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ABSTRACT

Systematic evaluation of genome-wide Clustered
Regularly Interspaced Short Palindromic Repeats
(CRISPR) off-target profiles is a fundamental step
for the successful application of the CRISPR sys-
tem to clinical therapies. Many experimental tech-
niques and in silico tools have been proposed for
detecting and predicting genome-wide CRISPR off-
target profiles. These techniques and tools, how-
ever, have not been systematically benchmarked. A
comprehensive benchmark study and an integrated
strategy that takes advantage of the currently avail-
able tools to improve predictions of genome-wide
CRISPR off-target profiles are needed. We focused
on the specificity of the traditional CRISPR SpCas9
system for gene knockout. First, we benchmarked 10
available genome-wide off-target cleavage site (OTS)
detection techniques with the published OTS detec-
tion datasets. Second, taking the datasets gener-
ated from OTS detection techniques as the bench-
mark datasets, we benchmarked 17 available in sil-
ico genome-wide OTS prediction tools to evaluate
their genome-wide CRISPR off-target prediction per-
formances. Finally, we present the first one-stop
integrated Genome-Wide Off-target cleavage Search
platform (iGWOS) that was specifically designed for
the optimal genome-wide OTS prediction by integrat-
ing the available OTS prediction algorithms with an
AdaBoost ensemble framework.

INTRODUCTION

The lack of comprehensive investigations of Clustered Reg-
ularly Interspaced Short Palindromic Repeats (CRISPR)
on-target efficacy (sensitivity) and off-target profiles (speci-
ficity) has hindered successful application of the CRISPR
system for clinical therapies. The CRISPR on-target sin-
gle guide RNA (gRNA) design and efficacy prediction
have been extensively studied and benchmarked (1). Many

genome-wide high-throughput experimental techniques
and in silico tools have also been proposed for detecting
and predicting genome-wide CRISPR off-target profiles.
Although these techniques and tools have been evaluated in
several studies (2-6), the evaluations were not performed in
a systematic, comprehensive, and objective manner. Several
main challenges remain: (i) the genome-wide CRISPR off-
target profile detection techniques have not been systemat-
ically benchmarked; (ii) previous comparisons of CRISPR
off-target prediction tools were not comprehensive from a
genome-wide perspective; (iii) while genome-wide off-target
predictions are expected to be boosted in an aggregated way
by carefully integrating the available prediction tools, this
aggregation of tools is yet to be explored.

To this end, we present a comprehensive study that
benchmarks the available genome-wide off-target cleavage
site (OTS) detection techniques as well as the in silico
OTS prediction tools. The first benchmark of genome-wide
OTS detection techniques will provide objective knowl-
edge and benchmark datasets to be utilized in the follow-
ing benchmark of genome-wide in silico OTS prediction
tools; therefore, these two benchmarks can be performed se-
quentially. Furthermore, we also present the first one-stop
integrated Genome-Wide Off-target cleavage Search plat-
form(iGWOS) that was designed specifically for the optimal
OTS prediction by integrating the available OTS prediction
algorithms with an AdaBoost ensemble learning model.

MATERIALS AND METHODS

Figure 1 presents the overall workflow for benchmark-
ing genome-wide CRISPR OTS detection and prediction
in a sequential manner. The benchmark of experimental
CRISPR OTS detection techniques and in silico prediction
tools, as well as the development of the iGWOS platform
are presented in the following sections.

Benchmark genome-wide CRISPR OTS detection tech-
niques

Categories of experimental CRISPR OTS detection tech-
niques. Table 1 presents 10 available genome-wide double-
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Figure 1. The overall workflow of our benchmark study. We benchmarked the genome-wide CRISPR OTS detection techniques and in silico off-target
cleavage site (OTS) prediction tools in a sequential approach, and finally present the iGWOS platform for the integrated OTS prediction with an Adaboost

ensemble learning model.

Table 1. Overview of three categories of genome-wide OTS detection tech-
niques benchmarked in our study

Category Technique Reported sensitivity Reference

In vitro CIRCLE-seq <0.0017% 7
Digenome-Seq 0.10% (8,9)
DIG-seq 0.10% (10)
SITE-Seq Concentration-dependent an

Cell-based BLESS Not quant. (12)
GUIDE-seq 0.10% (14)
HTGTS Not quant. (16)
IDLYV capture 0.04-0.5% (17)
PEM-seq Not quant. (18)

In vivo DISCOVER- 0.30% (19)
Seq

strand breaks (DSBs) capture techniques that were devel-
oped to detect Cas9-induced DSBs in human species. They
are categorized into three types: (i) in vitro techniques, in
which the CRISPR-Cas9 system induces DSB cleavage sites
in the purified genomic DNA, including CIRCLE-seq (7),
Digenome-seq (8,9), DIG-seq (10) and SITE-Seq (11); (ii)
cell-based techniques, in which Cas9 induces cleavage sites
in living cells, including BLESS (12,13), GUIDE-seq (14),
HTGTS (15,16), IDLYV capture (17), and PEM-seq (18) and
(iii) in vivo techniques, i.e. DISCOVER-Seq (19), in which
Cas9 induces cleavage sites in vivo.

Curation of OTS datasets from individual OTS detection
techniques. We first comprehensively summarized the 10
available genome-wide OTS detection techniques, and col-
lected 11 genome-wide OTS datasets generated from the
available 10 detection techniques (with two datasets gener-
ated from Digenome-seq). Then we applied the curation of
gRNAs and their corresponding OTS detected from each
dataset. Hg19 was taken as the reference genome, so the ge-
nomic coordinates based on hg38 in the Digenome-seq and
SITE-Seq datasets were converted to hgl9by tool LiftOver
from UCSC genome browser (20). The benchmark study
focused on the traditional CRISPR SpCas9 system and uti-
lized gRNAs with 20 nucleotides (nt) followed by NGG-
PAM. Our primary curation indicated that a high GC-
content gRNA ‘GACCCCCTCCACCCCGCCTCCGG’
(with 80% GC content) targeting gene VEGFA, had a
considerable proportion of OTS detected by CIRCLE-
seq (2499/6903), Digenome-seq (21/138), DISCOVER-Seq
(56/58) and GUIDE-seq (150/403). Previous studies also in-
dicated that it is difficult to target GC-rich genes with gR-
NAs and that high GC% gRNAs tend to have weak speci-
ficity (2,21). Therefore, gRNAs with a GC content higher
than 75% were excluded from our datasets. After carefully
screening the OTS from these datasets, we noticed that a
small portion of OTS detected by BLESS (3/17), GUIDE-
seq (1/403), and CIRCLE-seq (260/6903) contained se-
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quences spanning 22 or 24 nt, which indicates that these
three techniques can detect OTS with DNA/RNA bulges
(22) at the RNA-DNA interface. In our study, DNA/RNA
bulges were not considered, therefore OTS spanning less or
more than 23 nt were all excluded. In addition, OTS only
with the canonical-PAM NGG was considered in our study
for the spCas9 system. Then, we noticed that CIRCLE-seq
(11/3106), SITE-Seq (27/70) and PEM-seq (1/52) detected
a small portion of OTS with mismatches >6 bases com-
pared to the gRNA targets at the first 20 nt before PAM.
In our study, the maximum mismatch tolerance of OTS was
set to 6. Finally, OTS spanning 23 nt with NGG-PAM and
mismatches up to 6 bases were curated in our analysis, re-
sulting in the curated datasets with 3905 OTS of 16 gRNAs
from CIRCLE-seq, 109 OTS of 11 gRNAs from Digenome-
seq, 38 OTS of 8 gRNAs from DIG-seq, 43 OTS of 6 gR-
NAs from SITE-Seq, 14 OTS of 2 gRNAs from BLESS,
209 OTS of 8 gRNAs from GUIDE-seq, 72 OTS of 4 gR-
NAs from HTGTS, 19 OTS of 4 gRNAs from IDLV, 51
OTS of 2 gRNAs from PEM-seq, and 2 OTS of 1 gRNA
from DISCOVER-Seq. The curated OTS datasets were used
to benchmark these OTS detection techniques. The details
of the experimental techniques and the curated datasets are
listed in Supplementary Table S1.

Benchmark in silico genome-wide CRISPR OTS prediction
tools

Categories of in silico CRISPR OTS prediction tools. Ta-
ble 2 presents 17 available in silico tools for genome-wide
CRISPR OTS prediction. These tools are categorized into
four types: (i) alignment-based (23-31), in which the poten-
tial OTS on a given genome are searched purely based on
sequence alignment to the intended target sequence with
certain constraints; (i) hypothesis-driven (32-35), in which
the candidate OTS are predicted and scored with the con-
tribution of specific sequence factors on off-target cleavage
activity; (iil) learning-based (3,36), in which candidate OTS
are predicted and scored based on a training model with fea-
tures affecting the off-target efficacy and (iv) energy-based
(37,38), in which candidate OTS are predicted and scored
based on a free-energy model for Cas9—-gRNA-DNA bind-
ing. A previous study by Alkan ef al. indicated that the
learning-based Elevation was more like a transformation of
CFD (37). Therefore, we excluded Elevation in our follow-
up benchmarking of prediction tools.

Generation of benchmark datasets for in silico OTS predic-
tion tools assessment.  After an assessment of alignment-
based OTS prediction tools, Cas-OFFinder was considered
as the best choice for genome-wide candidate OTS search-
ing (see Results). We aimed at generating the benchmark
datasets based on OTS detection techniques for the follow-
ing assessment of other three types of in silico OTS predic-
tion tools. So, we first applied Cas-OFFinder to generate
the genome-wide candidate OTS of tested gRNAs from the
curated datasets generated before, restricting the off-target
with 23-nt long, containing NGG-PAM and mismatches
up to 6 bases. Then, among the candidate OTS, the vali-
dated OTS were labeled ‘1°, otherwise labeled ‘0’. Consider-
ing that the learning-based tool Deep CRISPR covers some

published OTS datasets to train its learning model and cur-
rently supports OTS prediction in only 13 mainstream cell
types, datasets trained by Deep CRISPR and gRNAs not de-
tected in these 13 cell types were removed from the bench-
mark datasets for in silico OTS prediction tools assessment.
Since the benchmark of experimental OTS detection tech-
niques showed that the CRISPR cleavage specificity is het-
erogencous in different cell types (see Results), the gRNAs
in datasets were classified into three groups by their detec-
tion cell types, and the OTS on given gRNAs in same cell
types shared by different techniques were merged together.
Finally, this resulted in the benchmark datasets containing
444 921 candidates OTS with 1850 positive labels in 3 cell
types, which includes 180 671, 76 059 and 188 191 candi-
dates with 968, 778 and 104 positive labels from 12, 7 and
11 gRNAs respectively in HEK293, K562 and Hela. The
details of the benchmark datasets are listed in Supplemen-
tary Table S4.

Implementation of iGWOS platform

Generation of train and test datasets for ensemble model by
integrating CRISPR OTS prediction tools. The prediction
results obtained from seven in silico OTS prediction tools on
benchmark datasets were added as the OTS features to the
benchmark datasets generated above, containing 444 921
candidates OTS with 1850 positive labels in three cell types
(Supplementary Table S4). We extracted 80% from each cell
type of the benchmark datasets as the train dataset and
tuned model parameters with cross-validation. Then the left
20% was taken as an independent test dataset, used to test
the performance of our trained model. The details of the
train and test datasets are listed respectively in Supplemen-
tary Table S5 and Supplementary Table S6.

Train the AdaBoost ensemble model based on the train
dataset. AdaBoost is a successful boosting algorithm de-
veloped for binary classification, which is best used with
weak learners, like decision stump (decision trees with one
level). It adds a weak learner in each iteration to learn mis-
classified training instances until a pre-set number of weak
learners is created or no more improvement can be made
on the train dataset. In this study, the AdaBoost model
parameters were tuned on the train dataset under 5-fold
stratified cross-validation (i.e., keep the class distribution
in each fold almost identical to that in the original data),
and the best parameters were selected, where algorithm was
set to ‘SAMME.R’, base_estimator set to decision stump,
n_estimators set to 280 and learning_rate set to 0.1. The pre-
dicted class ‘1’ probability for a candidate OTS was taken as
the integrative prediction score iGWOS, denoting the cleav-
age probability of a candidate OTS.

Development of iGWOS platform. The iGWOS (integrated
Genome-Wide Off-target cleavage Search) platform is de-
signed specifically for the optimal OTS prediction by inte-
grating the available in silico OTS prediction tools with an
Adaboost framework. iGWOS currently supports precise
genome-wide CRISPR OTS prediction with conventional
NGG-PAM and mismatches up to 6 bases in human species.
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Table 2. List of four categories of in silico CRISPR OTS prediction tools benchmarked in our study

Category Tool OTS prediction Multiple organism accessible Reference
Alignment-based Cas-OFFinder mismatch Yes (24)
CRISPR Finder mismatch Human (GRCh38) + mouse (GRCm38) (26)
E-CRISP mismatch Yes (GRCh38) (25)
CHOPCHOP mismatch Yes 27)
CRISPRscan mismatch Yes (GRCh38) (28)
sgRNAcas9 mismatch Yes (31)
GT-Scan mismatch Yes (29)
Off-Spotter mismatch Yes (30)
CasFinder mismatch Yes (23)
Hypothesis-driven CFD mismatch + score Yes (32)
MIT mismatch + score Yes (33)
CCTop mismatch + score Yes (34)
CROP-IT mismatch + score Human (hgl9) + mouse (mm9) (35)
Learning-based DeepCRISPR mismatch + score Human (hgl9; 13 cell-types) (36)
Elevation mismatch + score Human (GRCh38) 3)
Energy-based CRISPR-OFF mismatch + score Yes (37)
uCRISPR mismatch + score Yes (38)

By inputting the gRNA(s) sequence file and related restric-
tions at the command line, iGWOS outputs integrated pre-
diction of the genome-wide OTS profile of given gRNAs
and visualizes the top 200 risky genome-wide off-target pro-
file with a Circos (39) plot. Details regarding the usage and
installation of our ensemble package iGWOS can be re-
ferred on GitHub at https://github.com/bm2-1ab/iGWOS.

RESULTS
Benchmark genome-wide CRISPR OTS detection

Categorizing experimental CRISPR OTS detection tech-
niques. In the last few years, a couple of studies evalu-
ated genome-wide CRISPR off-target detection, aiming to
quantitatively analyze the specificity of the CRISPR sys-
tem. These techniques were categorized into three types ac-
cording to the DSB detection conditions, i.e. in vitro, cell-
based and in vivo (Table 1). Although recent studies (4-6) re-
viewed several of these techniques with respect to their oper-
ating principles and operational protocols, further compre-
hensive and quantitative comparisons are still needed. Here
we benchmarked these techniques on a genome-wide pro-
file based on the publicly available OTS detection datasets
generated from the corresponding techniques, aiming to
present the first objective guidance for selection of genome-
wide OTS detection techniques and the following bench-
mark of in silico OTS prediction tools. After screening, we
obtained the curated datasets from 10 OTS detection tech-
niques. Detailed information regarding the dataset curation
is provided in the Materials and Methods section and Sup-
plementary Table S1.

Benchmark result of experimental CRISPR OTS detection
techniques. The overall comparison on the number of
detected OTS in the publicly available tested gRNA se-
quences among the 10 curated datasets clearly indicated
that CIRCLE-seq was the most sensitive technique among
all three categories because it detected many more vali-
dated genome-wide OTS compared with the other tech-
niques (Figure 2A). The Circos plot displayed gRNA se-
quences and the corresponding off-target sites of the 10 cu-

rated datasets on a genome-wide scale (Figure 2B and C).
The gRNA sequences distribution indicated the overlaps
of gRNA sequences shared among multiple datasets. So,
the gRNA sequences that were commonly tested by several
datasets were selected for further comparison (Supplemen-
tary Table S2).

By comparing the genome-wide OTS distribution and the
overlapping OTS of the gRNA sequences shared by four
in vitro techniques, CIRCLE-seq was confirmed to be the
most sensitive in vitro genome-wide OTS detection tech-
nique compared with the other in vitro techniques (Figure
3A and B). Similarly, the comparison of cell-based tech-
niques indicated that all of these techniques detected a small
portion of specific OTS not shared by the other cell-based
techniques, and they were almost covered by the in vitro
CIRCLE-seq (Figure 3C-F). In addition, the in vivo tech-
nique DISCOVER-Seq detected only a few OTS, and they
were all covered by the in vitro CIRCLE-seq (Figure 3G and
H). Taken together, we concluded that (i) CIRCLE-seq was
the most sensitive OTS detection technique among the three
OTS detection categories and (ii) OTS detection techniques
have their unique characteristics, resulting from their dif-
ferent experimental categories, DSBs detecting sensitivities,
and even the developing times.

After the comparison of gRNA sequences overlapped
among multiple datasets, we also noticed some gRNA se-
quences were tested in different cell types in the curated
dataset of CIRCLE-seq (Supplementary Table S2). By com-
paring the OTS distribution and intersections of same
gRNA sequences shared in different cell types, we found
that both K562 and HEK?293 could a portion of specific
OTS not shared by the other, and K562 detected much more
OTS than those in HEK293 (Figure 4A and B). The similar
result was obtained when comparing the OTS intersections
of same gRNA sequences detected in K562 and U20S (Fig-
ure 4C and D). Taken together, we concluded that (i) the
CRISPR cleavage specificity is heterogeneous in different
cell types, likely resulting from their different genetic and
epigenetic information and (ii) some cell types such as K562
tend to generate much more off-target cleavages in CRISPR
knock-out experiments.
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Figure 2. gRNA sequences and OTS distribution among the curated datasets corresponding to the 10 OTS detection techniques. (A) The number of
detected genome-wide OTS in tested gRNA sequences. (B) The Circos plot shows the gRNA sequences on the reference genome (hgl9). Ten tracks from
the outer to inner parts of the plot represents the 10 curated datasets, in which each point represents an gRNA sequence. (C) The Circos plot shows the

OTS distribution among the 10 curated datasets.

In summary, the benchmark result of experimental
CRISPR OTS detection techniques shows that three cat-
egories of experimental OTS detection techniques showed
their own characteristics in OTS detection and the specifici-
ties of given gRNAs verifies in different cell types.

In the following benchmark of in silico CRISPR OTS
prediction tools, the curated dataset generated from OTS
detection techniques were used to generate the benchmark
datasets to assess the performances of the available in silico
genome-wide OTS prediction tools.

Benchmark genome-wide CRISPR OTS prediction

Categorizing in silico CRISPR OTS prediction tools.
Numerous in silico tools have been presented for predict-
ing CRISPR-Cas9 OTS in human species. These tools are
categorized into four types according to the OTS predic-
tion mechanism, i.e. alignment-based, hypothesis-driven,
learning-based and energy-based (Table 2). A previous
study by Haeussler et al. evaluated four hypothesis-driven
off-target prediction algorithms (2), but comprehensive
comparison and assessment of all categories of OTS pre-
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Table 3. Benchmark alignment-based in silico CRISPR OTS prediction tools by their options for candidate off-target searching

Running Mismatch
Tool Batch search time tolerance PAM pattern Platform
Cas-OFFinder Yes Medium Not limited NRG (R = A or G) Web/Online/Graphic interface +
C++/0Offline/Command-line
CRISPR Finder No (Web Crawler) Medium 4 NGG Web/Online/Graphic interface
E-CRISP Yes Medium 3 NRG Web/Online/Graphic interface
CHOPCHOP No (Web Crawler) Fast 3 NRG; NGA Web/Online/Graphic interface
CRISPRscan Yes Fast 4 NGG ‘Web/Online/Graphic interface
sgRNAcas9 Yes Slow 5 NRG Perl/Offline/Command-line +
Java/GUI
GT-Scan Yes Fast 3 NRG Python/Offline/Command-line
Off-Spotter No (Web Crawler) Fast 5 NGG Web/Online/Graphic interface
CasFinder Yes Fast 3 NRG Python/Offline/Command-line

diction algorithms have not yet been performed. Here, we
present an objective and comprehensive comparison of all
these algorithms based on the benchmark datasets gener-
ated from the curated datasets, offering a reliable recom-
mendation and selection for in silico OTS prediction in vari-
ous scenarios. Detailed characteristics of these tools are pre-
sented in Supplementary Table S3.

Benchmark results of in silico CRISPR OTS prediction tools.

Benchmark alignment-based tools for candidate OTS search-
ing. As alignment-based tools predict candidate OTS
purely by sequence alignment without ranking their po-
tential knockout ability, we benchmarked this type of
tool based on their options for maximum candidate off-
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Figure 6. ROC and PR curves of iGWOS compared to individual in silico tools in genome-wide OTS prediction with the test dataset.

target searching (Table 3). The table illustrated that Cas-
OFFinder shows its advantage in genome-wide candidate
OTS searching compared with other alignment-based tools,
with unlimited mismatch tolerance and supporting for
batch searching offline. Therefore, in the following bench-
mark of the other three categories of in silico OTS pre-
diction tools, Cas-OFFinder was applied to obtain the
genome-wide candidate OTS with NGG-PAM and mis-
matches up to six for tested gRNAs in the curated datasets
to generate the benchmark datasets (see Materials and
Methods).

Benchmark in silico OTS prediction tools with the bench-
mark datasets. To assess the hypothesis-driven, learning-
based, and energy-based OTS prediction tools based on
the benchmark datasets (see Materials and Methods and
Supplementary Table S4), the prediction scores of candi-
date OTS in benchmark datasets were calculated from in-
dividual tools. Considering that a majority of the bench-
mark datasets were from the negative class and precision-
recall (PR) curve is more sensitive to class imbalance than
the receiver operating characteristic (ROC) curve, both the
ROC curve and PR curve were used to evaluate the predic-
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tion performances of these tools (Figure 5). The assessment
showed that (1) the energy-based tools performed higher
ROC-area under the curve (AUC) (0.878 for CRISPRoff,
and 0.884 for uCRISPR) and higher PR-AUC (0.121 for
CRISPRoff, and 0.083 for uCRISPR) than the hypothesis-
driven tools, showing their better ability to predict OTS, (2)
Deep CRISPR did not show excellent performance, likely re-
sulting from the data-driving limitation for learning-based
tools and the testing data in this study is different from pre-
vious study (38), and (3) CFD performed the best among
the hypothesis-driven tools. In summary, both the ROC-
AUC and PR-AUC values indicated that the structural and
energy-based mechanism of CRISPR binding helps to im-
prove OTS prediction compared with the hypothesis-driven
and learning-based ones.

iGWOS: integrated Genome-Wide Off-target cleavage
Search

Our benchmark above indicated that each categories of pre-
diction tools has its own characteristic in OTS perdition,
and an effective integration of those OTS prediction tools
may contribute to a better performance in genome-wide
OTS prediction. A recent study also showed that syner-
gizing multiple hypothesis-driven tools with an ensemble
learning method enhanced OTS prediction (40). Therefore,
we attempted to combine the OTS prediction results ob-
tained from individual benchmarked tools using the ensem-
ble framework AdaBoost (41) to improve the performance
of OTS prediction.

The benchmark datasets for ensemble model took the
prediction scores from 7 prediction algorithms as the OTS
features, and then were split into train dataset and test
dataset (see Materials and Methods). The AdaBoost en-
semble model was trained on the train dataset under a 5-
fold stratified cross-validation to tune the model parame-
ters. Finally, the prediction performances on the test dataset
showed that our trained model iGWOS outperformed the
existing individual tools, providing a substantial improve-
ment in genome-wide OTS prediction (Figure 6).

Finally, a one-stop integrated Genome-Wide Off-target
cleavage Search platform, ie., iGWOS was developed
that is available on GitHub at https://github.com/bm2-lab/
iIGWOS, which was designed to precisely predict genome-
wide CRISPR OTS profiles by integrating three categories
of OTS prediction algorithms using an AdaBoost frame-
work.

DISCUSSION

The off-target effect of the CRISPR/Cas9 system remains
to be an obstacle for successful therapeutic application
of genome editing. Therefore, many techniques and tools
have been proposed or developed to better detect and pre-
dict genome-wide OTS in different environments. Our com-
prehensive benchmark study of these existing resources
provides insightful guidance for off-target effect research
in four aspects: (i) The benchmarking of experimental
CRISPR off-target detection techniques indicated that the
gRNA specificity verifies in different experimental OTS de-
tection techniques, resulting from their different experiment

categories, DSBs detecting sensitivities, and even the devel-
oping times. A recent study provided a new in vitro genome-
wide OTS technique called CHANGE-seq (42), which was
reported to perform better than CIRCLE-seq in sequenc-
ing efficacy and parallel experiments. (ii) CRISPR cleavage
specificity is heterogeneous in different cell types, resulting
from their different genetic and epigenetic information. (iii)
The structural and energy-based mechanisms of CRISPR
binding, taking the characteristics of DNA-RNA binding
into account and without requiring a large amount of train-
ing data, generally contribute to a better performance in
genome-wide OTS prediction, which will promote further
researches of CRISPR off-target effect based on the struc-
tural mechanisms and molecular modeling. (iv) The devel-
opment of our iGWOS platform confirmed that the integra-
tion of different categories of prediction algorithms is an
efficient strategy for achieving better off-target prediction.
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