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ABSTRACT

Background: The world population is continuously growing. It has been estimated that half of the world’s
population is from the Asian continent, mainly from China and India. Overpopulation may lead to many
societal problems as well as to changes in the habitat. Birth control measures are thus needed to control
this growth. However, for the last 50-60 years, there have not been any improvements in the field of con-
traception. Nevertheless, the immunocontraceptive vaccine is an emerging field, and it might be the only
replacement for the existing mode of contraception for the next millennium. Sexually transmitted infec-
tions (STIs) are frequent, and their transmission rate increases yearly. As antibiotics are the prevailing
treatment for this kind of infections, resistance in humans has increased; therefore, having effective
antibiotic treatments for STIs is now a concern. Vaccines against STIs are now needed. It is thought that
the improvements in the fields of proteomics, immunomics, metabolomics, and other omics will help in
the successful development of vaccines.
Objective: To collect and review the literature about recent advancements in immunocontraception and
vaccines against sexually transmitted diseases/infections.
Methods: Reliable scientific databases, such as PubMed Central, PubMed, Scopus, Science Direct, and
Goggle Scholar, were consulted. Publications bearing important information on targeted antigens/im-
munogens for contraceptive vaccine design and advancements in vaccine development for STIs were
gathered and tabulated, and details were analyzed as per the theme of each study.
Results: Important antigens that have a specific role in fertility have been studied extensively for their
contraceptive nature. Additionally, the advancements in the screening for the best antigens, according
to their antigenic nature and how they elicit immune responses for an extended period were also studied.
Herd immunity for STIs and advancements in the development of vaccines for syphilis, gonorrhea, and
herpes simplex virus were also studied and tabulated in this review. An extensive knowledge on STIs vac-
cines was gained.
Conclusion: This extensive review is aimed to provide insights for active researchers in vaccinology,
immunology, and reproductive biology. Advancements in the development of vaccines for different
STIs can be gathered as a wholesome report.
© 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.

E-mail address: rohini@aimst.edu.my (R. Karunakaran).
Peer review under responsibility of King Saud University.

ELSEVIER Production and hosting by Elsevier

https://doi.org/10.1016/j.sjbs.2022.01.006

1319-562X/© 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.sjbs.2022.01.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.sjbs.2022.01.006
http://creativecommons.org/licenses/by/4.0/
mailto:rohini@aimst.edu.my
https://doi.org/10.1016/j.sjbs.2022.01.006
http://www.sciencedirect.com/science/journal/1319562X
http://www.sciencedirect.com

A.S. Vickram, K. Dhama, S. Thanigaivel et al.

Saudi Journal of Biological Sciences 29 (2022) 2033-2046

Contents

B O oL e L (ot o » U N 2034
2. Target antigens in sperm and male reproductive tract for human contraception USe. . .. ........ititi ittt ittt ie e 2035
3. Screening novel antigens for effective CONtraception. . . . ... ... ..ttt et e ettt e e e 2036
4. Vaccines for sexually transmitted diSEases (STDS). . . v v vt vttt ittt et e ettt et e e e e e e e e 2037
5.  Herd immunity and its effects against vaccines fOr STDS . . . . ..ottt ettt e et ettt e e e et e e e 2037
6. Herd immuUNity in STIS. . . ..ottt e et et e e e e e 2037
7. Advancements in vaccine development for SYphilis . ... ... ... i e 2038
8. Advancements in vaccine development against Neisseria gonorrhoeae (GONOCOCCUS) . . .t v vttt e te e ettt ettt e ie e eeanannns 2038
9.  Current Status Of STD VACCINES . . . .« .ottt ettt ettt et e e e e e et e et e et e e e e e e e e e e et e et et e e e 2040
10, HPV VACCINE . . o .ottt ettt e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e s 2040
11.  N. Meningitidis & SYPhilis VACCINE . . . . ..ottt i ettt e e ettt e e e e et et ettt ettt e 2040
12, Chlamydia VACCINE . . . .ottt ettt et et et e e e e e e e et e e e e e e e e e et e et e e e e e e 2040
13, HSVvaccine & HIV VACCINE . . . .ottt ettt et e et e e e e et et e e e e e e e e e et e e e e e et e et ettt i e e 2040
B 4 1 T T Tl o U< 2040
15.  Conclusion and fUtUIe PeISPECEIVES . . ..o\ttt ettt ettt et e et et et et et et e e e ettt ettt e et e 2041
AULhOT CONEIIDULIONS. . . . o oottt et e e e e e e e e e e e e e e e e e e e e e e e e et e et e 2041
Declaration of COMPEeting INTEIESE . . . . ottt et ettt et ettt e et e e e et e et e e et et e e e e e et ettt e e e et 2041
ACKNOWIEAZEMENLS . . . . .ottt ettt e e et ettt e e e e e e e e e e e e e 2041
FUNAINIG . . oo e et et et e e e e e e e e 2041

L 1] 1 o Lol <SP 2041

1. Introduction

The world population is growing at an alarming rate each year
(Moore et al., 2016), and this growth rate in developing countries is
two times the rate in developed nations (Uniyal et al., 2016). Half
of the world’s population is contributed by Asian countries, specif-
ically by India and China. Besides, contraceptive usage and
research are in their infancy till 1960 (Pohjoranta et al., 2020). This
leads to 46 million abortions each year in the developing nations
(Ganatra et al., 2017), which are also due to a lack of proper tem-
porary contraceptive practices (Dahal et al.,, 2017 2(1):1005).
Government agencies only promote condom usage for men as an
effective contraception method in the developing nations (Kidan
and Azeze, 2017; Girma et al., 2017). But condom usage is not
100% effective for birth control (Magnani et al., 2007). Once again,
this lack of effectivity leads to abortions and further consequences
that must be faced by women in the developing countries (Barroso
and Babanto, 2016). Birth control methods available in developed
nations include birth control implants (Cromer et al., 1994),
patches (Hampton, 2016; Kuehn, 2008), pills (Delavande, 2008),
birth control shots (Jayaraman, 2018), sponges (for vaginal sex)
(Reed, 2014), vaginal rings (Murphy et al., 2016), breastfeeding
as an alternate type of birth control (Houvéssou et al., 2020), cervi-
cal caps (Zapata et al., 2015), condoms (Clark et al., 2014), dia-
phragms (Beksinska, 2016), female condoms (Wiyeh et al., 2020),
fertility awareness programs (Malarcher et al., 2016), intrauterine
devices (IUDs) (Lopez et al., 2015), outercourse and abstinence
(Bakaroudis, 2014), spermicides (Susmiarsih et al., 2017), and
vasectomy (Mandell et al., 2021). However, developing nations
are widely using condoms as sole contraceptives, which are only
70% effective for birth control. Countries like India and China are
strongly recommending controlling overpopulation given that food
and clean water supplies are limited and that fulfilling people’s
basic needs often leads to habitat and environmental destruction
(Edet). Therefore, modern or novel contraception methods with a
100% success rate for birth control are still needed; they would
reduce unnecessary abortions, protecting women’s health (Hanna
et al., 2016). Although cost affordable, effective methods of contra-
ception are available in the market in both developed and develop-
ing countries, pharmaceutical companies are still investing much
money in search for new contraceptive methods (Rubin, 2017).
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Moreover, existing methods are still not affordable for people in
rural areas of countries like India and China, and governments
should focus in reducing the unmet demand. For the last 30 or
40 years, numerous reproductive biologists and immunologists
have been trying to develop a contraceptive vaccine with a 100%
success rate in birth control. Immunocontraception might be the
novel contraceptive method for the next millennium (Talwar
et al.,, 2015. Fig. 1, Tables 1 and 2.

The development of contraceptive vaccines is the core work for
many immunologists. Still, the anti-human chorionic gonadotro-
phin (hCG) vaccine is the only immunocontraceptive vaccine that
might enter clinical trials (Talwar et al., 2015). For better vaccine
development, the target antigen should be competitive and good
enough for controlling human fertility. Besides, the vaccine should
be completely antigenic and elicit long-lasting immunogenic
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Fig. 1. Strategies for contraceptive vaccine design. 1. Disturbing the hormone
axis leading to inappropriate secretions results in contraception. 2. Sperm cell needs
to bind to prostasomes for motility and establishing fertility. Target antigens can
prevent this binding and works as contraception. 3. Targeting immunogenic
proteins responsible for an ovum may result in anovulation. 4. Thus, an essential
step in the fertilisation process- binding sperm cell with egg and its further fusion
can be prevented, and contraception is achieved. 5. A large number of immunogenic
proteins are involved in suppressing maternal response to sperm cell and embryo.
Targeting any of those proteins can successfully prevent implantation of the fetus,
so pregnancy can be avoided.
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responses in the female or male bodies to be infertile. The vaccine
should also be affordable, be very safe for human use, compete
with already existing techniques with a near or 100% success rate
for birth control, be reversible, and meet the unmet demand for
contraception (Samoylova et al., 2017). All the above-mentioned
modes of contraception may prevent unnecessary abortions or
pregnancies, but they do not prevent the spread of sexually trans-
mitted infections (STIs) (Steiner et al., 2016). Therefore, designing a
suitable vaccine against STIs is in need as a preventive measure.
The number of studies aiming to develop vaccines against STIs is
rapidly growing; however, slow progress and a lot of disappoint-
ments have been faced (Brotman et al., 2014). There is a lack of
understanding regarding STI causing organisms and the transmis-
sion mechanisms during sexual intercourse. The development of
vaccines for herpes simplex virus (HSV), human papillomavirus
(HPV), and Hepatitis B found success even in human trials. How-
ever, we have not been able to design successful vaccines for syphi-
lis, Neisseria, or HIV, for example (Almeida and Borges, 2015). Until
a vaccine for these infections is successful, they would remain
transmissible to healthy individuals who are sexually active and
have multiple sexual partners. Therefore, preventive rather than
therapeutic vaccines are needed (Strauss and Madan, 2016). Nearly
three decades ago, the vaccine for hepatitis B was developed. How-
ever, the prevalence of this disease is still high in rural areas, espe-
cially among adolescents who are highly active in sexual
intercourse. This proves that, even after identifying and developing
a vaccine for an STI, the governments have to take the necessary
steps to ensure the availability of such vaccines in rural areas; they
should also conduct awareness programs about STIs and immu-
nization. Accordingly, there is a need for both novel contraceptive
vaccines for temporal birth control and for STIs for adolescents and
preadolescents. This review emphasizes on significant targeted
antigens for immunocontraception, crucial strategies for screening
and identifying antigenic targets, STIs, and advancements in vac-
cine development for various STIs.

(Madbouly et al., 2021)

Pinna et al., 2015

(Tumova et al., 2021)
Hardy et al., 2006; Lloyd et al., 2003; Hardy, 2007; Redwood,

2008 (Redwood et al., 2008)

McLeod et al., 2008

(O'rand et al., 2006)
O'rand et al., 2004; O'Rand et al., 2009; Michael et al., 2016

Curtis et al., 2002; Turner et al., 2002; Shideler et al., 2002;
(Nieschlag)
Persani et al., 2014; Otsuka et al., 2011

Kirkpatrick et al., 1996 (Kirkpatrick et al., 1996 50)
Minhas et al., 2016; Kaur & Prabha, 2014; Lea et al., 1997

Da Ros et al., 2015; Yu et al., 2015; Ellerman et al., 1998

Killian et al., 2006; Miller et al., 2008; Han et al., 2016;

Goodwin et al., 2015; Barranco et al., 2015

Author studied and year

Wang et al., 2007

2. Target antigens in sperm and male reproductive tract for
human contraception use

It has been very long believed that semen, especially sperm
cells, are highly immunogenic in both genders. In 1932, Baskin
and colleagues worked with immunizing women with whole
semen from their partners for a prescribed time to check whether
it would lead to infertility over a prolonged period (Dominiak et al.,
2016). After this, many researchers started working with human
semen as a contraceptive; the work on immunocontraception
started blooming. Almost 7% of infertile men and 75% of vasec-
tomized men have anti-sperm antibodies in their sera, confirming
that there are many chances of developing immunocontraception
for human use based on whole semen, defined sperm cells, and/
or sperm-specific antigens (Hull; M.G., C.M. Glazener; N.J. Kelly;
D.L. Conway; P.A. Foster and R.A. Hinton, , 1985). Nowadays, many
sperm antigens (proteins) have been identified as useful for devel-
oping immunocontraceptive vaccines. Among these antigens, SP17
was an important antigen in which many researchers worked to
elucidate its immunocontraceptive properties (Lea et al., 1997;
Mortazavi et al., 2021; Diekman and Herr, 1997; O’Donnell et al.,
2021; Mirandola et al., 2015). SP10 (Mortazavi et al., 2021) and
SP56 (Bleil and Wassarman, 1990) have also been studied for their
role and use in immunocontraception (Frayne and Hall, 1999;
Jalalvandi et al., 2021; Naz, 2005; Kerr et al., 1998; Sharma et al,,
2017). Other antigens like tNASP (nuclear autoantigenic sperm
protein) (Wang et al., 2009; Nagatomo et al., 2016), FA-1 (Naz
and Wolf, 1994), SOB-2 (Lefevre et al., 1997; Hay et al., 2014),
SPAM1 (McLaughlin et al., 2003; Tecle and Gagneux, 2015), and

Produces Follicular damage after immunisation and thus prevent the meeting of sperm and egg for

fertilization
Stops the sperm capacitation and sperm motility, steps adherence of prostasomes and sperm cell

Stops or lessens the production of LH and FSH hormone, which helps in controlling the gamete
which is much needed for fertilisation

production and also the secondary sexual characteristics in both male and female
Stops sperm motility and engages in entrapment of sperm cell even after liquefaction

It stops the attachment of sperm with egg and thus the fertilization

It prevents the sperm and egg fusion
follicular development and also anovulation

Inhibition of normal ovarian

Mechanism

White-Tailed Deer
Domestic kittens

White-tailed deer,
mice

Wild horses

Rabbit
vertebrate Pests

Species
Wallaby
Mouse
Swine
Mouse
Horse
Rodents
Mice
Monkey
Mice

hormone (GnRH)

belongs to cysteine-rich

secretory protein (CRISP)
Eppin- Male reproductive

Porcine zona pellucida (pZPC)
traced antigen

Virally vectored zona pellucida

Rodent epididymal protein, DE,

Bovine bone morphogenetic
protein 15 (BMP15)

Targeted Immunogens/
Antigens
Gonadotropin-releasing

SP-17

Important and explored antigens/immunogens for contraception.

Table 1
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Table 2

Importance of Vaccine development for various sexually transmitted infections.

Saudi Journal of Biological Sciences 29 (2022) 2033-2046

Sexually Vaccine development strategies done The key factor that needs to be addressed The author studied and year

transmitted

diseases

Syphilis Gaps in current biomedical knowledge and technologies  Epidemiologic data and implications Kersh & Lukehart, 2018; Ambrose,
for syphilis treatment should be focused on. The on infection and 2016; Gottlieb et al., 2016;
development of a vaccine for syphilis should be very safe  disease for syphilis Lithgow et al., 2017
and effective against transmission between sexually
active population as well as it should protect against
complications including congenital and neurosyphilis

Gonorrhoea New vaccine approaches need gonococcal subversion of  Pitiable natural immunity, antigen variations, the Jerse et al., 2014; Zielke et al.,
immune responses, antigenic variations, and gender pose evolution of gonococcal subversion are the key 2016; Russell, 2018 (Zielke et al.,
difference should be the best option for effective vaccine challenges that need to be addressed for an effective 2016)
design for Gonorrhea, key knowledge about the vaccine Wetzler et al., 2016
epidemiology of the gonococcal subversion, advancing
basic knowledge to translational research for an effective
vaccine.

HSV The unique nature of HSV infection, need to analyse the  Protective genital mucosal immunity, focus on Dubensky et al., 2018; Dubensky
biological feasibility for vaccine development, Prime-pull preventive vaccine rather than therapeutic vaccine et al, 2017
strategy as an effective vaccine development for HSV, the (Dubensky et al., 2017)
evolution of HSV 1 and 2 subversions are found to be the (Johnston et al., 2016)
essential things that need to be focused on for the Hensel et al., 2017; Dooling et al.,
development of a vaccine for HSV 1 and 2. 2018

HPV The difference between precancerous lesions and HPV led  Obtaining recovered Brekke et al., 2018 (2018); Di

cancer is different to understand, focusing on a
quadrivalent vaccine for HPV will be an important move
for the HPV vaccine, arranging of large sexual education
programs in the young girls will also promote the
vaccine, the development and advancement in DNA type
vaccine for HPV will be another focus

epidemiologic information

on infection and

disease worldwide and facilitating clinical
evaluation and

vaccine

introduction in male and female will be the key

Mario et al., 2015; Hsieh et al.,
2015; Schiller, 2016; Agarwal
et al,, 2018

(Agarwal et al., 2018)

Best & Pai, 2015 (Oh et al)

challenge

sperm associated antigen 9 (Jagadish et al., 2006; Lou et al., 2016)
have also shown promising results for immunocontraception.
These antigens have some spermicidal activity, which also inhibits
sperm cell-egg interactions (Archana et al., 2021). This inhibitory
effect leads to simultaneous infertility in the female partner when
used as immunocontraception or immunotherapy (Shetty et al.,
2017).

Izumo, a sperm plasma membrane protein, proved to have
many molecular-based functions in the fusion of sperm cell and
egg. Izumo protein is also a particularly good target antigen that
may act as an immunocontraceptive vaccine for women after
immunization (Ellerman et al., 2009). The immunizing Izumo anti-
gen exhibits inhibition of sperm-egg interactions in mouse models.
Inoue et al. studied whether human Izumo was also involved in
sperm and egg fusion (Inoue et al., 2005; Naz, 2014). They
observed that sperm and egg fusion mechanisms were significantly
impaired. They have also shown that this phenomenon is species
specific given that it occurs between the sperm and the zona pel-
lucida (Rubinstein et al., 2006). Inoue et al. produced an anti-
human-Izumo (a polyclonal antibody),mixed it with a sperm and
egg mixture, and incubated it for 45 min. This resulted in no fusion
between the sperm and egg because of Izumo inhibition (Naz,
2014). However, if sperm is treated with a standard IgG, the fusion
happens. On average, six sperms were able to bind an egg in exper-
iments in vitro (Inoue et al., 2005). CD46, DE, and SAMP32 (Hao
et al., 2002) are other antigens found on the sperm surface plasma
membrane that are not much significant in sperm cell and egg
fusion. Out of all antigens on the sperm cell plasma membrane that
have been tested, Izumo is the only one found to have a significant
role in fusion. Additionally, it can be used as immunocontracep-
tion, as evidence by various in vitro and in vivo studies (Wang
et al., 2008; Wang et al., 2009). An et al. studied the recombinant
plasmid pCXN2-mlzumo as an immunocontraceptive vaccine. In
vitro fertilization was found to be around 11.07% in mice immu-
nized with pCXN2-mlzumo, whereas it was 36% in the control
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group (An et al, 2009). This study concluded that pCXN2-
mlzumo would be a candidate target for designing a proper
immunocontraceptive vaccine (An et al., 2009).

Various studies done in a variety of animal models have
reported many potential sperm antigens. However, no single
sperm antigen has been authorized for use as a human vaccine
since they have their limitations (Tumova et al., 2021). Therefore,
researchers are now working with multi antigens to combat the
single-antigen effect and to produce a proper immunocontracep-
tion method (Ferro and Garside, 2011; Hardy et al., 2008; Naz,
2011). Hardy et al. used a multi-antigen single recombinant
polypeptide bearing SP56 and ZP1, 2, and 3 to immunize female
mice. This resulted in a reduced fertility rate when compared to
the control group. In addition, Naz and Aleem combined six differ-
ent sperm-specific antigens into a single recombinant polypeptide.
This recombinant protein, when administrated, was proved to be
successful in controlling the fertility rate. Another study utilized
acrosomal proteins as multi antigens and succeeded in reducing
the fertility rate in monkeys (Kurth et al., 2008).

3. Screening novel antigens for effective contraception

It has been observed that, approximately, 5% to 10% of human
male infertility is due to anti-sperm antibodies in the sera
(Marconi and Weidner, 2017), and that 70% of the vasectomized
men also have anti-sperm antibodies (Brubaker et al., 2018). Based
on these reports, a phage display antibody library for infertile
patients with positive anti-sperm antibodies and for vasectomized
men was created. This library was used to detect antibodies speci-
fic to sperm antigens and, among the many clones obtained, only
four were strongly reactive. These four clones bear novel sequences
and unique complementary sequences. FAB-7 and AFA-1 antibod-
ies reacted with fertilization antigen 1 (Shrestha et al.,, 2021),
whereas those for YLP20 reacted with a sperm protein that has a
molecular weight of around 50 kDa. In addition, AS16 antibodies
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reacted with another sperm protein and caused agglutination. All
these antibodies resulted in the inhibition of various sperm func-
tions, leading to infertility. These advancements may lead to the
detection of novel sperm-specific antigens for a prompt design of
an immunocontraceptive vaccine.

Major detection or identification of novel antigens can be done
by tracking genitally transmitted microorganisms (Sturm, 1978)
from females to males during intercourse (Shi et al., 2007). This
exchange may sometimes cause immune-related infertility in
men (Weissenbacher et al., 2014; Beagley et al.,, 1998; Taylor-
Robinson, 1986). Therefore, peptides derived from microorganisms
identified as infertility causative agents may be grouped, after the
construction of a library, and screened for unique determination
sequences. Clones or proper antigens could then be derived. This
method can be used as an effective alternative strategy to develop
an immunocontraceptive vaccine (Shi et al., 2007).

4. Vaccines for sexually transmitted diseases (STDs)

Vaccine development against STDs or organisms is multiplying
year by year. To develop a vaccine for an STD, the first thing is to
understand the biology of the sexually transmitted organism and
then the underlying mechanism (Gottlieb and Johnston, 2017;
Velan and Yadgar, 2017). Unraveling the mechanism behind the
infection and its transmission to the male or female partner is
the most significant task in generating an excellent vaccine
(Kahle et al., 2012). To produce or to make global sustainable, STI
control is in need (Korenromp et al., 2016). To achieve this, vacci-
nes against STIs are being evolved by researchers worldwide (Low
et al.,, 2017). However, producing vaccines against STIs is difficult.
Moreover, production is hindered by the fact that infections are
spreading worldwide and interfere with each other. Vaccines
against Hepatitis B virus (HBV) and HPV have been shown to be
highly effective for prevention in humans (Kurosky et al., 2017;
Van Damme et al., 2017; Gupta et al., 2017; Borch et al., 2017). This
was complemented by frequent public awareness programs
(Wilson, 2017; Hasan et al., 2017) regarding the use of these two
vaccines. Nowadays, these two infections are under control all over
the world, and guide researchers in their work for developing new
STI vaccines to control other infections (Gottlieb et al., 2016). HSV-
1 and 2 are the most frequently transmitted viruses via sexual
interaction (Nahmias et al., 1989). An estimated population of
420 million people is globally affected or infected with HSV-2
(Looker et al., 2008) or herpes, the most common genital infection,
whereas HSV-1 contributes with 100 million infected people
(Stingley et al., 2000). In 2012, the World Health Organization
(WHO) reported that around 400 million people in the world were
infected with curable STIs; among these, Neisseria gonorrhoeae and
Treponema pallidum (syphilis) were found to be prevalent. In 2013,
the WHO and National Institutes of Health (NIH) decided to
develop new strategies to overcome the limitations of STI vaccines.
These resulted in high priority research strategies to produce vac-
cines against N. gonorrhoeae (Moncada et al., 2017); T. pallidum
(Smolak et al., 2017), and HSV-1 and —2 by various researchers
in 2014. Since then, studies have also focused on modelling the
theoretical impact of STIs, analyzing cost-effectiveness of STI vac-
cine development, understanding the history of STIs, obtaining
extensive and updated epidemiological data for various STIs, con-
ducing translational clinical studies for STIs, encouraging both
investors and pharmaceutical companies to invest in STI vaccine
development with various promotion programs, and creating
awareness in the public by conducing programs in rural and town-
ship areas through local public health ministries (Gottlieb et al.,
2016).
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5. Herd immunity and its effects against vaccines for STDs

In a group of populations, the acquired immunity that helps
reduce the risk of spreading or adapting infections among vulner-
able individuals is called herd immunity (Anderson et al., 1992).
Individually, immunity can be acquired by natural infections
and/or vaccination. Herd immunity can be best understood by
understanding the reproductive infection number (R). Rg is defined
as the basic reproductive number that determines the spread of an
infection; it is the average number of new infections spread by one
infected human being within an entirely susceptible population
(Smith et al., 1984; Garnett, 2002). Acquired immunity plays a
major role in the determination of this number; when acquired
immunity is present in a population, such population is no longer
entirely susceptible. R, is the average number of very new infec-
tions caused in a susceptible population at time interval “t”. Thus,
the product is said to be Ry, when the whole population is suscep-
tible, but R; may be proportionally smaller as the number of
immune individuals within the population increases (McLean
and Blower, 1995).

6. Herd immunity in STIS

There are two major reasons for which vaccination programs
against STIs are being organized (Linares). First, the risk of trans-
mitting and acquiring infections is increasing because of their com-
plex heterogeneity. Second, STIs affect the population of sexually
active adults and are restricted to minorities; STIs most commonly
affect women than men (Hamilton and Morris, 2015). Sexually,
both men and women are the reason, but the blame and the cause
are usually attributed to women (Badawi et al., 2021). Thus, vacci-
nation programs should be conducted in rural development areas
to protect sexually active age groups, mainly women. Low efficacy
vaccines can be used, considering that there are considerable
health gains and benefits. Still, the elimination of STIs is very diffi-
cult and improved efficacy can be associated with diminishing
returns in time. Herd immunity and its relatively low risk of infec-
tions have been previously explained (Garnett and Bowden, 2000).
Nevertheless, in a study done on a population with different STIs,
where the group with higher levels of risk was expected to trans-
mit the infections, it was seen that most of the infections were
acquired by the low-risk population instead (Garnett, 191
(Supplement_1):2005). Interestingly, vaccination helped reduce
the number of infections in low-risk groups and among the popu-
lation with low reproductive potential (Tack et al., 2017). However,
some residual infections in this population may indicate that its
members had been frequently exposed to infections or were prone
to the highest degree of infection (Tack et al., 2017). Such a popu-
lation could potentially infect or transmit the infections to other
individuals within the group. Then, control becomes assortative.
Herd immunity may also help protect one sex, either male or
female, through vaccinating the other.

Vaccinating individuals of a single sex against STIs may be
appropriate because women, as stated before, are at a higher risk
of acquiring such infections. A program like this is straightforward,
as vaccination can be done at the time of family planning or ante-
natal care (Brabin et al., 2006). As heterosexually transmitted
infections can be prevented by vaccinating only one sex, thereby
indirectly protecting the other, it is a logical strategy to achieve
herd immunity (Frost et al., 2014). Herd immunity helps control
the infection in the directly protected sex, allowing only few expo-
sures in the indirectly protected sex group. In the absence of vac-
cines for STIs, there are many practices useful for reducing their
spread. First, by reducing the duration of individual infections by
antimicrobial or antibiotic treatment (Dunkle et al., 2008). Second,
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by reducing the number of sexual partners by conducting sex edu-
cation programs and informing sexually active men and women
about STIs (Low and Broutet, 2017). Third, by reducing STI trans-
mission (even when having multiple partners or sexual contacts)
through the use of condoms and other protection methods (Lee
et al,, 2016). All these practices may be combined to reduce Ry.
Vaccines for STIs with a low degree of protection show similar
effects on reducing Ro. Suppose the practices mentioned above
show a low efficiency in diminishing the infections, then, the com-
bined effect of vaccines for STIs and other these practices may help
eliminate the infections or further diminish their transmission
among individuals (Rhodes et al., 2017).

7. Advancements in vaccine development for Syphilis

Administration of Penicillin G is currently the only treatment at
all the stages of syphilis (Gottlieb et al., 2014; Ganesan et al., 2014;
Xiao et al., 2017 25(2):107; Cao et al.,, 2017). The US Centers for
Disease Control and Prevention (CDC) have recommended this
treatment, even for pregnant women, for the past 70 years (Yang
et al.,, 2015; Workowski, 2015; Ghanem, 2015). Although there
exists an emergence of resistant T. pallidum strains (Manteuffel
et al., 2016; Arora et al.,, 2017; Beale et al., 2021; Stamm, 2015).
penicillin G remains as the only effective treatment against syphi-
lis. Therefore, T. pallidum sometimes persists after penicillin treat-
ment. Thus, to eradicate this disease, we have been relying on
public education programs about syphilis and its pathogenic nat-
ure, such as that organized by the CDC in 1999 and the National
plan to eradicate syphilis, held in 2006 (Stamm, 2015; Smajs
et al., 2015; Wu et al,, 2016), but the disease is still spreading.
The WHO has also taken initiatives for the global eradication of
syphilis, especially congenital syphilis (i.e., the transmission of
the infection from the mother to the fetus). This last program
was a complete success; the first country to achieve this goal
was Cuba (Ellington, 2016). However, as per the current situation,
neither treatment nor awareness education programs are reducing
syphilis transmission, and there is an urgent need for the develop-
ment of a vaccine against this disease (World Health Organization.
Global guidance on criteria and processes for validation:
elimination of mother-to-child transmission of HIV and syphilis,
2017; Cameron; CE. and S.A. Lukehart, 2014; Lithgow and
Cameron, 2017; Champredon et al.,, 2016). An effective vaccine
for syphilis should prevent T. pallidum infections, thus preventing
disease transmission among sexual partners and between infected
mothers to their children; it should also provide protection from
diverging T. pallidum strains and decrease reinfection frequency.
By eliminating reinfection, penicillin may endure as an effective
syphilis control method (Garnett, 2014). All this information and
requirements should be helpful for designing an effective vaccine
for syphilis, in our way to eradicate this infection.

Compared to other pathogens, only a limited number of studies
exist on the development of a vaccine for syphilis (Peterman; T.A.
and B.W. Furness, 2015). This is because only a few scientists are
working on this area and because the pathogenesis of T. pallidum
and its morphological structure are still not completely under-
stood. In addition, there are no studies about the genetic modifica-
tions among T. pallidum that could be important for vaccine
development (Tong et al., 2017).

Metzger did the first vaccination studies for syphilis. T. pallidum
strains were attenuated, by storing them at 4 °C for a short time
(Zuckerman and Harper, 2016), and used to inoculate rabbits by
the intramuscular route. This gave good results, and further lesions
in the rabbits were not noticed. This historical investigation results
led Miller to work on it further by inoculating rabbits with bacteria
attenuated by vy-irradiation (Metzger and Smogor, 1969). This
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method resulted in a labile surface antigen content in rabbits and
thus in an attenuated infection. From this study, Miller concluded
(a) that the development of protective immunity was based on the
presence of intact bacteria and that the bacterial surface should not
be disturbed during attenuation (Miller, 1973); (b) that prolonged
immunization was necessary to get good results given that the
number of proteins in the outer membrane of T. pallidum is smaller
than that in other bacteria; and (c) that achieved protection was
long-lasting. The study also concluded that the rabbit model was
suitable for this kind of studies.

T. pallidum can develop chancres (Hoffman et al., 2002) at the
site of infection, resulting in repeated reinfections and the estab-
lishment of latency despite the immune response produced by
the vaccine. Therefore, this phenomenon should be considered a
key element in designing a successful vaccine for syphilis. An effec-
tive vaccine should prevent chancre development and treponemal
persistence and should avoid reinfection (Hoffman et al., 2002).
This could help eliminate the disease symptoms in infected indi-
viduals and prevent its transmission in the population. Key consid-
erations for developing a successful vaccine for syphilis at the pre-
clinical level are the number of vaccine doses needed for obtaining
the best immunity, vaccination administration methods, duration
of post immunity, optimization of a multivalent vaccine, and adju-
vant selection (Fukuda et al., 2015).

There has also been some advancements in syphilis pre-clinical
trials using quantitative real-time PCR (RT-qPCR) (Dodet, 2014).
This allows us to find and detect the sensitive T. pallidum DNA at
distal sites in the rabbit. However, there are some limitations with
RT-qPCR. This led to the use of fluorescence in situ hybridization
(FISH) to detect T. Pallidum in human and animal model infected
tissues (Kotloff).

This also led to further investigations for the design of an effec-
tive vaccine for syphilis. However, the development of such vac-
cine was understudied as only a specific group of scientists were
working towards T. pallidum pathogenesis. Further, conducting
many awareness programs about T. pallidum in particular geo-
graphical locations where the infection and transmission rates
are high may improve sexual habits among the population, provid-
ing better results (Manteuffel et al.,, 2016; Arora et al., 2017).
Therefore, government and private funding agencies should focus
in investing in projects for developing a new vaccine for syphilis
for the betterment of humankind. In addition, developing a vaccine
for both syphilis and any another STI may yield good profits and
broaden the market for the syphilis vaccine (Petrich et al., 2015).
In conclusion, an effective vaccine for syphilis will protect human-
kind from infectious and congenital syphilis.

8. Advancements in vaccine development against Neisseria
gonorrhoeae (Gonococcus)

Gonococcus is considered as one of the most dangerous human
pathogens since ancient days. Gonococcal infections in humans are
transmitted through direct contact (Best and Pa, 2015; Lister et al.,
2003). The major transmission routes involve sexual contact, by
touching mucosal membranes of the male and female genitals
(Rice et al., 2017), through the anal canal (either between hetero-
sexual (Golden et al., 2005) or homosexual partners (Kent et al.,
2003), or though the oropharynx (Fingerhuth et al, 2016;
Bernstein et al., 2017; Yang et al., Sextrans-2017; Zhang et al.,
2017; Zhang et al., 2017; Lewis, 2015; Chow et al., 2016); it may
even be transmitted, rarely, through eye contact (Nakashima
et al,, 2014; Kreisel et al., 2017). Except for that involving eye con-
tact, any other mode of transmission may be restricted by conduct-
ing multiple education programs to the population at reproductive
age. Such sex education programs, including safety measures for
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those with multiple sex partners and/or homosexual habits, might
work at the highest level for eradicating gonococcal infections
throughout the world, especially in the western countries (De
Silva et al, 2016; Sarkar et al., 2016; Huneeus et al., 2018;
Eldredge et al., 2016; Pelligrino et al., 2017; Yeung et al., 2017).
Gonococcal infections lead to cervicitis (Gonzalez et al., 2017;
Lama and Kayastha, 2017; Gorgos et al., 2017; Igietseme et al.,
2015) in women and urethritis (Bautista et al.,, 2016; Horner
et al., 2016; Priest et al.,, 2017; Bachmann et al., 2015) in men,
but they may be cured if medical treatment is immediately sought.
Mainly, asymptomatic men are responsible for the high transmis-
sion rates of the disease through sexual contact (Dudhipala et al.,
2017; Ong et al., 2018), therefore, finding the correct symptoms
for gonococcus infection is necessary for restricting the transmis-
sion (Pattanasin et al., 2017). Although most women are found
asymptomatic, if untreated, there is a chance for developing pelvic
inflammatory disease, especially salpingitis (Handsfield, 1972),
and even infertility (Fein et al., 2015). There is also a chance of
ectopic pregnancy, which is highly painful for women. In some
untreated men and women, gonococcus might enter the blood-
stream and cause meningitis.

The CDC officially announced that gonorrhea is the second most
threating bacterial infection in the world, with the highest trans-
mission rates (Lister et al., 2003). Importantly, there was a 27%
increase in this transmission rate among individuals in the repro-
ductive age group from 2012 to 2015. Currently, antibiotic therapy
is the only way to cure the disease and stop the transmission
between individuals (Briceag et al., 2015). However, recently, N.
gonorrhoeae strains have become resistant to many commercial
antibiotics, those extensively used to cure gonorrhea (Balashov
et al.,, 2016). Consequently, there is a need for vaccines or antimi-
crobial peptide treatments to deal with these resistant strains.
Third-generation cephalosporins are the antibiotics that have been
used from the 1980s to present days for the treatment of gonor-
rhea (Tuite et al.,, 2017), whereas sulfonamides were used from
early 1938 to 1942 (Regnath et al., 2016). It is now known that sin-
gle nucleotide polymorphisms in the folP gene reduce the affinity
of the resulting protein for sulfonamides, leading to bacterial resis-
tance. Historically, for more than four decades, penicillin was the
only ruler against gonorrhea, whereas tetracycline, doxycycline,
and spectinomycin were also used in the treatment of gonorrhea
from the 1970s to 1980s (Rodriguez).

The search for a vaccine for gonorrhea dates back to the early
20th century (Washington, 1979), specifically to the 1910s, but it
was not successful. However, as many antibiotics were effective
for curing gonorrhea, a vaccine was not really necessary. At least,
this was the mentality of the researchers at that time. However,
four candidate vaccines were tested afterwards, but none of them
protected individuals from acquiring the infection. Vaccine devel-
opment for gonorrhea was stopped for nearly 10 or 15 years for
several reasons. With the emergence of multi-drug resistance
strains throughout the world, the search for a gonorrhea vaccine
was reactivated in early 2010 in a full-time way (Abbasi, 2017).

A surprise came for the researchers at New Zealand in the form
of a meningococcal vaccine that also showed promising results
against gonorrhea. It was noticed that MeNZB (Petousis-Harris
et al.,, 2017) was 31% effective in preventing gonorrhea. Though
MeNZB is no longer produced, its active ingredients are present
in 4CMenB. This vaccine (Lennon et al., 2012) contains three genet-
ically modified proteins and two proteins shared between N.
meningitidis and N. gonorrhoeae. 4CMenB was found to be a very
effective vaccine for gonorrhea in double-blind studies and in
placebo-controlled trials, with approximately 31% protection
against the disease. However, it is believed that it is even more
effective as an 80 million cases reduction in gonorrheal infections
was registered since its production began.
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The development of effective vaccine candidates for gonococcal
infections is difficult because the human body’s immunological
protection is changing and not predictable. There is also a lack of
scientists vigorously working with gonococcal infections and vac-
cine development (Santolaya et al., 2012). Surface antigenicity for
gonococcus is modifiable and utilizes phase variation (Trembizki
etal., 2015). This capacity has allowed gonococcal bacteria to adapt
to any environment, and many changes have occurred since their
origin (Palmer, 2016). An effective vaccine should overcome or
bypass these adaptations, which should also be of concern for
the development of new vaccines. Adaptive immune mechanisms
of gonococcal antigens during infection do not eliciting a long-
lasting protective immune response, therefore, there is a chance
for reinfection.

Two vaccines against gonococcal infections were designed. One
of them was based in whole-cell bacteria and the other included a
single antigen. Both yielded attention to the developers, but they
practically failed in giving any protection against gonococcal infec-
tions (Zielke et al., 2016). Vaccines for N. gonorrhoeae using bacte-
rial antibody activity directed towards gonococcal infections are
being assessed. Theoretically, bacterial antibodies would directly
kill gonococci and promote phagocyte binding through comple-
ment receptors and the designed FC, helping to eliminate the
infecting organisms (Lam, 2017; Edwards et al, 2016;
Piekarowicz et al., 2016; Lao and Bonavida, 2016; Butler et al.,
2018). The most frequently used antibodies are Por and LOS, which
bind to their antigenic targets on gonococci outer membrane
through complement receptors. Many ideas and knowledge can
be shared at the theoretical level, but gonococci have demolished
practically all this scientific knowledge towards effective vaccine
development in numerous ways. Nevertheless, researchers are still
working with gonococci surface antigens or complement receptors
that elicit antibodies and that might be excellent targets and vac-
cine candidates (Gulati et al., 2015; Semchenko et al.,, 2017;
Shewell et al., 2017). Interestingly, some important antigenic sites
that would not elicit any immune response or antibodies in natural
infection, might also be potential targets for vaccine development
(Gunderson and Seifert, 2015; Rotman and Seifert, 2015). Tran-
scriptome analyses from the genital tract of infected men and
women will pave the way for effective vaccine design.

There is an urgent need for a gonorrhea vaccine owing to the
rapidly developing multi-drug resistant N. gonorrhoeae strains.
These changes occur through various mechanisms, such as plas-
mid acquisition, point mutation, and naked DNA uptake from
other gonococcal strains. Currently, there is no reliable antibiotic
or empirical treatment for this disease as well (Zhang et al,,
2016). The absence of robust animal models for mimicking the
prototypic disease and its variants also challenges immune
response predictions (Vincent and Jerse, 2018). Therefore, new
discoveries in the horizon of vaccine development are a welcome
step. First among them is the finding that N. gonorrhoeae, for its
benefit, manipulates the host system. Second, new developments
in an animal model for pre-clinical evaluation of gonococcal vac-
cines are needed. Third, to tap conserved surface antigens of N.
gonorrhoeae for vaccine development. Recently, vaccines, such
as MeNZB and Bexsero, have been developed for gonorrhea
(Edwards et al., 2018).

Gonorrhea not only threatens the general public but also mili-
tary personnel. Thus, the US military has strongly recommended
vaccine research and development (Russell, 2018). In vitro and clin-
ical studies, proteomics-driven antigen discovery, and comprehen-
sive bioinformatics strategies will help make informed and rational
decisions on vaccine development. Pertaining to gonorrhea, struc-
tural vaccinology is in its infancy and the response should be pub-
lic alarm; consequently, research on vaccine development for
gonorrhea is urgently needed (Ratto-Kim et al., 2018).
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9. Current status of STD vaccines

The current status of the vaccines for STDs and their adminis-
tration is tremendously different depending on each region and
its demographic characteristics. It is mostly influenced by the
awareness of the disease and the cultural acceptability of vaccines
in every specific area. Most of the vaccines associated with STDs
still have to pass some key checkpoints before landing up into
the market space. The successful achievement of endpoints in clin-
ical trials and the validation of surrogate endpoints is crucial. Reg-
ulatory routes need to be determined well for licensing. Systems to
monitor vaccine responses in advance are always appreciated and
sought after in great demand.

10. HPV vaccine

A bivalent form of vaccination is actively used against HPV16
and 18; it is commercially known as Cervarix, and it was approved
in 2007. Gardasil 9 was approved in 2016; it is actively adminis-
tered against HPV6, 18, 11, and 16. This nonavalent vaccine is
the only one offered in the United States. The dosage has been
reduced to 2 from 3 (Dobson et al., 2013). For women nearly 45,
three doses are recommended, followed by immunosuppressants.
The latter may be given to any person, regardless of gender and
age. The prevalence and distribution of HPV types differ by geo-
graphic region (Stanley et al., 2012). All three prophylactic combi-
nation vaccines contain L1 in its purified form and recombinant
HPV empty shells (Stanley et al., 2012). The levels of vaccine con-
tent in the serum of the patients varies with age with maximum
seropositivity seen for ages between 15 and 25 years. Serum levels
reduce a bit as patients grow older (Dadar et al., 2018). Even a
vaccine-based therapy is available for HPV, which triggers the
cell-mediated immunity. The nonavalent prophylactic vaccine is
the best vaccine for HPV in the present-day scenario (Anna Rosa
Garbuglia).

11. N. Meningitidis & Syphilis vaccine

Group B OMV (outer membrane vesicle) vaccines against Neis-
seria gonorrhoeae have been developed. But the pathway and mode
of action are still very unclear. Hurdles like the relation between
pelvic inflammation and infection, biomarker development, and
specific tests for upper genital tract ailments are seen during clin-
ical trials. The male urethral model is also a serious challenge that
is still stuck at clinical trials phase II. In the upcoming years, the
effect of 4CMenB against gonorrhea deserves special attention
(Registry, 2020). The first prototype vaccine for syphilis was
designed in 1973 (Miller, 1973). Animal models administered with
T. pallidum treated with v radiation showed protection against the
disease for 1 year (Cameron; C.E. and S.A. Lukehart, 2014). Subse-
quently, Borrelia burgdorferi based carrier and T. pallidum flagellin
encoding plasmid were proposed as candidate vaccines, but these
are still in experimental stages (Parveen et al., 2019; Zheng et al.,
2018). Due to ethical reasons and safety concerns of the subjects
under clinical trials, the vaccine for syphilis has not completed
human trials yet (Centre for Disease Control and Prevention. The
Tuskegee timeline, https://www.cdc.gov/tuskegee/ timeline.htm.
(accessed 13 August 2019).

12. Chlamydia vaccine

Modelling studies have suggested that partial protection of C.
trachomatis (Ct) could be a cost-effective vaccine. But the burden
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of treating Ct-associated diseases, especially in developing and
underdeveloped countries, makes potential vaccination inevitably
necessary. Trials are still being completed in humans for Ct vacci-
nes as endpoints for the efficacy are still under research. Scientists
are currently working on biomarker identification associated with
inflammation for upper genital tract and the role of antibodies
(CD4 T cells generated by Ct specific vaccine). There are several
potential vaccines available today for Ct which are administered
in combination by practitioners; they include NanoBio Corp’s
Intranasal MOMP nanoemulsion with Fattom, Statens Serum Insti-
tut’'s MOMP-VD4 neutralizing antibodies, Pan-Provincial Vaccine
Enterprise Inc. and British Columbia CDC’s MOMP + Pmps, Selecta
Biosciences’s cSAP TLR7 agonist with UV-killed Chlamydia, Prokar-
ium’s Vaxonella platform, and NIH/NIAID plasmid-deficient tra-
choma vaccine (Olsen et al., 2015; Bgje et al., 2016; Olsen et al.,
2017; Fattom, 2019; Karunakaran et al., 2015; Stary et al., 2015;
Garmory et al., 2005; Kari et al., 2011).

13. HSV vaccine & HIV vaccine

Preclinical forms for HSV treatment and prevention are mutated
forms of HSV-1, HSV-2, glycoprotein B lentiviral vector with HSV-1,
MPL/alum in HSV-2, intranasal recombinant of HSV-1 g, and triva-
lent glycoprotein. Although mice and guinea pig models are not
reliable for human responses for this specific disease, these models
have reported enhanced viral clearance and reduction recurrence
of the ailment due to the vaccine (Corey et al., 1999; Mascola,
1999; Strasser et al., 2000). The vaccines that are underway for
simplex virus associated with humans are Profectus BioSciences,
gD2/ICP4, GEN-003 Genocea, HerpV Agenus, HSP, QS-21 with 32
to 35-mer peptides and polynucleotides, gD2+/-UL46 Vaxfectin,
and HSV529 Sanofi Replicated attenuated HSV-2X (Johnston
et al., 2016). These are generally therapeutic vaccines that might
surface in the coming years as all of them have reached phase II
of clinical trials except for HSV529 Sanofi Replicated attenuated
HSV-2X. NIAID of the NIH, US Army Medical Research and Develop-
ment Command, Janssen, and the HIV Vaccine Trials Network has
been working on an acceptable vaccine model which addresses
the genetic diversity of HIV (ClinicalTrials.gov. Identifier NCTO,
2019). The steps that need to be rendered in the subsequent years
should be the completion of clinical trials of mosaic and prime
boost approach vaccines. Few similar therapies like vaccines avail-
able today for HIV are immunogen stimulating germlines, passive
immunization antibodies, envelope domains, envelope trimers,
and genetic delivery by viral vectors and replicating viral vectors
(Rerks-Ngarm et al., 2009; Jardine et al., 2013; Moldt et al., 2012;
Lewis et al., 2002; Parks et al., 2013).

14. Zika virus vaccine

In the early months of 2020, zika virus was found to be dormant
but the cohort presence of the viral strain in infants infected
between 2015 and 2017 is still a medical issue that needs address-
ing (Staples et al., 2020). The viral RNA has been found to be preva-
lent in the semen of symptomatic patients for up to 6 months
(Counotte et al., 2018). The WHO is currently working on a set of
vaccines for tackling zika virus, to name a few, AGS-v with salivary
proteins, mRNA-1325, ZIKV, PIZV or TAK-426, VRC-ZKADNAO85-
00-VP, GLS-5700 DNA prME, and MV-Zika (World Health
Organization. Welcome to the WHO vaccine trial tracker,
https://docs.google. com/spreadsheets/d/190otvINcayJURCMg76x
WO4KvuyedYbMZDcXqby]GdcZM/pubhtml, 2019; Sakkas et al.,
2018).
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15. Conclusion and future perspectives

Integrative approaches with advancements in proteomics,
immunomics, and immunogenomics will help in the development
of a well-suited contraceptive vaccine for the next millennium.
There is an imperative need to control the population growth rate
throughout the world, utilizing innovation in contraception. In
developing countries, between the first and second pregnancies,
women undergo frequent abortions due to a lack of knowledge
about contraception, affordability, and even failure when using
existing contraceptive measures. Besides, contraceptive measures
should be one of the main focuses of the next millennium, as 46
million abortions are being done yearly in developed nations. To
our knowledge, contraceptive vaccines could be the choice to over-
come the drawbacks in the existing contraception, e.g., those
related to condom usage. Fortunately, many contraceptive vaccines
are being formulated, and some have been successful in animal
models and are soon expected to undergo clinical trials. But still,
we hope that advancements in integrative approaches with
multi-omics techniques may come a practice to humankind in
the near future. Before the development of vaccines for STIs, to
understand the mechanism of transmission of organisms between
individuals and the nature of STIs causing organisms is a must. If
the transmission is clear, the vaccine development against each
STI becomes easy and straightforward. Even though we have vacci-
nes for hepatitis B, and HPV, the prevalence of these infections is
still at an alarming stage. This is because of a lack of knowledge
about STIs in rural areas and because government agencies are
not conducting frequent awareness programs about STI vaccines.
A lot of groundwork is in need for implementing the vaccines
against STIs for prevention and control. Hopefully, vaccines for
contraception and vaccines against STIs will be available in the
market for the betterment of humankind in the near future. In a
clinical context, a safe contraception vaccine, with no side effects,
and reversible is crucial; however, it is also difficult to develop
because human immune responses after immunization are hard
to understand and sometimes inevitable.
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