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A direct association between amber 
and dinosaur remains provides 
paleoecological insights
Ryan C. McKellar1,2,3*, Emma Jones4, Michael S. Engel   2, Ralf Tappert5, Alexander P. Wolfe6, 
Karlis Muehlenbachs   4, Pierre Cockx1,3, Eva B. Koppelhus6 & Philip J. Currie6

Hadrosaurian dinosaurs were abundant in the Late Cretaceous of North America, but their habitats 
remain poorly understood. Cretaceous amber is also relatively abundant, yet it is seldom found in 
direct stratigraphic association with dinosaur remains. Here we describe an unusually large amber 
specimen attached to a Prosaurolophus jaw, which reveals details of the contemporaneous paleoforest 
and entomofauna. Fourier-transform Infrared spectroscopy and stable isotope composition (H and C) 
suggest the amber formed from resins exuded by cupressaceous conifers occupying a coastal plain. 
An aphid within the amber belongs to Cretamyzidae, a Cretaceous family suggested to bark-feed on 
conifers. Distinct tooth row impressions on the amber match the hadrosaur’s alveolar bone ridges, 
providing some insight into the taphonomic processes that brought these remains together.

Although dinosaur and resin fossils are abundant in the Late Cretaceous of western Canada, they are rarely 
associated, because conditions for their preservation differ. Thus, bone and amber records represent largely inde-
pendent, albeit complementary, sources of information on different aspects of ancient ecosystems1. Despite the 
growing number of amber localities known in western Canada, insect-bearing amber in direct association with 
a dinosaur dig has only been reported once1–4. No finds detail the circumstances by which amber and dinosaurs 
come together in bonebeds, and only a single study examines what one reveals about the paleoecology of the 
other1. Excavation in 2010 within Dinosaur Provincial Park, Alberta5 recovered an isolated left hadrosaur den-
tary, UALVP 53367, in the Campanian uppermost Dinosaur Park Formation (~75 Ma). This site is immediately 
beneath the Lethbridge Coal Zone, within a series of muddy overbank facies that have been interpreted as prod-
ucts of an alluvial-coastal plain undergoing transgression6. Based on morphology, the dentary was identified as 
belonging to the hadrosaur Prosaurolophus maximus Brown, which is consistent with the known stratigraphic 
ranges of hadrosaurs within the region. Preparation revealed an exceptionally large mass of amber (~300 g), 
tightly adpressed to the alveolar bone, near the anterior margin of the lingual surface. This is one of the largest 
amber specimens documented from the Late Cretaceous of western Canada. Moreover, it provides both an insect 
inclusion and details on the habitat and taphonomy of the hadrosaur. The amber’s chemotaxonomic and stable 
isotopic composition provide insights into forest ecology and attendant climatic conditions. Observations of the 
hadrosaur bone and amber mass tie these details to the taphonomic events that created the association.

Results
Amber and bone association.  The discoidal amber piece is more than 7 cm wide, but only 8 mm in thick-
ness. The half closest to the dentary was pushed underneath the other half, leaving a large ridge on the concave 
surface. This offset appears to be the product of compaction during burial and after resin solidification, because 
it is linear and does not distort flow lines within the amber. The ventral margin of the amber piece made direct 
contact with the dentary and it records three faint and one deep impression from tooth rows in the alveolar 
bone exposed after the dentary had lost its teeth (Fig. 1). The amber piece was stabilized with epoxy before it 
was separated from the dentary, but its ventrally directed margin was in contact with the bone, with less than 

1Department of Palaeontology, Royal Saskatchewan Museum, 2340 Albert Street, Regina, Saskatchewan, S4P 2V7, 
Canada. 2Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, 
1501 Crestline Drive – Suite 140, University of Kansas, Lawrence, Kansas, 66045, USA. 3Biology Department, 
University of Regina, Regina, Saskatchewan, S4S 0A2, Canada. 4Department of Earth and Atmospheric Sciences, 
University of Alberta, Edmonton, Alberta, T6G 2E3, Canada. 5Geology Department, Lakehead University, Thunder 
Bay, Ontario, P7B 5E1, Canada. 6Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 
2E9, Canada. *email: ryan.mckellar@gov.sk.ca

OPEN

https://doi.org/10.1038/s41598-019-54400-x
http://orcid.org/0000-0003-3067-077X
http://orcid.org/0000-0003-2768-2972
mailto:ryan.mckellar@gov.sk.ca


2Scientific Reports |         (2019) 9:17916  | https://doi.org/10.1038/s41598-019-54400-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

one millimeter of sediment was trapped between the amber and the dental battery in the deepest recesses of the 
alveolar sockets. Specimen preparation has reduced some of the topography within the amber piece, but a series 
of three blade-shaped impressions are still visible along the ventral margin, with spacing, orientation, and shapes 
that directly correspond to the underlying bone ridges.

Oxidation and dark drying lines restrict visibility to the outer 1–2 mm of the amber, but within this window, 
a partial aphid inclusion is visible on the convex (lingual) side (Figs. 1, 2). Numerous fragments of indeterminate 
plant material, and translucent structures that likely represent fungal hyphae, are also scattered throughout the 
amber. However, no unobscured view is available, due to internal fractures and flow lines (Figs. 1,2). At its thickest 
point, the carbon film along the labial surface of the amber piece is less than 0.5 millimeters thick (Fig. 3D,F,G): 
it is thin and sporadic in occurrence, appearing to preserve fragments of foliage, as opposed to a larger wood 
fragment.

Palaeoentomology.  The insect inclusion (Fig. 2) clearly belongs to Aphidoidea, with at least one conical 
siphunculus visible, and no ovipositor7. It meets all diagnostic criteria for Cretamyzidae, a monotypic family of 
extinct aphids previously documented from the slightly older amber of the Foremost Formation at Grassy Lake, 
Alberta7,8. Aside from its broader anterior body shape, and lack of a pointed frons (a region not preserved), the 
new specimen is indistinguishable from Cretamyzus pikei Heie, 19927. Most notably, it shares a unique, elongate, 
antennal scape with a bulbous base; laterally projecting eyes; elongate, narrow rostrum; and six-articled antennae. 

Figure 1.  UALVP 53367 surface features. (A) Initial exposure of friable amber during fossil preparation, 
lingual surface. (B) Amber with epoxy support prior to removal from dentary. (C) Lingual surface, circle 
indicates aphid, arrowheads fault line. (D) Labial surface, arrows mark tooth row impressions. (E) Illustration 
corresponding to D. (F) Detail of deep alveolar ridge impression between arrows (on lower right of D and E). 
(G) Oblique view of labial surface highlighting fault and depressions, with margin contacting dentary to right. 
Scale bars 3 cm (A, C–E, G), 10 cm (B), 5 mm (F).
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Furthermore, UALVP 53367 has peculiar lateral ‘hairs’ known from the abdominal segments of C. pikei7, but 
these appear to be fewer and with broader bases. Considering the shapes and preservation of these projections, 
their identification as waxy secretions or setae7 seems less likely than weakly sclerotized cuticle. A small, rounded 
cauda and anal plate are clearly visible at the tip of abdomen, dorsal to an exposed aedeagus with parameres. 
Comparable genitalia have been suggested for other fossils9 and observed in modern aphidse.g.,10. Based on elon-
gate claws and mouthparts, Cretamyzidae have been postulated to feed in bark crevices on resin-producing trees7. 
Shared morphology and entrapment within a multi-flow piece of amber support a similar habitat for the UALVP 
53367 aphid.

Amber characterization.  The infrared spectrum of UALVP 53367 amber was analyzed to assess its source 
tree. The specimen is typical for terpenoid-based resins of the period, yet there is an intense and broad absorp-
tion peak between 3100 and 3700 cm−1, attributable to the presence of hydroxyl (OH) groups11. Additionally, 
the spectral range below 1800 cm−1 is characterized by unusually smooth absorption peaks lacking small-scale 
features, similar to partially oxidized ambers with comparable reddish coloration (Fig. 3). The smoothness of 
spectral features indicates loss of detail during the partial breakdown of the original macromolecular structure 
of the resin’s terpenoid constituents. However, enough diagnostic features remain to permit classification as a 
cupressaceous-araucarian12 or Class Ib13 resin. Diagnostic spectral features include absorption peaks at 1448, 
1030, and 887 cm−1. Further differentiation between the conifer families Araucariaceae and Cupressaceae is 

Figure 2.  UALVP 53367 inclusions. (A) Sediment and carbon film between amber and dentary. (B) Fungal 
hyphae or flow lines amidst fractures. (C–F) Cretamyzidae dorsal and ventral photomicrographs with 
corresponding habitus diagrams; grey indicates missing material. Scale bars 1 mm (A,B), 0.5 mm (C–F).
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usually not possible, due to their similar terpene profiles13. The absorption peak between 1560 and 1600 cm−1 is 
most likely related to the presence of molecular water, which has its H-O-H bending mode14 located at 1595 cm−1. 
The presence of molecular water, as opposed to structurally bound hydroxyl groups, is uncommon in fossil resins, 
but occurs in some modern cupressoid taxa (e.g., Cupressus sempervirens, Mediterranean cypress, Fig. 3). Because 
the amber fragments analyzed did not contain any visible inclusions, molecular water is most likely dispersed 
within terpene skeletal structures.

The occurrence of cupressaceous-araucarian resins within the Dinosaur Park Formation is not unusual, as 
most Canadian Cretaceous ambers analyzed to date are of this type8,12,15. Many Late Cretaceous ambers from 
the region also have inclusions of cupressaceous wood or foliage of Parataxodium3, suggesting that this group 
is responsible for most resin production in the region. Previous studies utilizing Nuclear Magnetic Resonance 
spectroscopy have suggested that Araucariaceae may be responsible for most Cretaceous amber deposits15, but 
NMR faces a similar difficulty to that of FTIR in resolving these two source-plant families16. Considering that 
Araucariaceae have not been recovered as inclusions, their pollen is unknown in Dinosaur Provincial Park, and 
their Cretaceous range does not encompass the study area17, a cupressaceous source tree seems more certain. This 
group of trees would have dominated the landscape surrounding the hadrosaur.

Stable isotope analyses conducted on the amber provide proxies for various environmental conditions during 
resin production. UALVP 53367 yielded δ13C values ranging from −24.2 to −23.6‰, (mean −23.9 ± 0.28‰, 
n = 6), and δ2H values ranging from −268.9 to −227.0‰ (mean −248.4‰ ± 14.05‰, n = 6; Fig. 4, Table S1). 
These values fall within the known range for amber, and variability between samples drawn from the amber piece 
can be attributed to plant particulate inclusions. These were unavoidable in sampling and are isotopically heavier 
in both C and H18,19. Values from UALVP 53367 are similar to those obtained in regional analyses of amber from 

Figure 3.  FTIR spectrum of UALVP 53367 (red line). (A) Comparison to oxidized cupressaceous-araucarian 
Cretaceous Cedar Lake amber (Manitoba), and detailed Recent Cupressaceae resin (Cupressus sempervirens). 
Hydroxyl groups region underlain in blue. (B) Magnified spectral region 700–1900 cm−1; numbers refer to 
spectral features mentioned in text; blue marks regions linked to molecular water, yellow marks characteristics 
of cupressaceous-araucarian resins.
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the Foremost Formation, Taber Coal Zone (which underlies the Oldman Formation, beneath the Dinosaur Park 
Formation—mean δ13C value −23.7‰, mean δ2H value 297.8‰), as well as the Horseshoe Canyon Formation. 
(which overlies the marine Bearpaw Formation, above the Dinosaur Park Formation—mean δ13C value −24.1‰, 
mean δ2H value −308.4‰)4,8.

Discussion
UALVP 53367 has δ13C values similar to adjacent deposits, matching well with large-scale secular trends in amber 
δ13C values4. This consistency suggests resin production by healthy plants experiencing little or no anomalous 
physiological stress20,21. Instead, the large, multilayered resin flow is more consistent with repair following physi-
cal injury to the tree. If it is representative of general resin production at the time, it would reflect an atmospheric 
partial pressure of oxygen of roughly 13–14%, as opposed to the modern 21%4. The relationship between amber 
and bulk plant δ13C values4,21 also establishes a value of approximately −23.9‰ C3 plants at the time—providing a 
baseline for food web analysis and partially explaining the elevated values observed in Late Cretaceous hadrosaur 
teethe.g.,22,23. Ultimately, such inferences will remain speculative until more data are gathered from surrounding 
strata, and the relationships between resin compositions, atmospheric oxygen, and carbon dioxide are better 
understood.

Despite similarity in δ13C values, δ2H values in UALVP 53367 are approximately 50–60‰ higher and inter-
nally variable compared to nearby deposits. This suggests that UALVP 53367 was formed under a different hydro-
logical regime, and that multiple resin flows may record hydrological variations or variable particulate content. 
A relatively consistent fractionation factor of approximately −200 to −230‰ has been observed between local 
meteoric water and the resin produced by C3 plants accessing this water18,19,24,25. If applied to UALVP 53367, 
the inferred mean δ2H value for local waters would be approximately −48 to −18‰, as opposed to the conti-
nental −134.6 to −130.5‰ observed in southern Alberta mean annual precipitation now26. This fits well with 
paleogeographic and paleoenvironmental reconstructions of the upper Dinosaur Provincial Park Formation as 
an alluvial-coastal plain undergoing transgression6,23. The observed deuterium enrichment indicates that water 
accessed by the amber-producing forest was advected primarily from the Western Interior Seaway, without signif-
icant transport inland or upslope. If it is assumed that the position of the excavation relative to the global meteoric 
water line has not changed significantly since the Cretaceous, the observed δ2H values suggest summer resin 
production at an instantaneous temperature of ≥33 °C (Fig. S1).

Judging from the impression of the dental battery on the amber surface (Fig. 1), the resin was relatively fresh 
and pliable when association with the dentary occurred. A thin layer of sediment between the amber and den-
tary suggests contact due to fluvial transport, not interactions during life. It was initially hoped that the amber 
surface might contain traces of soft tissue or decay products from the hadrosaur. However, the thin carbon film 
preserved adjacent to the dentary did not yield elevated δ13C values (Table S1), suggesting a source related to the 
resin-producing tree, not the corpse. Because the dentary was recovered as a relatively unweathered, disarticu-
lated element missing its teeth, the amber must have clung to it after decay had removed the flesh, but before the 
bone had undergone significant transport.

The series of events required for preservation of insect-bearing amber in direct association with dinosaur 
remains is remarkable. As was suggested in the original work on Cretamyzidae7, the aphid’s presence within a 
multiple-flow amber piece suggests entrapment while feeding on the resin-producing tree. The resin mass then 
entered a nearby river system at approximately the same time as skeletal material from a hadrosaur, and was 

Figure 4.  Stable isotope comparison between UALVP and surrounding ambers. (A) δ13C. (B) δ2H. Comparison 
to Danek Bonebed, Morrin Bridge, and Edmonton (Horseshoe Canyon Formation), and Grassy Lake (Foremost 
Formation) ambers, Albertadata from 1,8.
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pressed onto the bone as a result of transport after the body had disarticulated and decayed. Subsequent dis-
turbances flattened the resin mass, but its association with the bone was maintained throughout the burial and 
diagenesis processes: shifting sediments only created minor fractures in the amber after polymerization.

If the association between resin and dinosaur remains had taken place at a slightly different stage in the tapho-
nomic process, the amber described herein might have provided microscopic details of the hadrosaur itself—like 
recent discoveries of coelurosaur and enantiornithine remains in Burmese amber (Myanmar, ~99 Ma)e.g.,27–30. 
Amber from the Foremost Formation has already yielded a diverse suite of integumentary structures31, and 
UALVP 53367 emphasizes the potential for fossiliferous ambers to provide insight into dinosaur paleoecology 
rather than largely representing the purview of arthropod paleontology. In addition to providing paleoecological 
information, future finds of bonebed amber may provide insights that are not available from skeletal remains 
alone, and they certainly warrant attention during the excavation and preparation processes.

Methods
The amber sample is exceptionally friable and large compared to most of the specimens recovered from adjacent 
formations in the region3. Its exposed surface was supported with “five-minute epoxy”, in order to separate it from 
the dentary without crumbling. Milligram scale amber fragments from the freshly exposed surface were gathered 
for stable isotope and Fourier-transform Infrared spectroscopy (FTIR) analyses, then the main specimen was 
vacuum-injected with a low viscosity, mineralogical grade epoxy (Buehler EpoThin) for stabilization32. The initial 
support epoxy and excess material from the vacuum-injection were removed with rotary tools and wet sandpaper 
of varying grits, returning the specimen to approximately its original shape, and removing much of the sediment 
and carbon film that were obscuring the labial side. The insect inclusion was extracted using a razor saw, and 
slide-mounted using standard techniques32 to improve visibility.

Stable isotope analyses were carried out on six amber samples (both adjacent to and removed from the den-
tary surface), using standard techniques for offline gas extraction e.g.,4,20. Stable isotopic compositions of carbon 
are expressed in delta notation relative to the Vienna Pee Dee Belemnite standard (δ13C, VPDB) for carbon, and 
relative to Vienna standard mean ocean water (δ2H, VSMOW) for hydrogen. The precision for the procedures 
outlined here are ±3‰ for δ2H and ±0.1‰ for δ13C. Gar (Lepisosteidae) teeth were also found in association 
with UALVP 53367, but these lacked sufficient mass for supplementary analysis: there were also no isolated had-
rosaur teeth from which to draw enamel for analysis. One of the six samples analyzed was likely contaminated 
during preparation, repeatedly presenting δ2H values outside the known range for amber (97.3‰, 116.2‰)19, 
as well as a δ13C value outlier (−26.8‰), that have been excluded from the results. A second sample was lost to 
leakage during offline gas extraction.

Infrared absorption spectra of the amber were obtained to determine botanical source and assess the state 
of preservation. The spectra were collected using a Bruker Vertex 70 FTIR spectrometer and Hyperion 3000 IR 
microscope. Samples were freshly broken amber fragments with thickness ≤5 μm, to retain infrared transparency, 
and diameters of 50–100 μm. Spectra were collected from 700–4000 cm−1 with a spectral resolution of 1 cm−1.  
For each sample and background spectrum, 80 interferograms were collected and co-added. No additional treat-
ment of the resulting spectra was performed. Final spectra were compared to an existing spectral library of mod-
ern and fossil resins using established characteristics12.

All specimens are available through UALVP museum collection; and correspondence should be directed to 
RCM (ryan.mckellar@gov.sk.ca.)

Data availability
All data are available in main text or supplementary materials. The specimen studied (UALVP 53367) is deposited 
in the University of Alberta Laboratory for Vertebrate Palaeontology collection, Edmonton, Alberta, Canada.
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