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Abstract

The Sonic Hedgehog (Shh) signaling pathway is commonly activated in gastrointestinal cancer. However, our
understanding of the Shh pathway in gastric cancer remains limited. Here we examined the effects of cyclop-
amine, a specific inhibitor of the Shh signaling pathway, on cell growth and proliferation in gastric primary can-
cer cells GAM-016 and the MKN-45 cell line. The results showed that the Shh signaling molecules SHH, PTCH,
SMO, GLI1, and GLI2 were intact and activated in both types of cells. Furthermore, we observed that cyclop-
amine inhibited gastric cancer cell proliferation through cell cycle arrest and apoptosis. An in vivo study using
NOD/SCID mouse xenografts demonstrated that cyclopamine significantly prevented tumor growth and devel-
opment. Our study indicated that Shh signaling pathway could promote gastric cancer cell proliferation and
tumor development, and blocking this pathway may be a potential strategy in gastric cancer treatment.

Key words: apoptosis; cell cycle arrest; cell proliferation; cyclopamine; primary gastric cancer; Sonic Hedgehog

Introduction

Gastric cancer is one of the most commonly diag-
nosed cancers, leading to approximately 800,000 deaths

every year worldwide. Despite some advances in the treat-
ment of gastric cancer, the prognosis of patients remains
poor, with a 5-year survival rate of less than 5%.1 Therefore,
novel therapeutic strategies are urgently required.

Sonic Hedgehog (Shh), as a member of the Hedgehog
family, was originally identified by its homology to the Dro-
sophila melanogaster segment polarity gene Hedgehog, and
the Shh signaling pathway is highly conserved in mammals
and other vertebrate species.2,3 When it binds to its receptor
Patched 1 (PTCH1), SHH can enhance the activity of the
transmembrane protein Smoothened (SMO),4 and the GLI
transcription factor subsequently regulates the expression
of target genes that control cell growth, survival, and differ-
entiation in various tissues.5–7

Accumulating evidence has shown that the Shh signaling
pathway is activated in several cancer types, including neuro-
blastoma, colon cancer, and small cell lung cancer.8–15 More-
over, recent data have proven that the Shh pathway is
correlated with the initiation of gastrointestinal cancers.16–18

Therefore, more understanding of this pathway in cancer de-

velopment will contribute to treatment of gastric cancers. In
this study, we found that cyclopamine can inhibit cell prolif-
eration and tumor growth by blocking the Shh signaling path-
way in gastric cancer.

Materials and Methods

Primary cell source

Primary human gastric cancer specimens were obtained
with patients’ written consent from Daping Hospital, the
Third Military Medical University, China. This project was
approved by the Ethical Committee of Southwest University,
China. Animal studies were conducted with approval from
the Institution’s Animal Care and Use Committees at South-
west University.

Cell culture

Human primary gastric cancer specimens were dissociated
and digested into single-cell suspension by collagenase and
DNase cocktail, and cells were grown in Neuro-basal culture
medium (Invitrogen, Carlsbad, CA) supplemented with
20 ng/L epidermal growth factor and 20 ng/L b-fibroblast
growth factor (Sigma, Magdeburg, Germany).19 We refer
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to the primary gastric cancer cells as GAM-016, based on the
patient’s sex and case number. MKN-45 cell line from the
ATCC was grown in RPMI 1640 supplemented with 10%
fetal bovine serum (Invitrogen). Both lines were cultured at
37�C in 5% CO2 humidified incubator and were subcultured
at the split ratio of 1:3 every 3 days.

Cyclopamine treatment or BrdU incubation

Since tomatidine is structurally similar to cylopamine but
does not inhibit the Shh pathway, we used tomatidine as the
experimental control to investigate if specific inhibition of
the Shh pathway by cyclopamine was the primary cause of
decreased cell proliferation and tumor growth.20,21

Cyclopamine was dissolved in dimethyl sulfoxide
(DMSO) as a 10 mM stock solution. GAM-016 and MKN-
45 cells were treated with 20 lM cyclopamine or tomati-
dine.22 Micrographs of cell morphology were taken with an
Olympus microscope (80i, Tokyo, Japan). Cell growth num-
ber was analyzed by trypan blue exclusion assay.23

The thymidine analog 5-bromo-2-deoxyuridine (BrdU;
Sigma) was added to the stock solution, which was prepared
in phosphate-buffered saline (PBS) at 10 mM and diluted
1000· for the working solution. After incubation for 45 min
in the culture medium, the cells were ready for BrdU antibody
staining.

Immunofluorescent staining

Cells were grown on cover slips and treated with either
tomatidine or cyclopamine. After treatment, cells were suc-
cessively washed with PBS, fixed in 4% paraformaldehyde
(Beyotime, Chongqing, China) for 15 min, and permeabi-
lized with 0.3% Triton X-100 for 5 min. Cells were blocked
with 10% horse serum for 1 h at 37�C, incubated with a pri-
mary antibody for 2 h at room temperature, followed by
the appropriate secondary antibody for 1 h, and 300 nM
4¢,6-diamidino-2-phenylindole for counterstaining at room
temperature.24,25 Rat anti-BrdU (ab6326; Abcam, Cam-
bridge, United Kingdom) 1:200, goat anti-GLI2 (N-20; Santa
Cruz Biotechnology, Shanghai, China) 1:50, goat anti-SHH
(N-19; Santa Cruz Biotechnology) 1:50, goat anti-GLI1 (N-
16; Santa Cruz Biotechnology) 1:50, goat anti-patched (C-
20; Santa Cruz Biotechnology) 1:50, and rabbit anti-SMO
(H-300; Santa Cruz Biotechnology) 1:50 were used as primary
antibodies. Alexa Fluor 488 goat anti-rat IgG (H + L) 1:600,
Cy3-labeled donkey anti-goat IgG, or Cy3-labeled goat anti-
rabbit IgG 1:500 (Beyotime) was used as the secondary anti-
body. A Nikon microscope with Image-Pro Plus software was
used to record and analyze the fluorescent signaling images
(Holdtecs Technology Co., Ltd, Chengdu, China).

MTT assay

Cell growth curve was determined by 3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay.
Cells were planted onto a 96-well plate at 400 cells/well over-
night. After incubation with cyclopamine or tomatidine for a
certain time period, 20 lL of MTT (5 mg/mL MTT in PBS;
Sigma) was added to each well, and the cells were then incu-
bated at 37�C for 2 h. DMSO (200 lL per well; Sigma) was
added to dissolve the cell. The absorbance was measured at
a wavelength of 570 nm after shaking for 10 min.26–28

Cell cycle assay

Cells were collected and fixed in 70% ethanol. After being
stained with propidium iodide (PI; Beyotime), the cells were an-
alyzed by flow cytometry (BD BioSciences, Franklin Lakes, NJ).
The data were analyzed by Cell Quest Pro (BD BioSciences) and
ModFit 3.1 (Verity Software, Topsham, United Kingdom).

Apoptosis analysis

Exponentially growing cells at 70%–80% confluence were
treated with 20 lM cyclopamine or tomatidine. Adherent and
floating cells were collected by centrifugation, and washed
with ice-cold PBS. Apoptotic cell was determined by stain-
ing with PI and 7-aminoactinomycin D (Beyotime), followed
by flow cytometry (BD Biosciences) analysis.

Reverse-transcription polymerase chain reaction assay

Cells were treated with either cyclopamine or tomatidine for 7
days and harvested. Total RNA was extracted by Trizol method

FIG. 1. The Sonic Hedgehog (Shh) signaling pathway
components are detected in primary gastric cancer cells.
Immunofluorescent staining was manipulated to investigate
the expression of SHH, PTCH, SMO, GLI1, and GLI2 in
human primary gastric cancer cells (red), and the nuclei
were counterstained with 4¢,6-diamidino-2-phenylindole
(DAPI; blue). Scale bar, 100 lm.
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and reverse transcribed into cDNA by M-MLV (Promega, Mad-
ison, WI). Real-time polymerase chain reaction (PCR) was per-
formed using a SYBR Green PCR Master Mix (Takara) with
primers against Shh, Ptch, Gli1, Gli2, and CCND1. All primer
pairs were verified by melting curve analysis following quanti-

tative reverse-transcription (RT)-PCR, with each primer pair
showing a single desired amplification peak.29 The individual
values were normalized to that of the tomatidine control, and
the ratio of the relative expression levels over that of the vehi-
cle-treated cells was calculated.

FIG. 2. The Shh pathway is
required for the cell growth
and proliferation in primary
gastric cancer cells and cell
line. (A) The primary gastric
cancer cells (GAM-016) and
MKN-45 cells were treated
with 20 lM tomatidine or
cyclopamine for 4 days. Cell
morphology was observed.
Scale bar, 100 lm. (B) The
proliferation rate of GAM-
016 and MKN-45 cells was
determined by cell number;
the proliferation rate of
tomatidine-treated cells was
designated as 100%. (C, D)
3-(4,5-Dimethylthiazol-2-
yl)-2,5-diphenyl tetrazolium
bromide (MTT) assay was
conducted daily from 1 to 7
days. Data are presented as
mean – SD. *p < 0.05;
**p < 0.01.

FIG. 3. 5-Bromo-2-deoxyuridine (BrdU) immunofluorescent staining was accomplished in GAM-016 and MKN-45 cells.
(A, B) Cells were grown on coverslips and treated with 20 lM tomatidine or cyclopamine for 4 days. After treatment, BrdU
was added and cells were incubated for another 45 min. Cells were stained with an antibody against BrdU (green), and coun-
terstained with DAPI (blue). The percentage of BrdU-positive cells was calculated. Cells were counted from at least five ran-
domly selected fields. Data are presented as mean – SD. *p < 0.05; **p < 0.01. Scale bar, 100 lm.
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Xenograft tumor model

One million primary gastric cancer cells were injected
subcutaneously into flanks of 4-week-old NOD/SCID female
mice (Beijing Laboratory Animal Research Center, Beijing,
China). After 7 days of tumor growth, the mice were treated
with cyclopamine (0.4 mg intraperitoneally) for 7 days.
Tumor volumes were calculated daily based on caliper mea-
surements of tumor length and width (volume = tumor length ·
width2 · 0.5236) after treatment. Then the mice were sacri-
ficed, and the tumors were excised and weighed.

Statistical analysis

Assays were set up in triplicate, and the results are pre-
sented as mean – SD. Variance between the experimental
groups was determined by two-tailed t-test, and p < 0.05
was considered statistically significant.

Results

The Shh signaling pathway was intact and activated
in primary gastric cancer cells

To investigate the role of the Shh signaling pathway, we
detected the expression of Shh signaling pathway compo-

nents in GAM-016 cells by immunofluorescent staining. As
expected, SHH, PTCH, and SMO staining patterns were ob-
served on the membrane, while GLI1 and GLI2 were princi-
pally localized in the nucleus (Fig. 1). These observations
demonstrated that the Shh signaling pathway was intact
and activated in primary gastric cancer cells.

The Shh pathway was required for cell growth
and proliferation in GAM-016 and MKN-45 cells

Next, we investigated whether the Shh signal pathway is re-
quired in cancer cell growth and proliferation. The GAM-016
and MKN-45 cells were used in this experiment. Cyclopamine,
a steroidal alkaloid that specifically recognizes the Shh signaling
pathway through direct interaction with SMO, was used to block
the Shh pathway.30–32 Treatment with cyclopamine caused a
significant decrease in the number of viable cells compared
with tomatidine-treated cells (Fig. 2A). The cell growth number
was reduced more than 70% compared with the control in
GAM-016 cells (Fig. 2B). Similarly, cyclopamine treatment
also reduced 55% of cell growth in MKN-45 cell line (Fig.
2B). The MTT assay also showed that cyclopamine signifi-
cantly inhibited cell growth. GAM-016 cells were more sensi-
tive to the treatment than MKN-45 cells (Fig. 2C, D).

FIG. 4. Inhibition of the
Shh signaling pathway in-
duced cell cycle arrest and
apoptosis. (A, B) Cells were
treated with 20 lM toma-
tidine or cyclopamine for 4
days, and the cell cycle was
analyzed by fluorescent acti-
vated cell sorting. (C) The
CCND1 mRNA expression
level was determined by re-
verse-transcription polymer-
ase chain reaction (RT-PCR)
analysis. Tomatidine treat-
ment was a control. (D)
Apoptosis induced by
cyclopamine was determined
by flow cytometry. Data are
presented as mean – SD.
*p < 0.05; **p < 0.01. (E, F)
The mRNA expression level
of major Shh signaling path-
way molecules (such as Shh,
Ptch, Gli1, and Gli2) was
detected by RT-PCR analysis
after 7 days of treatment at
10 lM cyclopamine. Toma-
tidine served as a control.
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BrdU staining assay was also carried out to further confirm
that there was a dramatic inhibition in cell proliferation with
cyclopamine treatment in both GAM-016 and MKN-45 cells
(Fig. 3A, B).

Cell cycle arrest and apoptosis were induced by inhibition
of the Shh signaling pathway

To elucidate the mechanism of Shh-mediated cell survival
and proliferation, the cell cycle and apoptosis were tested
and analyzed. We observed that there was a significant re-
duction in the proportion of the S phase cells (23.5% to
17.3% and 24.5% to 16.7% in MKN-45 and GAM-G16
cells, respectively), while a simultaneous increase occurred
in both G0/G1 and G2/M phase cells after cyclopamine treat-
ment (Fig. 4A, B). These data revealed that cyclopamine
treatment blocked the G0/G1-S transition and induced G0/
G1 cell cycle arrest in GAM-016 and MKN-45 cells. RT-
PCR analysis showed that the mRNA level of CCND1 was
dramatically decreased after cyclopamine treatment, which
caused cell cycle arrest at the G1 phase. In addition, we
found that cyclopamine also induced cell apoptosis in
GAM-016 and MKN-45 cells (Fig. 4C, D). Furthermore, de-
creased expression of major Shh signaling pathway mole-
cules was observed using RT-PCR, suggesting that the Shh
signaling pathway plays a pivotal role in promoting the sur-
vival of gastric cancer cells (Fig. 4E, F).

Tumor growth in NOD/SCID mice was attenuated
by blockage of the Shh signaling pathway

We established a NOD/SCID mouse xenograft model to test
the function of the Shh pathway in tumor growth and develop-
ment. After 10-day treatment with cyclopamine, the tumor
growth in SCID mice decreased nearly 80% compared to the
control group (Fig. 5A). The tumor weight in the cyclopamine
group was dramatically lower than in the control group (Fig.
5C). We also observed that there was no significant difference
in body weight between the treatment and the control group
(data not shown), which suggests that cyclopamine treatment
may have minimal side effect or toxicity to the mice. Therefore,
blocking the Shh signaling pathway might be a promising strat-
egy for gastric cancer treatment.

Discussion

Although several clinical and pathologic studies have
demonstrated that SHH and the expression of its signaling
cascade proteins are associated with the progression of
gastric cancer,33–36 the definitive role of the Shh pathway
in gastric cancer remains unknown and requires further in-
vestigation.37 Previous studies have shown that the activa-
tion of the Shh pathway can promote cancer cell survival
and cell cycle progression via up-regulation of Bcl234,38

and expression of G1-phase cyclins, respectively,39,40

FIG. 5. Blockage of the Shh
signaling pathway attenuated
tumor growth in NOD/SCID
mice xenografts model. (A)
Tumor growth curve at 7 days
after cyclopamine treatment
(0.4 mg intraperitoneally). (B)
Photograph of tumors resected
from NOD/SCID mice. (C)
Quantitative analysis of tumor
weight. Data are presented as
mean – SD. *p < 0.05; **p < 0.01.
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especially Cyclin-D, advancing cell cycle from G1 phase to
S phase.41,42 In the current study, we used a primary gastric
cancer cell suspension and the MKN-45 cell line to clarify
the function of Shh signaling in gastric cancer in vitro and
in vivo.

Our results showed that the blockage of Shh signaling by
the specific inhibitor cyclopamine could reduce CCND1 ex-
pression and induce G0/G1 arrest, which is consistent with
previous studies.40,41 We presented results from a tomatidine
control, which supported cyclopamine being specific to the
Shh pathway. We also found that cyclopamine treatment in-
duced cell apoptosis in gastric cancer cells and inhibited
tumor growth, which had previously been observed in mela-
nomas and cholangiocarcinomas.43–45 Thus, it was illus-
trated that Shh signaling plays a crucial role in cell growth,
survival, and proliferation in gastric cancer cells.

In conclusion, our results demonstrated that the Shh sig-
naling pathway is directly correlated with gastric cancer
cell proliferation and tumor growth. Therefore, it is possible
that the multiplication and development of gastric cancer
cells could be retarded by cyclopamine as a specific inhibitor
by blocking the Shh signaling pathway. This suggests that
the Shh pathway could be a promising therapeutic target in
gastric cancer treatment.
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Abbreviations Used

BrdU¼ 5-bromo-2-deoxyuridine
DMSO¼ dimethyl sulfoxide

MTT¼ 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide

PBS¼ phosphate-buffered saline
PI¼ propidium iodide

PTCH¼ Patched 1
RT-PCR¼ reverse-transcription polymerase chain reaction

SHH¼ Sonic Hedgehog
SMO¼ Smoothened
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