involves risks, and regulatory
bodies have recently released safety alerts regarding the risk for
transmission of infectious agents via FMT (199). Specific
guidelines have been released to offer FMT with high levels of
safety at the time of COVID-19 pandemic (200).
PREBIOTICS, PROBIOTICS, AND
SYNBIOTICS

Another approach is to administer a formulation of compounds
and spores that promote growth of desirable bacteria in the gut.
These are referred to as probiotics, although the term refers to
formulations containing live microorganisms (201). The term
prebiotics refers to compounds (e.g., oligosaccharides and fibers)
promoting the growth of specific bacteria (174, 175). The
combination of probiotics and prebiotics is called a synbiotic
(202). The latter strategy is appealing because one could
incorporate any combination of microorganisms to construct a
personalized symbiotic (203). The variety of possible synbiotics
different formulations, doses, and regimens makes it difficult to
make comparisons. The activity of taxonomically similar or even
identical strains manufactured by different producers varies.
Therefore, the therapeutic properties of a formulation cannot
be extrapolated from one preparation to another (203, 204).
Moreover, it is not always evident whether gut microbiome can
be actually altered by synbiotic regimens. Finally, synbiotics
themselves can be associated with adverse events and their
safety profile is often overlooked (205, 206). Probiotics,
prebiotics, and synbiotics have shown some efficacy in certain
experimental (203) and clinical studies (176). However, there is
no published evidence addressing these issues in CVID patients.
SYNTHETIC MICROBES

Several bacterial genera have been engineered to produce
microorganisms with modified genetic payloads. Steidler et al.
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developed a genetically modified strain of Lactococcus lactis to
deliver IL-10 to treat colitis in a mouse model (180). It has been
postulated that synthetic bacteria could become in the future a
tool for microbiome engineering (207). No successful
interventions that utilize engineered microbes to improve
patient outcomes have been described.

Phage therapy is another technology for microbiome
engineering. The goal is to design phages, infecting and killing
undesired bacteria. It has been suggested that phages could serve
as a tool for treating microbiome-associated pathologies (181).
This approach has been preliminary used since the early
twentieth century as a treatment for certain infections (208).
Phage therapy has been reported to be successful in a patient
infected with multidrug-resistant A. baumanii (209).
Interestingly, Shulzhenko et al. found A. baumanii the microbe
driving enteropathy in CVID patients (54).

Although phage therapy is a potential application for
microbiome engineering (182), this approach poses several
challenges. Phages are live organisms and they could
theoretically evolve and cause unknown effects on a microbial
community (210).
CONCLUSIONS AND PERSPECTIVES

In the past decade, several studies have started to identify
quantitative and qualitative gut microbiota alterations in CVID
patients. It is unclear whether the disruption of eubiotic
microbiota observed in CVID is primary or secondary to
environmental exposures, antibiotic therapies or diet. Evidence
for a role of gut microbiota in the development of local and
systemic complications in CVID is still limited. Developments in
microbiome field will allow as to shift from a statistical to a casual
association research. CVID is not a single disease, but rather a
heterogeneous syndrome. Therefore, specific and detailed
analyses of the composition (e.g., bacteria, yeast, and viruses)
of gut microbiota in different phenotypes of CVID are urgently
needed. A common omics quantification of microbiota is
sequencing of the 16S ribosomal RNA subunit (22, 54, 63).
This is a relatively simple and convenient way to identify
organisms in a microbiome, but can miss potentially relevant
pathobionts (6, 168). Whole-community shotgun sequencing
(WCS) is more accurate to identify individual species and
genes (7, 211, 212). We anticipate that advances in sample
and sequencing will be critical for further advances in the field.
Table 1 summarizes some of the outstanding pathophysiological
questions that should be addressed to better highlight the
complex interactions between specific gut microbial species
and different phenotypes of CVID.

Experimental and clinical studies aimed at modulating gut
microbiota in CVID patients are in their infancy. A better
knowledge of quantitative and qualitative alterations in
pathobionts in these patients is a prerequisite to hypothesize
applications from the emerging field of microbiome engineering.
A preliminary approach has shown that systemic inflammation
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in CVID is not modified by the elimination of rifaximin-sensitive
bacteria (66). The administration of probiotics, prebiotics or
their combination (symbiotics) could represent another strategy
to modify the microbiome in CVID patients. FMT, initially
developed to treat recurrent C.difficile colitis, represents the
most radical means of engineering a microbiome (178).

Recently, Geva-Zatorsky and collaborators have devised a
sensitive screen that entailed monocolonization of mice with a
large number of species of human gut symbionts followed by
extensive phenotyping and transcriptomic of immune cells (177).
Individual microbes induced colonic TH17 cells, Treg cells and
DCs or decreased ILCs. These results indicate that future efforts
should be devoted to identify bacterial products underlying
specific immunomodulatory activity of therapeutic interest.
The advantage of the latter approach, using microbial products
dosed as a drug, would yield host responses more reproducible
overusing whole bacteria to modify gut microbiota.

Table 2 illustrates some of the outstanding questions
concerning the therapeutic corrections of microbiome in CVID
patients (213). Further advances in this field might have the
potential to revolutionize the approach to prevention and
treatment of different phenotypes of CVID.
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