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Abstract
Knowing species’ breeding system and mating processes occurring in populations is 
important not only for understanding population dynamics, gene flow processes, and 
species' response to climate change, but also for designing control plans of invasive 
species. Geranium robertianum, a widespread biennial herbaceous species showing 
high morphological variation and wide ecological amplitude, can become invasive 
outside its distribution range. A mixed-mating system may be expected given the 
species’ floral traits. However, autonomous selfing is considered as a common fea-
ture. Genetic variation and structure, and so population mating processes, have not 
been investigated in wild populations. We developed 15 polymorphic microsatellite 
markers to quantify genetic variation and structure in G. robertianum. To investigate 
whether selfing might be the main mating process in natural conditions, we sampled 
three generations of plants (adult, F1, and F2) for populations from the UK, Spain, 
Belgium, Germany, and Sweden, and compared open-pollinated with outcrossed 
hand-pollinated F2 progeny. The highly positive Wright's inbreeding coefficient 
(FIS) values in adults, F1, and open-pollinated F2 progeny and the low FIS values in 
outcross F2 progeny supported autonomous selfing as the main mating process for 
G. robertianum in wild conditions, despite the presence of attractive signals for in-
sect pollination. Genetic differentiation among samples was found, showing some 
western–eastern longitudinal trend. Long-distance seed dispersal might have con-
tributed to the low geographic structure. Local genetic differentiation may have re-
sulted not only from genetic drift effects favored by spontaneous selfing, but also 
from ecological adaptation. The presence of duplicate loci with disomic inheritance is 
consistent with the hypothesis of allotetraploid origin of G. robertianum. The fact that 
most microsatellite markers behave as diploid loci with no evidence of duplication 
supports the hypothesis of ancient polyploidization. The differences in locus dupli-
cation and the relatively high genetic diversity across G. robertianum range despite 
spontaneous autonomous selfing suggest multiple events of polyploidization.
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1  | INTRODUC TION

The breeding system in Angiosperms can vary from auto-
gamy (self-fertilization) to strict allogamy (obligate outcross-
ing). Strict allogamy may also evolve into a heteromorphic 
self-incompatibility system preventing selfing or into dioecy 
(Charlesworth,  2006; Richards,  1997). Autogamy can allow 
for purging deleterious recessive alleles by natural selection 
(Charlesworth & Charlesworth, 1987; Goodwillie et al., 2005) and 
facilitate colonization of new territories for pioneer species or oc-
currence in extreme or unpredictable habitats where pollinators 
are scarce or absent (Barrett, 2003; Hartfield et al., 2017; Kalisz 
& Vogler, 2003). However, it can reduce effective genome recom-
bination and within-population genetic diversity (e.g., Bomblies 
et  al.,  2010; Jullien et  al.,  2019; Nordborg,  2000). Obligate out-
crossing represents an advantage by mixing gene pools, increasing 
genetic diversity, and preventing inbreeding depression (Arista 
et  al.,  2017; Charlesworth,  2006), but it can require pollinating 
vectors, such as insects, birds, or bats, and a sufficient number 
of compatible mates or extensive gene flow between populations 
for ensuring reproductive success (Berjano et  al.,  2013; Menz 
et al., 2011). Retaining facultative self-pollination, in particular de-
layed autonomous selfing, can offer reproductive assurance when 
outcrossing has not occurred in case of limited pollinator service 
(Busch & Delph,  2012; Kalisz & Vogler,  2003). Pollinator service 
may be limited in fragmented habitats or in case of temporary un-
favorable environmental conditions (Arista et al., 2017; Goodwillie 
& Weber, 2018). Therefore, a lot of species are characterized by a 
mixed-mating system to guarantee seed production despite a risk 
of inbreeding depression in the progeny (Goodwillie et al., 2005, 
2010; Kalisz et al., 2004).

Outcrossing species usually possess attractive floral traits for 
pollinators, for example, a high number of colored flowers and 
nectar reward, whereas autonomous selfers often have reduced 
floral display and nectar reward (Bartoš et  al.,  2020; Goodwillie 
et  al.,  2010; Sicard & Lenhard,  2011). Knowing species’ breeding 
system and quantifying mating processes (outcrossing and selfing 
rates), which occur in populations, are important for understanding 
population dynamics, gene flow processes, and potential species' 
response to climate change (Charlesworth,  2006; Razanajatovo 
et al., 2020). They are also important for designing conservation re-
covery plans of endangered species and control plans of invasive ex-
otic species (Barrett, 2010; Dudash & Murren, 2008). For instance, 
small populations of species with a self-incompatibility system re-
quire a high number of compatible mates for successful demographic 
and genetic restoration, whereas inbreeding issues may be found 
for species with a mixed-mating system, requiring genetic rescue 
of small populations (e.g., Menges, 2008; Olivieri et al., 2016; Van 
Rossum, Destombes et  al.,  2021). Autonomous selfers may easily 
produce seeds and naturalize, and may therefore become potentially 
invasive outside their distribution range (Antoń & Denisow,  2018; 
Razanajatovo et  al.,  2016). Exclusion and pollination experi-
ments can give insights on whether species are self-compatible or 

self-incompatible (e.g., Bartoš et al., 2020), but genetic studies using 
molecular markers can allow for quantifying outcrossing rates, in-
breeding levels, pollen dispersal processes, and genetic diversity 
and structure in wild populations (e.g., Arista et al., 2017; Bomblies 
et  al.,  2010; Charlesworth,  2006; Gelmi-Candusso et  al.,  2017; 
Jacquemart et al., 2021).

Geranium robertianum L. (Geraniaceae) is a common, biennial(–
annual), ruderal herb and is highly variable morphologically. The 
species shows a wide ecological amplitude, mainly occurring in 
woodlands and hedge banks, but also in various open habitats, 
such as grasslands, wastelands, railway banks, skeletal soils, and 
walls, on calcareous and acidic soils (Tofts, 2004; Vandelook & Van 
Assche,  2010; Wierzbicka et  al.,  2014). It is widely spread in its 
native distribution area in Europe, and naturalized in temperate 
regions of many other continents, where it can become invasive 
(Tofts,  2004). Individual plants bear between 10 and 300 pink 
flowers (12–17 mm diameter), usually slightly protandrous, some-
times homogamous or protogynous (Bertin,  2001; Tofts,  2004). 
The dehiscing of the five inner anthers usually precedes the 
lengthening of the style and stigma receptivity. When the inner 
stamens wither, the fiver outer anthers move to the center of the 
flower around the style and dehisce (Knuth, 1908; Tofts, 2004). 
Flowers stay open for two to five days (Tofts, 2004; F. Vandelook, 
personal observation), which is similar to other Geranium species 
(e.g., Willson et al., 1979). Generally, five seeds per fruit are pro-
duced (Tofts,  2004). Flowers produce nectar and are visited by 
insects, in particular butterflies, Syrphid flies, wild bees, and 
honey bees (Endress,  2010; Tofts,  2004; Yeo,  1973), suggesting 
outcrossing. Self-fertilization is, however, possible, as stigmas 
during elongation can be covered with pollen of the inner whorl of 
stamens before possible outcrossing events, and when the stigmas 
standing above the dehiscing outer anthers recurve (Knuth, 1908; 
Tofts, 2004), allowing for prior and delayed autonomous selfing. 
Autonomous selfing has been considered as a common feature 
(Bertin,  2001; Yeo,  1973, 1985). Consequently, mixed mating 
likely occurs in G. robertianum. However, population mating pro-
cesses have never been investigated in the field using codominant 
molecular markers to estimate genetic variation and inbreeding 
levels. Besides, plants only reproduce by seeds, which are dis-
persed not only at short distances by carpel projection but also 
at long distances by epizoochory (Tofts,  2004; Yeo,  1973). As a 
result, genetic variation and structure patterns may be contrasted 
according to mating processes and short- and long-distance seed 
dispersal (e.g., Bomblies et al., 2010; Gelmi-Candusso et al., 2017; 
Helsen et al., 2015; Jacquemart et al., 2021). Moreover, due to its 
wide distribution range combined with a wide ecological ampli-
tude, G. robertianum appears as an interesting model for study-
ing local adaptation and response to climate change (Hoffmann 
& Sgrò, 2011; Wierzbicka et al., 2014). Therefore, we developed 
polymorphic microsatellite markers to quantify genetic variation 
and structure in G. robertianum. To investigate whether selfing 
might be the main mating process in natural conditions, we sam-
pled three generations of plants (adult, F1, and F2) for populations 
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from the UK, Spain, Belgium, Germany, and Sweden, and progeny 
obtained from outcrossed hand-pollinated were compared with 
progeny in open-pollinated conditions.

2  | MATERIAL S AND METHODS

2.1 | Study populations and sampling

To cover a wide ecological amplitude and geographic range of 
G. robertianum, 43 populations were selected from various calcare-
ous or acidic habitats (e.g., forests, forest edges, grasslands, railway 
banks, sandy and shingle beaches), from the UK, Spain, Belgium, 
Germany, and Sweden (Figure  1, Table  1). Populations varied in 
size, ranging from about 20 flowering individuals up to hundreds 
of individuals (F. Vandelook, unpublished data). Leaves were col-
lected from a total of 191 individuals (adults, and F1 and F2 seed 

progeny) and dried in silica gel. Sampling occurred during the peak 
of flowering and pollinator activity, between mid-June and mid-
August. F1 progeny was obtained from germination of seeds col-
lected in wild populations on different maternal plants separated 
at least 1 meter from each other. F1 plants from eight populations 
from UK and Germany were grown (1) in the Botanical Garden of 
the Phillips-Universität Marburg (Germany) in 2013 until flower-
ing and fruiting, with plants randomly distributed (but covered with 
shade nets, which might have reduced insect pollination); F2 seed 
progeny was obtained from germination of seeds collected on the 
F1 plants after open pollination (F2o); (2) in a nonheated green-
house at Meise Botanic Garden (Belgium) in late May-June 2019, 
where F2 seed progeny was obtained after outcrosses (F2c) be-
tween F1 plants (Table 2) or selfing (F2s, but only for two maternal 
plants and four progenies in total). For the crossing experiment, 
flowers were emasculated before anthesis and bagged. Stigmas 
were hand-pollinated with pollen when they were receptive on two 

F I G U R E  1   Location of the 43 populations of Geranium robertianum (gray dot: open habitat; black dot: forest habitat) sampled in the UK, 
Spain, Belgium, Germany, and Sweden. For population codes, see Table 1. The approximate native distribution range is indicated in light gray 
(modified from Hultén & Fries, 1986)
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consecutive days and rebagged until ripe seeds could be collected, 
after three to four weeks.

2.2 | DNA analyses

2.2.1 | DNA extraction

DNA was isolated from ca. 15–25 mg of dried leaf material for 191 
samples using a CTAB method (Doyle & Doyle,  1990). We esti-
mated the concentration of genomic DNA extracts using the Qubit 
Quantitation Platform (Invitrogen), which was standardized to 
2 ng/μl.

2.2.2 | Nuclear microsatellite primer 
development and multiplexing

Nuclear microsatellites were developed by Genoscreen (Lille, France) 
as described in Van Rossum, Destombes et al. (2021). Genomic DNA 
of 15 individuals was used (Table  1). A microsatellite library was 
developed using 1 μg from an equimolar DNA pool of 10 individu-
als through 454 GS-FLX Titanium pyrosequencing of a DNA library 
enriched for AG, AC, AAC, AAG, AGG, ACG, ACAT, and ATCT re-
peat motifs (Malausa et al., 2011). PCR products were purified and 
quantified, and GsFLX library was then constructed and sequenced 
on a GS-FLX PTP. The selection of sequences with target microsatel-
lites was performed using QDD with the parameters set by default 
(Meglécz et al., 2010). The sequence reads were submitted to the 
NCBI Sequence Read Archive (SRA) database under the accession 
number PRJNA694498. Among 38,206 raw sequence reads, 4,030 
sequences comprised a microsatellite motif, from which 461 primer 
pairs were designed on flanking regions.

For biological validation, a total of 47 primer pairs showing a 
high number of repeats (at least 9) and covering a wide range of PCR 
product sizes (from 101 to 316  bp) were tested for amplification 
on eight DNA samples. PCR amplifications were carried out in 10 
μl reactions containing 20 ng of template DNA, 1× reaction buffer, 
37.5  pmol MgCl2, 6  pmol dNTP, 10  pmol of each primer, and 0.5 
U Taq polymerase (FastStart—Roche Diagnostics). The PCR cycling 

consisted of an initial denaturation at 95°C for 10 min, followed by 
40 cycles: denaturation at 95°C for 30 s, annealing at 55°C for 30 s 
and extension at 72°C for 1 min, and a final extension at 72°C for 
10  min. Primer pairs were discarded after migration of PCR prod-
ucts on 2% agarose gel electrophoresis when they did not amplify or 
gave multiple fragments. As a result, 39 primer pairs were validated 
from which 24 microsatellite loci that showed good amplification for 
all individuals and still covered a wide range of PCR product sizes 
(from 101 to 316 bp) were selected for polymorphism study on 15 
DNA samples. PCR amplifications were performed with the same 
conditions than previously but with labeled primers (Di-repeat +tail 
Applied Biosystems). Each PCR product (diluted at 1:50 with dH2O) 
was mixed with Hi-DiTM Formamide (Life Technologies, Carlsbad, 
California, USA) and GeneScanTM 500 LIZ® Dye Size Standard 
(Applied Biosystems). Fragments were migrated on a 3730XL DNA 
capillary sequencer (Applied Biosystems). Alleles were scored using 
the microsatellite plugin in Geneious 11.1.2 (Biomatters). Finally, 15 
polymorphic and interpretable markers (Table 3) were selected and 
three multiplexes were developed using Multiplex Manager v1.2 
(Holleley & Geerts, 2009) and subsequently optimized. All individu-
als were genotyped using the same protocol.

2.3 | Data analysis

2.3.1 | Null alleles and independence of the loci

Each locus was checked for potential null alleles using INEST 2.2 
(Chybicki & Burczyk, 2009). We conducted the Bayesian approach 
(IIM) with 106 Markov Chain Monte Carlo iterations, of which the 
first 105 were discarded as burn-in phase to test two models: a full 
model (nfb, including null alleles, inbreeding, and genotyping failures) 
and a model (nb) where there was no inbreeding. The best fitting 
model corresponded to the lowest value of the deviation informa-
tion criterion (DIC). INEST also estimated null allele frequencies 
for each locus with their 95% highest posterior density intervals 
(HPDI). To assess the independence of the loci, a test for genotypic 
disequilibrium was performed between pairs of loci with sequential 
Bonferroni-type correction (Rice, 1989) on adults and on F1 progeny 
using FSTAT version 2.9.4 (Goudet, 2003).

Maternal plant

Pollen donor

CAL DAN KH1 KH2 NIE RAU REI SL2

CAL 1 1 3

DAN 6 2 1

KH1 1

KH2 2

NIE 1 2

RAU 2 3

REI 2 5 3

SL2 3 2 3

TA B L E  2   Summary of crosses between 
populations and number of genotyped 
seed progeny per cross (for population 
codes, see Table 1)
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2.3.2 | Genetic variation within generations

Expected heterozygosity (He) and Wright's inbreeding coefficient 
(FIS), corrected for small sample size, were calculated for each 
locus and for each generation (adults, F1 progeny, and F2 prog-
eny) using FSTAT. We tested the significance of the FIS values (for 
each locus and over all loci) by randomization tests and sequen-
tial Bonferroni-type correction. Differences in He and FIS between 
F1, open-pollinated, and outcross F2 progeny were tested for the 
eight populations used for the crossing experiment (Table  2) by 
the Wilcoxon matched-pairs tests by locus using STATISTICA ver-
sion 12.

2.3.3 | Population genetic structure at a wide 
geographic scale

To investigate population genetic structure patterns, we per-
formed a principal coordinate analysis (PCoA) based on a standard-
ized distance matrix using GenAlEx 6.5 (Peakall & Smouse,  2012) 
and Bayesian clustering analyses using STRUCTURE version 2.3.4 
(Pritchard et al., 2000) on adults, F1 progeny, and open-pollinated F2 
progeny. For STRUCTURE analyses, we computed 15 runs for K = 1 
to 10 clusters, using an admixture ancestry model with correlated 
allele frequencies and no prior population information, run length 
of burn-in period of 106 iterations, and 2 106 Markov Chain Monte 
Carlo replications. The most likely number of K clusters was inferred 
as described in Evanno et  al.  (2005) after running STRUCTURE 
HARVESTER (Earl & vonHoldt,  2012). The most likely estimated 
membership (Q) values of the 15 independent runs computed with 
CLUMPP version 1.1.2 (Jakobsson & Rosenberg, 2007) were visual-
ized as a bar plot.

3  | RESULTS

3.1 | Loci and scored alleles

Out of the 15 primer pairs, 10 could be interpreted to amplify 
diploid loci. Five primer pairs (GER17, GER35, GER42, GER45, 
and GER47) showed two to four peaks ascribed to different al-
leles (Figure S1). From the genotyping of the F2 progeny obtained 
by outcrosses (F2c) and of their maternal and paternal plants, the 
amplified regions for each primer pair could be interpreted as cor-
responding to two duplicate loci (Table  3), not overlapping for 
GER42, but overlapping for the four other markers (Figure S1). 
However, the higher size of the peak allowed us to identify when 
two overlapping alleles occurred in both loci. For GER35, only 
one (rare) allele was found in both loci, and separating the two 
loci was easy. For GER17, GER45, and GER47, it can be difficult to 
distinguish both loci in some genotypes without data on maternal 
and paternal plants together with their progeny, and so we rec-
ommend not using them unless performing paternity analyses or Lo
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cross experiments. For MAL population (Mallorca, Spain), GER17 
and GER47 did not appear to be duplicated and some other mark-
ers did not amplify.

We scored two to 16 alleles in the 20 loci for a total of 133 al-
leles (Table 3). Five loci showed evidence for null alleles as 95% HPDI 
differed from 0, but only GER26 showed a high null allele frequency 
(0.133; 95% HPDI: 0.087–0.184; Table 3). There was significant ge-
notypic disequilibrium between 15 and 6 of the 190 pairs of loci 
after sequential Bonferroni correction (p  <  .05) for adults and F1 
progeny, respectively.

3.2 | Genetic variation within generations

Expected heterozygosity (He) values per locus ranged from 0.037 
to 0.901 with a mean of 0.550 for adults and F1 progeny col-
lected in wild populations (Table 4), and were similar between F1, 
open pollination (F2o), and outcross (F2c) F2 progeny (Wilcoxon 
test Z = 0.50–1.72, p ≤ .085). Wright's inbreeding coefficient (FIS) 
values significantly (p  <  .05) differed from the Hardy–Weinberg 
expectations, with a deficit of heterozygotes for almost all loci, ex-
cept for (F2c) progeny, for which FIS values were not significant or 
significantly negative (Table 4), and significantly lower than F1 and 
F2o progeny (Z = 3.72, p < .001). FIS values were slightly but sig-
nificantly lower (Z = 2.33, p = .020) for the F2o progeny obtained 
from open pollination of randomly distributed plants from eight 
populations, compared with F1 progeny collected in the same 
eight wild populations (mean FIS = 0.668 and 0.768, respectively), 
suggesting the occurrence of some, however, limited, outcross-
ing. The IIM analysis indicated that inbreeding contributed to the 
positive FIS values (lowest DIC for the nfb model). Population DI2, 
for which 21 adults were sampled across the whole population, 
showed 11 different multilocus genotypes, with 1–9 individuals 
sharing the same multilocus genotype, He = 0.318 and FIS = 0.656 
(significantly positive, p < .05).

3.3 | Genetic structure at wide geographic scale

The PCoA distinguished Spanish samples from the other popula-
tions that showed some continuous variation, although UK samples 
tended to be separated from Belgian, German, and Swedish samples 
that overlapped (Figure 2). Within each region, adult, F1, and/or F2o 
generations overlapped, suggesting similar mating processes in the 
three generations. The Bayesian clustering analysis gave an optimal 
number of clusters at K  =  2. The UK samples showed high mem-
bership (Q) values for cluster 1 (≥80% for 91% of the individuals) 
and clustered together with a few German and Belgian samples (e.g., 
AAL, BOI, DIN, DR2, HE2, NIE, and RAU) (Figure 3a). A second peak 
was found for DeltaK at K = 4, further distinguishing the DI2 popu-
lation from Belgium (from which there were 21 samples) and some 
longitudinal trend for the continental populations (Figure 3b). The 
clustering was not related to habitat differences (Figure 1, Table 1).

4  | DISCUSSION

The highly positive inbreeding coefficient (FIS) values found for 
adults, F1, and F2o progeny supported the former hypothesis 
(Bertin, 2001; Yeo, 1985) that autonomous self-pollination is the 
main mating process contributing to seed production in wild popu-
lations of G. robertianum, and that outcross pollination was limited, 
despite the presence of attractive signals for insect pollination 
such as nectar production (Endress,  2010) and reporting of pol-
linator visitations (Bertin, 2001; Tofts, 2004). However, given the 
high number of flowers per plant, geitonogamous self-pollination 
might also be possible in case of pollinators visiting several flow-
ers on the same plant (Goodwillie et  al.,  2010; Richards,  1997). 
Moreover, crosses between closely related individuals, such as 
full siblings with the same multilocus genotype, resulting in bi-
parental inbreeding, might also contribute to high FIS values 
(Bomblies et al., 2010). This needs to be verified by investigating 
within-population genetic variation with more samples (Leipold 
et al., 2020). Spontaneous autonomous selfing is often observed 
in annuals, weeds, and pioneer species such as G. robertianum, 
whereas outcrossing is more common in perennials and species 
occurring in stable vegetation communities (Bartoš et  al.,  2020; 
Charlesworth, 2006). For predominantly selfing species, outcross-
ing rates can also vary along the flowering season, depending on 
pollinator and resource availability (Jullien et al., 2021).

Some genetic differentiation among samples was found, but with 
no pronounced geographic pattern except for the UK and Spanish 
(Mallorca) samples and some western–eastern longitudinal trend. 
Long-distance seed dispersal (Tofts, 2004) might have contributed 
to the low geographic structure, as found for the bird seed-dispersed 
Juniperus communis (Jacquemart et al., 2021) and for species show-
ing epizoochorous seed dispersal, such as Anthyllis vulneraria (Helsen 
et al., 2015) and Dianthus carthusianorum (Rico & Wagner, 2016), as 
well as accidental introduction of seeds along with anthropogenic 
activities and infrastructures (Wierzbicka et al., 2014). Moreover, no 
evidence of reproductive isolation was found between the UK and 
German populations assigned to separate clusters as viable seeds 
and healthy plants were obtained from outcrosses (F. Vandelook, 
unpublished data). Local genetic differentiation between populations 
may have resulted not only from genetic drift effects promoted 
by spontaneous selfing, but also possibly from local ecological ad-
aptation (Bomblies et  al.,  2010; Hartfield et  al.,  2017; Wierzbicka 
et al., 2014). To get a comprehensive view of genetic structure pat-
terns and of their shaping factors, we need to expand the sampling 
within populations and across species' distribution range.

The presence of duplicate loci suggests that the species might be 
of polyploid origin, which is consistent with the hypothesis that G. 
robertianum is an allotetraploid resulting from hybridization between 
G. purpureum and another unknown parental species, based on chro-
mosome numbers, morphological similarities, cytological observa-
tions, and nectar composition (Baker & Baker, 1976; Widler-Kiefer & 
Yeo, 1987; Yeo, 1973, 2004). Tetrasomic inheritance, that is, random 
pairing of four homologous chromosomes, leading to all possible 
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combinations of up to four alleles per locus, can be expected for 
autotetraploids (Soltis et al., 2014; Stift et al., 2008). Disomic inher-
itance, with two separate pairs of two homologous chromosomes, 
is usually found in allotetraploids, but disomic inheritance can also 
establish in autopolyploids when whole-genome duplication is an-
cient, through the action of genetic drift combined with selection 
(Guo et  al.,  2015; Le Comber et  al.,  2010; Soltis et  al.,  2014). The 
fact that most microsatellite markers developed in the present 
study behave as diploid loci with no evidence anymore of duplica-
tion supports the hypothesis of ancient polyploidization (Yeo, 1973) 
and evolution to fixation of disomic inheritance in the genome of G. 
robertianum. Genetic drift and selection processes might have been 
promoted by the short generation times for this annual–biennial 
species (Tofts,  2004), autonomous self-pollination, and the wide 
ecological amplitude (Le Comber et al., 2010; Soltis et al., 2014) of G. 
robertianum, which has not only colonized moist woodland habitats, 
but also dry railway banks, grasslands, shingles, and rock outcrops, 
on calcareous and acidic soils (Table  1; Tofts,  2004; Wierzbicka 

TA B L E  4   Within-population genetic estimates per locus and per generation (wild: samples from wild populations, grouping adults and F1 
progeny; A: adults; F1: F1 seed progeny; F2o, F2s, and F2c: F2 seed progeny, obtained from open, self, and outcross pollination, respectively) 
for Geranium robertianum at 20 nuclear microsatellite loci: expected heterozygosity (He) and Wright's inbreeding coefficient (FIS)

Locus

He FIS

Wild A F1 F2o F2s F2c A F1 F2o F2s F2c

GER07 0.901 0.827 0.907 0.869 0.667 0.868 0.814* 0.888* 0.560* 1.000 ns −0.045 ns

GER29 0.410 0.403 0.398 0.596 0.000 0.500 0.809* 0.815* 0.753* – −0.162 ns

GER45A 0.236 0.051 0.328 0.478 0.000 0.498 1.000 ns 0.912* 0.761* – −0.120 ns

GER45B 0.597 0.665 0.451 0.427 0.667 0.317 0.807* 0.934* 0.933* 1.000 ns −0.101 ns

GER08 0.746 0.616 0.799 0.646 0.667 0.628 0.792* 0.886* 0.646* 1.000 ns 0.074 ns

GER17A 0.507 0.471 0.528 0.487 0.000 0.506 0.782* 0.833* 0.413 ns – −0.057 ns

GER17B 0.712 0.656 0.720 0.700 0.667 0.702 0.844* 0.829* 0.633* 1.000 ns 0.039 ns

GER30 0.582 0.504 0.490 0.477 0.000 0.431 0.949* 0.790* 0.461* – −0.025 ns

GER26 0.637 0.492 0.705 0.759 0.667 0.713 0.844* 0.902* 0.830* 1.000 ns 0.380*

GER05 0.729 0.541 0.798 0.823 0.750 0.753 0.763* 0.889* 0.722* 0.667 ns −0.080 ns

GER42A 0.182 0.148 0.202 0.056 0.000 0.131 1.000* 0.781* −0.015 ns – −0.063 ns

GER42B 0.037 0.100 0.000 0.000 0.000 0.000 1.000* – – – –

GER41 0.755 0.619 0.806 0.681 0.667 0.726 0.793* 0.892* 0.748* 1.000 ns −0.088 ns

GER23 0.585 0.520 0.620 0.563 0.667 0.467 1.000* 0.908* 0.848* 1.000 ns 0.254 ns

GER27 0.716 0.686 0.659 0.574 0.667 0.487 0.888* 0.935* 0.751* 1.000 ns −0.242 ns

GER47A 0.523 0.491 0.546 0.611 0.667 0.552 0.843* 0.892* 0.952* 1.000 ns −0.263 ns

GER47B 0.587 0.534 0.620 0.638 0.000 0.651 1.000* 0.953* 0.585* – 0.107 ns

GER38 0.735 0.537 0.774 0.678 0.000 0.659 1.000* 0.943* 0.826* – −0.306*

GER35A 0.106 0.101 0.109 0.000 0.000 0.000 1.000 ns 1.000* – – –

GER35B 0.723 0.584 0.783 0.714 0.667 0.715 0.868* 0.909* 0.618* 1.000 ns −0.269 ns

Mean 0.550 0.477 0.562 0.539 0.371 0.515 0.866* 0.891* 0.703* 0.966* −0.049 ns

Note: Departure from Hardy–Weinberg expectations: ns: not significant; *p < .05 after Bonferroni correction.

F I G U R E  2   Principal coordinate analysis (PCoA) plot for 144 
samples from 43 populations of Geranium robertianum. Axes 1 and 
2 explained 13.4% and 11.7% of the total variation, respectively. 
Country of origin: BE: Belgium; GE: Germany, SP: Spain, SW: 
Sweden. Generation: A: adults; F1: F1 seed progeny; F2o: F2 seed 
progeny, obtained from open pollination

F I G U R E  3   Results of Bayesian clustering (modal K = 2 and 4) for 144 samples from 43 populations of Geranium robertianum (ordered by 
increasing longitude). Each horizontal bar in the bar plot represents one individual and shows the probability of membership to each of the 
two or four clusters. Country of origin: BE: Belgium; GE: Germany, SP: Spain, SW: Sweden. Generation: A: adults; F1: F1 seed progeny; F2o: 
F2 seed progeny, obtained from open pollination. For population codes, see Table 1
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et al., 2014). The differences in locus duplication and the relatively 
high genetic diversity (Table 1) across the range of G. robertianum 
despite spontaneous autonomous selfing suggest multiple events of 
polyploidization (Soltis et al., 2014).

Further testing of developed molecular markers on G. purpureum 
and a comprehensive study of population genetic structure of both 
species might contribute to shed light on speciation processes and 
possible relationships between population genetic structure based 
on molecular markers, and morphological and environmental varia-
tion across species’ distribution range.
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