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Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues

and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and

low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins

and are often suppressed by HMWF proteins during analysis. This issue is addressed by using a filtration

device to isolate the filtrate portion from blood serum samples having biomarker proteins up to the size of

the cutoff value of the filtration device. In this research, 100 kDa filter devices are employed to obtain the

filtrate portions from blood serum samples of type II diabetes mellitus patients and healthy volunteers,

followed by characterization using surface-enhanced Raman spectroscopy (SERS) with silver nanoparticles

(Ag NPs) as the SERS substrate. By using this approach, the collected filtrate is expected to contain marker

proteins at a size of <100 kDa, which are associated with type II diabetes. These marker proteins are in

a narrow size range (cutoff value of 100 kDa). Hence, they may be more easily identified by their

characteristic SERS spectral features as compared to their analysis in the respective whole blood serum

samples due to the exclusion of larger size proteins. These proteins that are present in the filtrate portions

of type II diabetes may include adiponectin, C-reactive protein, insulin, leptin, RBP4, IL-6, TNF-a, Fibroblast

Growth Factor 21 (FGF21), albumin, transthyretin, alpha-antitrypsin, transferrin, apolipoprotein A-1 (ApoA-1)

and fetuin-A. Some prominent SERS bands are observed at 356 cm−1, 435 cm−1, 490 cm−1, 548 cm−1,

596 cm−1, 729 cm−1, 746 cm−1, 950 cm−1, 1330 cm−1, 1362 cm−1, 1573 cm−1 and 1689 cm−1, which

differentiate type II diabetes patients from healthy individuals. Moreover, the SERS spectral data sets of

various samples are classified using two chemometric approaches: principal component analysis (PCA) and

partial least square discriminant analysis (PLS-DA). The validation of the PLS-DA analysis classification model

is indicated with 81% accuracy, 79% specificity, and 85% sensitivity, having a value of AUC = 0.75.
1. Introduction

Type II diabetes mellitus is a fast-growing global issue and
a non-insulin-dependent metabolic disease1 with social,
economic and health-related outcomes.2 The International
Diabetes Federation has declared that it has become the 6th
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leading cause of death across the world, as 537 million people
are suffering from diabetes globally, and it has been predicted
that extended gures will be 783 million in 2045.3 Type II dia-
betes mellitus is a pancreatic inammation that is marked by
elevated blood glucose level due to inadequate production of
insulin by pancreatic beta cells, which leads to hyperglycemia.4

Due to insulin resistance, glucose (primary source of energy) is
not taken up by tissues (muscles, liver and adipose tissues),
which can cause energy depletion in the body. Increased
hunger, thirst, frequent urination, exhaustion, hazy eyesight,
and slow wound healing are some prevalent symptoms of the
disease.5 If severe, it can become a medical emergency.6

Complications of chronic inammation include cardiovascular
disease,7 possible amputations, hypertension, loss of vision,
renal failure, and anomalies in lipoprotein metabolism.8 It has
been demonstrated that weight loss management (as obesity is
a major contributing factor in insulin resistance) and physical
RSC Adv., 2025, 15, 2287–2297 | 2287
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Table 1 Description of type II diabetes blood serum protein
biomarkers with a mass of less than 100 kDa

Type II diabetes biomarkers Molecular weight References

Adiponectin 30 kDa 41
C-reactive protein 25 kDa 42
Leptin 16 kDa 43
Insulin 5.8 kDa 44
RBP4 21 kDa 45
IL-6 26 kDa 46
TNF-a 17 kDa 47
Fibroblast growth factor 21 (FGF21) 22 kDa 48
Albumin 66 kDa 49
Transthyretin 55 kDa 50
Alpha-antitrypsin 45 kDa 51
Transferrin 79 kDa 52
Apolipoprotein A-1 (ApoA-1) 28 kDa 53
Fetuin-A 60 kDa 54 and 55
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activity can retard the risk factors associated with the develop-
ment of prediabetes to type II diabetes.9,10 Different gold stan-
dard techniques, including oral glucose tolerance testing
(OGTT), HbA1c and fasting plasma glucose (FPG), are routinely
used diagnostic tools for the assessment and screening of type
II diabetes mellitus.11 These techniques have different limita-
tions, including low specicity, poor analytical stability, and
time-consuming procedures. The early detection of type II dia-
betes is crucial, as undiagnosed inammation can be life-
threatening. Therefore, new analytical techniques should be
explored for the development of methods that can quickly
detect this disease in a cost-effective way and with the least
amount of sample preparation. Raman spectroscopy has great
potential to identify ngerprints of the molecules. It can be
employed for different bioanalyses utilizing biouids; for
example, blood urine and serum, in which biomarker proteins
of the disease are expected to be present.12 Raman spectroscopy
may be used for the identication of biochemical changes
associated with distinct biomarkers of different diseases, as it is
very sensitive, reliable, less time-consuming, and a rapid
analytical technique.13 In body uids, biomolecules like RNA/
DNA, protein, and lipids are found in low concentration.
Thus, weak Raman signals are produced from these biomole-
cules, hindering their identication.14 To overcome this
problem, surface-enhanced Raman spectroscopy (SERS) is
applied, which helps to enhance the signals with the help of
metallic nanoparticles (silver or gold).15–17 The silver nano-
particles (Ag NPs) are considered to enhance the signal more
strongly due to the greater surface plasmon effect as a result of
the availability of high numbers of active sites.18 Moreover, they
are inexpensive and easier to synthesize than gold nano-
particles. SERS has been widely used for the characterization of
different bacterial strains,19–21 as well as for the identication of
biomarkers of various diseases, such as breast cancer,22,23

tuberculosis,16,24 hepatitis B (HBV),25 oral cavity cancer,26 hepa-
titis C (HCV),27 typhoid28 and dengue fever.29

In the current study, ltrate fractions of diabetic type 2
patients and non-diabetic persons are obtained by using 100 kDa
ltration devices. Blood is a reservoir of lipids, proteins and
aliphatic hydrocarbons,30 where high molecular weight fraction
(HMWF) proteins are abundantly found alongside low molecular
weight fractions (LMWF), which are most limited. The HMWF
include proteins (50–60%) strongly dominating the lower
molecular proteins, and related biomolecules like amino acids,
nucleic acids and carbohydrates.31 Notably, the LMWF proteins
are considered as disease biomarkers. However, due to their
abundance, the HMWF suppress these lower molecular weight
fraction biomolecules. Hence, their detection is difficult. In order
to overcome this challenge, HMWF and LMWF are separated by
employing ultra-centrifugal lter devices having different
molecular weight cut-offs.32 In this study, ultraltration devices
are used to obtain the type II diabetes biomarkers having
molecular weights of less than 100 kDa in the ltrate portion,
followed by SERS analysis to identify the SERS spectral charac-
teristic properties of the type II diabetes biomarkers which are
give in Table 1. The progression of type II diabetes may cause
uctuations in the biomolecules of blood, generally accompanied
2288 | RSC Adv., 2025, 15, 2287–2297
by the appearance of new biomolecules along with an increase or
reduction in the specic biomolecules, which will be character-
ized by SERS technique.33 Moreover, the two chemometric
approaches, principal component analysis (PCA) and partial least
square discriminant analysis (PLS-DA), are used for qualitative
analysis and for the semi-quantitative discrimination, respec-
tively, of the spectral data sets of the healthy versus diabetes-
positive individuals. From a literature review performed during
this research work, we have shown that no published study has
employed surface-enhanced Raman spectroscopy for the char-
acterization of ltrate sections of blood serum proteins of type II
diabetes in the cutoff range of 100 kDa. Our study is unique in
targeting type II diabetes biomarkers within the range of 100 kDa.
Previous studies34–37 have used SERS for the analysis of serum of
type II diabetes, but none of them used 100 kDa ltration, which
is of paramount importance because the majority of the protein
biomarkers lie in this range. The ltration used in this study
enhances the specicity and sensitivity of our analysis.

2. Materials and methods
2.1. Silver nanoparticles synthesis

A chemical reduction process is utilized to synthesize the silver
nanoparticles that will be the substrate for SERS. To do this,
0.017 g of silver nitrate (AgNO3) was added to 100 milliliters of
deionized water in a beaker, and then the mixture was heated to
80–85 °C. Aer that, 0.025 g of 1% trisodium citrate
(Na3C6H5O7) was added to the mixture and heated for an hour
on a hot plate, while being continuously stirred with a magnetic
stirrer. To synthesize gray-colored silver nanoparticles, the
supernatants were removed by centrifuging the mixture for 7
minutes at 600 round per minute.38

2.2. Collection of blood samples of type II diabetes

Blood samples of non-diabetic (healthy) volunteers and diabetic
individuals were collected from the District Headquarter
Hospital Toba Tek Singh, Pakistan. For this study, a total of 50
samples (including 35 disease samples and 15 healthy samples)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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were used. The blood samples were taken in EDTA/sodium
uoride tube, and centrifuged for 10 minutes at 2000 rpm to
get blood serum. Furthermore, ultracentrifugation of serum
samples using 100 kDa lter devices (Amicon Ultra-2 ml, Merck,
Millipore) was performed at 6500 rpm for 30 minutes to
concentrate the low molecular weight fractions termed as the
ltrate portion against the high molecular weight fractions,
which are called residue.39

2.3. SERS spectral measurements

SERS spectra were collected with a Peak Seeker Pro-785 Raman
spectrometer (Agiltron, USA) equipped with a 785 nm diode
laser. For each sample, 40 ml of ltrate portions from blood
serum samples of diabetes positive and healthy volunteers were
mixed with 40 ml of silver nanoparticles for an incubation period
of 1 hour in Eppendorf tubes with a micropipette. Aer incu-
bation, a sample mixture of 25 ml volume was placed on an
aluminum slide with a groove viamicropipette for SERS spectral
acquisition. The laser power used for each sample was adjusted
to 50 mW, and the integration time was 10 seconds. Using the
same conditions for each sample, 15 SERS spectra were
collected in the range of 400–1800 cm−1.

2.4. Data preprocessing of the SERS spectra

The spectral features of SERS were pre-processed by using the
MATLAB 7.8 soware. The processing of spectra includes vector
normalization, baseline correction, smoothing and background
removal. The Savitzky Golay method and Rubber band were
used for vector normalization and baseline removal, respec-
tively.40 The contribution from the aluminum slide substrate in
the sample spectra was removed by subtraction method.

2.5. Multivariate data analysis

Multivariate data analysis methods like PCA and PLS-DA were
employed to compare the SERS spectra obtained from the
ltrate parts of blood serum from healthy controls and type II
diabetic patients aer ltration with the 100 kDa devices. A
large number of uncorrelated variables can be reduced to
a smaller number of correlated variables by utilizing PCA, an
unsupervised statistical method. Reducing the dimensions, in
which the rst principal component (PC-1) explained the major
variations in the spectral features and the second principal
component (PC-2) described the remaining variation, preserves
the changes in the spectral features. By excluding the orthog-
onal dimensions for data variability, loadings of PC are utilized
to classify the SERS spectral features sets of different samples
employed in this study. The false positive rate for specicity and
the true positive rate for sensitivity are explained by the ROC
curve, and PLS-DA is a supervised method that can be used to
calibrate, validate, predict, and categorize the high-dimension
SERS spectral data sets exhibiting variability.

3. Results and discussions

Human serum is a reservoir of HMW and LMW fractions, in
which 99% of the serum part is taken up by highly abundant
© 2025 The Author(s). Published by the Royal Society of Chemistry
proteins. These proteins suppress less abundant proteins,
which are potentially disease biomarkers that can be mined for
disease biomarker identication by ultracentrifugation of the
serum (kDa), followed by SERS analysis.
3.1. Mean SERS spectra of whole serum versus ltrate
portion of diabetic samples

Fig. 1 depicts the mean SERS spectra of the diabetic whole
serum and the ltrate portion from the same sample of blood
serum. It clearly shows the spectral differences that appear due
to centrifugation and the elimination of larger proteins weigh-
ing more than 100 kDa. This helps to distinguish the variations
taking place during the progression of type II diabetes. Certain
SERS spectral features that are not seen in the mean spectrum
of the ltrate, but observed in the whole serum, are caused by
the presence of HMWF. These SERS features include the bands
at 575 cm−1 (C–C bending vibration in phosphatidylinositol),
841 cm−1 (C–C bending vibration in glucose), 957 cm−1 (PO4

3−),
1330 cm−1 (phospholipids region linked with DNA) and
1654 cm−1 (C]C lipid stretch) represented by solid lines.
Similarly, the SERS bands that appeared in the ltrate portion
but were absent in the whole serum are indicated by solid lines,
and include the features at 383 cm−1 (skeletal vibrational
modes in proteins), 746 cm−1 (breathing mode of ring of
thymidine in DNA) 1075 cm−1 (symmetric stretching vibration
of n3 PO4

3−), 1275 cm−1 (amide III), 1540 cm−1 (vibrations of the
carbonyl group of the amide and aromatic hydrogen) and
1323 cm−1 (stretching vibrations in guanine (B, Z-marker)).
These SERS bands appeared in the ltrate portion due to the
abundance caused by ltration (100 kDa) of LMW fraction,
which can be considered disease biomarkers. The SERS spectral
features that are present in the spectra of both diabetic whole
serum and its ltrate portion, but differ in their intensities, are
denoted by dashed lines. A sharp peak present at 456 cm−1

caused by ring deformation vibrations in L-tryptophan (protein)
has low intensity in the whole serum samples, but slightly
increased intensity in the ltrate samples. A high intensity peak
present in the whole serum samples is present at 729 cm−1 (ring
bending mode in L-histidine), but the intensity is reduced in the
ltrate portion. A SERS band at 1100 cm−1 (fatty acids and n(C–
C)-lipids) with medium intensity appeared in the whole serum
sample, but decreases in the ltrate sample. A low intensity
peak present at 1398 cm−1 is caused by the (C]O symmetric
stretching) in the whole serum samples, but exhibits further
reduced intensity in the centrifuged samples (ltrate). Similarly,
a prominent peak appeared at 1448 cm−1, indicating the pres-
ence of CH2CH3 deformation. The ltrate samples show
medium intensity, which decreases in the unltered samples.
This occurs due to the prominence of the corresponding
component upon eliminating the HMW fractions. Signicantly,
the peaks appearing in the SERS spectra of the ltrate samples
result from the removal of the high molecular weight fraction
weighing more than 100 kDa. These peaks were not present in
the whole serum sample due to the predominance of the larger
proteins.
RSC Adv., 2025, 15, 2287–2297 | 2289



Fig. 1 Mean plot of SERS spectra for the uncentrifuged (whole serum) and centrifuged (filtrate) type II diabetic serum samples.

RSC Advances Paper
3.2. Mean SERS spectra of the ltrate portions of diabetes-
positive and healthy individual blood serum samples

Fig. 2 shows all the mean features of the ltrate portions of
blood serum samples from patients with type II diabetes and
healthy individuals. The solid lines highlight specic peaks that
are absent in one spectrum but present in other spectra, indi-
cating key differences in the molecular signatures between the
samples. The peaks that are present in both spectra, but exhibit
an increasing or declining trend of intensity, are represented by
dotted lines. The SERS properties, including the bands at
421 cm−1 (skeletal bending mode in proteins), 490 cm−1 (C–O–
C; glycosidic bond in glycogen), 812 cm−1 (Z-marker of phos-
phodiester), 860 cm−1 (PO4

3−), 920 cm−1 (C–C stretching within
the proline ring), 957 cm−1 (phosphate group), 1215 cm−1 (C–N
stretching), 1259 cm−1 (C–H in-plane bending in thymine),
Fig. 2 Mean plot of the SERS spectra for the filtrate portions of healthy

2290 | RSC Adv., 2025, 15, 2287–2297
1337 cm−1 bending motion of methylene from the backbone
(glycine & proline), 1590 cm−1 (breathing vibrations in trypto-
phan) and 1783 cm−1 (carbonyl group in lipid contents (fatty
acids & triglycerides)), are visible in the healthy individuals only
and absent in the spectra of the diabetic samples. The SERS
bands appearing at 500 cm−1 (torsional movement around C–
OH3 of the methoxy group), 686 cm−1 (C–N bending vibration in
glycine), 746 cm−1 (ring breathing mode of thymidine in DNA),
950 cm−1 (C–C stretching vibrations for the proline and valine
(proteins)), 1180 cm−1 (C–N in-plane bending in cytosine),
1330 cm−1 (phospholipids region linked with DNA), 1362 cm−1

(guanine (N7, B, Z-marker)), 1573 cm−1 (C]C stretching
vibration in guanine) and 1689 cm−1 (amide I (unarranged
structure; non-hydrogen bonded)) are observed only in the
ltrate fractions (100 kDa) of blood serum samples from the
diabetic patients, and could be regarded as disease markers.
individuals and type II diabetic patients' blood serum samples.

© 2025 The Author(s). Published by the Royal Society of Chemistry



Table 2 SERS peak assignments of spectral characteristics collected by 100 kDa devices from filtrate sections of healthy volunteers and type II
diabetic persons

SERS peaks (cm−1) Peak assignments References

356 Vibrational mode of (C–C–C) glucose's ring 56
383 Skeletal vibrational modes in proteins 57
407 C–O–C bending in a-D-glucose 58
421 Skeletal bending mode in proteins 59
435 Lattice vibration in methylmyristic acid 58
456 Ring deformation vibrations in L-tryptophan (protein) 60
479 C–N–C bending in thymine 58
490 (C–O–C; glycosidic bond) in glycogen 61
500 Torsional movement around C–OH3 of methoxy group 60
548 Skeletal bending vibration of the sterol ring in cholesterol 62
575 C–C bending vibration in phosphatidylinositol 62
596 C–C stretching vibration in phosphatidylinositol 62
686 C–N bending vibration in glycine 58
729 Ring bending mode in L-histidine 58
746 Breathing mode of ring of thymidine in DNA 63
786 Phosphate backbone (O–P–O stretching) 12 and 64
812 Phosphodiester (Z-marker) 65
841 C–C bending vibration in glucose 64
860 Phosphate group 62
893 Backbone, carbon–carbon skeletal 63
920 C–C stretching within the proline ring 61, 64 and 66
950 C–C stretching vibrations for the proline and valine (proteins) 67
957 PO4

3− 57
1075 Symmetric stretching vibration of n3PO4

3− 68
1078 Stretching vibration around n(C–C) and n(C–O) of phosphate group of phospholipids 69
1100 Fatty acids & n(C–C)-lipids 70
1180 C–N (in-plane bending) in cytosine 65
1208 C–C stretching or C–N stretching in lipids 57
1215 C–N stretching 71
1259 C–H in-plane bending in thymine 72
1275 Amide III 73
1292 Bending vibration in cytosine 65
1323 Stretching vibration in guanine (B, Z-marker) 65
1330 Phospholipids region linked with DNA 64, 74 and 75
1337 Bending motion of methylene from backbone (glycine & proline) 63 and 76
1362 Guanine (N7, B, Z-marker) 65
1398 C]O symmetric stretching 77
1400 In-plane deformation of NH 12
1448 CH2–CH3 deformation 68
1540 Vibrations of carbonyl group of amide and aromatic hydrogen 78
1573 C]C stretching vibration in guanine 61
1590 Breathing vibrations in tryptophan 79
1621 Indole ring stretching vibrations in tryptophan 68
1654 C]C lipid stretching 64
1689 Amide I (unarranged structure; non-hydrogen bonded) 73
1783 Carbonyl group in lipid content (fatty acids & triglycerides) 80
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Some SERS bands are seen in healthy and in type II diabetes
samples, including bands at 356 cm−1 (vibrational mode of (C–
C–C) glucose's ring), 407 cm−1 (C–O–C bending in a-D-glucose),
435 cm−1 (lattice vibration in methylmyristic acid), 479 cm−1

(C–N–C bending in thymine), 548 cm−1 (skeletal bending
vibration of the sterol ring in cholesterol), 596 cm−1 (C–C
stretching vibration in phosphatidylinositol), 729 cm−1 (ring
bending in L-histidine), 786 cm−1 (phosphate backbone (O–P–
O) stretching), 893 cm−1 (backbone, C–C skeletal), 1078 cm−1

(stretching vibration of n(C–C) & n(C–O) of the phosphate group
of phospholipids), 1208 cm−1 (C–C stretching or C–N stretching
© 2025 The Author(s). Published by the Royal Society of Chemistry
in lipids), 1400 cm−1 (NH in-plane deformation) and 1292 cm−1

(bending vibration in cytosine). All of the above SERS features
are shown in Table 2 with references from the literature. We
have provided enlarged images (Fig. S3†) of the SERS mean plot
of the healthy and diabetic ltrate samples in the ESI.†

3.3. Principle component analysis (PCA)

Multivariate SERS spectral data of healthy and type-2 diabetes
patients are analyzed using principal component analysis
(PCA). The unsupervised chemometric method reduces the
dimensionality and complexity of the data, while producing
RSC Adv., 2025, 15, 2287–2297 | 2291
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additional variables (PCs) for qualitative classication analysis.
The rst PCA dimension is PC-1, which is located on the x-axis,
and PC-2, which is located on the y-axis of the PCA scatter plot,
and provides the PCA loadings as the source of variance.

In this study, all the SERS spectral datasets of the healthy
control and diabetes-positive patients were analyzed by PCA. It
can effectively identify the changes among the SERS spectral
datasets by minimizing the data complexity. The PCA scatter
map of the SERS spectra of the ltrate portions of the centri-
fuged serum samples from both type II diabetics and healthy
individuals is displayed in Fig. 3. PC-1 describes several SERS
spectral clusters for various classes. The SERS spectra of the
diabetic samples are depicted by red colored dots, whereas the
spectra of the healthy samples are depicted by green colored
dots, each of which represents a single SERS spectrum. In the
PCA scatter plot (Fig. 3), where diabetic samples are grouped on
the positive region of PC-1 and the spectra of the healthy
samples are clustered on the negative side, there is a clear
distinction between the SERS spectra of these two classes of
ltrate parts from the blood serum samples. PC-1 accounts for
the largest variance (52.30%) of the SERS spectra of the two
sample groups in these SERS spectral datasets, while PC-2
accounts for 24.84% of the variance.

Fig. 4 displays the SERS spectral data sets of the ltrate parts
of the healthy and type II diabetes serum samples. The negative
loadings explain the SERS spectra of the healthy individuals
that are grouped on the negative axis of the scatter plot (Fig. 3),
while the positive-axis loadings are linked to the SERS spectra of
the type II diabetes-positive samples that are aggregated on the
positive axis. The PC loadings, also known as correlation coef-
cient vectors between the variables, offer an explanation of the
underlying relationship between the original variables. The
negative loadings of PC-1 associated with the SERS spectral
datasets of healthy centrifuged serum samples are seen at
490 cm−1 (C–O–C; glycosidic bond in glycogen), 729 cm−1 (ring
Fig. 3 PCA scatter diagram from the SERS spectra of the filtrate parts for
patients.

2292 | RSC Adv., 2025, 15, 2287–2297
bending mode in L-histidine), 860 cm−1 (PO4
3−), 920 cm−1 (C–C

stretching within the proline ring), 957 cm−1 (PO4
3−),

1337 cm−1 bending motion of methylene from the backbone
(glycine & proline) and 1783 cm−1 (carbonyl group in the lipid
content). The PC-1 positive loadings are related to the diabetes-
positive centrifuged serum samples, which are seen at 435 cm−1

(lattice vibration in methylmyristic acid), 479 cm−1 (C–N–C
bending in thymine), 596 cm−1 (C–C stretching vibration in
phosphatidylinositol), 893 cm−1 (backbone, C–C skeletal),
1078 cm−1 (stretching vibration around n(C–C) and n(C–O) of
the phosphate group of phospholipids), 1180 cm−1 (C–N in-
plane bending in cytosine), 1292 cm−1 (bending vibration in
cytosine) and 1362 cm−1 (guanine (N7, B, Z-marker)). These
ndings demonstrate that the ltrate portion of the blood
serum samples from the type II diabetes and non-diabetic
individuals could be distinguished depending on the SERS
spectral variations.
3.4. Partial least square discriminant analysis (PLS-DA)

Partial least square discriminant analysis (PLS-DA) is a statis-
tical analysis tool used for discriminative modeling along with
variable selection. To construct the relationship between the
predictor and response variable, this model makes use of latent
variables that help to categorize the SERS spectra of different
samples into distinct classes, such as diabetes and healthy ones
in the current study. For unbiased results, matrices of the
overall SERS spectral data are constructed and then random-
ized. SERS spectral datasets are grouped into two categories,
with 60% of the spectra randomly chosen for the calibration set
and 40% of the spectral data selected for validation. Eight latent
variables were selected in order to build the PLS-DA model. The
Leave One Sample (15 SERS spectra) Out cross-validation
method (LOOCV) is used in the validation technique. The
ltrate parts of the healthy and diabetic serum samples get
separated by score plot, as shown in Fig. 5.
centrifuged serum samples obtained from healthy and type II diabetes

© 2025 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 PCA loadings of the SERS spectra from the filtrate parts of centrifuged serum samples from healthy and type II diabetes patients.
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It is evident that the diabetic samples' spectrum datasets are
classied on the positive side of the x-axis, whereas the healthy
samples' spectral datasets are clustered on the negative side.
The disease-positive samples' SERS spectra are displayed as red
color dots, whereas the healthy samples' spectra are shown as
green color dots. Fig. 6 shows the receiver operating curve (ROC)
of the PLS-DA analysis, which further indicates how well this
classication model can separate the SERS spectra of the type II
diabetes patients from those of healthy individuals. As seen in
Fig. 6, the value taken from the area under the curve (AUC) is
Fig. 5 PLS-DA model describing the classification of the SERS spectra o

© 2025 The Author(s). Published by the Royal Society of Chemistry
0.75. The 100% validity of the proposed model is shown by an
AUC value of 1, whereas a value of zero renders the model null
and void. The PLS-DA model has demonstrated 81% accuracy,
79% specicity, and 85% sensitivity in validation of the classi-
cation, indicating its reliability in classifying both diabetic and
healthy samples.

3.5. Discussion

A prominent SERS band solely observed in the ltrate parts
(SERS spectra) belonging to the healthy and type II diabetes
f filtrates from the healthy and type II diabetes patients.

RSC Adv., 2025, 15, 2287–2297 | 2293



Fig. 6 Receiver operating curve (ROC) of the PLS-DA model to discriminate the filtrate sections of both type II diabetes patients and healthy
individual's SERS spectra.
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patients is observed at 1330 cm−1 and associated with phos-
pholipids, which are linked to the increased blood glucose. It is
critical to explore how the abundance of phospholipid contents
alter the fatty acids patterns in type II diabetes mellitus patients,
leading to obesity.81 A prominent peak at 490 cm−1 is caused by
glycogen, which is observed only in healthy samples, but not
seen in disease samples. This indicates that there is reduced
glycogen levels in the diabetic patients. It is important to note
that glycogen is critically needed for the proper regulation of
blood glucose levels.82 The peak associated with amide I at
1689 cm−1 is only observed in the spectra from diabetic
samples, and can be considered as a potential biomarker for the
identication of the metabolic disease. The amide I peak indi-
cates the altered protein conformations and impaired glucose
metabolism.83 The peaks present at 746 cm−1, 1180 cm−1,
1362 cm−1 and 1573 cm−1 are indicative of RNA/DNA bases
(adenine, cytosine and guanine), which reect their involve-
ment in gene expression by the process of epigenetic modi-
cations.84 The peaks appearing at 356 cm−1 and 407 cm−1 with
greater intensity in the disease samples as compared to the
healthy ones can be associated with glucose, which may also be
considered as a potential biomarker for the diagnosis of type II
diabetes mellitus.85 Another intense peak at 435 cm−1 in the
diabetic samples indicates the high proportion of methyl myr-
istic acid, which is a specic form of fatty acids. Diabetic
patients have high cholesterol levels, which is indicated by the
SERS band at 548 cm−1.86 Furthermore, in the diabetic samples,
a high intensity peak at 596 cm−1 is due to phosphatidylinositol
(combination of fatty acids, inositol (a sugar like molecule) and
glycerol), which causes impaired glucose metabolism in the
muscle cells.87 The L-histidine (observed at 729 cm−1) is an
essential amino acid required for metabolic activities (glucose
metabolism) in the body, and appears with low intensity in the
disease samples. A high intensity peak at 1078 cm−1 in the
2294 | RSC Adv., 2025, 15, 2287–2297
diabetic patients as compared to non-diabetic ones is due to
phospholipids, which is a saturated fatty acid responsible for
increasing glucose production in the liver (hyperglycemia).88

Moreover, all SERS bands from the ltrate parts of the diabetes
patient samples may be taken as potential indicators for the
detection of diabetes, resulting from the elevated levels of blood
glucose.

4. Conclusions

Surface-enhanced Raman spectroscopy with Ag-nanoparticles
as a SERS substrate, coupled with chemometric tools
including principal component analysis (PCA) and partial least
square discriminant analysis (PLS-DA), is found to be an
excellent method for the rapid screening of type II diabetes
mellitus patients with high 79% specicity and 85% sensitivity.
The SERS technique is found to be useful for discriminating the
SERS spectral features of the ltrate portions (obtained by using
100 kDa ltration devices) of the blood serum samples obtained
from healthy volunteers and patients with type II diabetes. The
major differentiating SERS spectral features related to type II
diabetes and healthy persons are observed at 356 cm−1,
407 cm−1, 435 cm−1, 490 cm−1, 548 cm−1, 596 cm−1, 729 cm−1,
746 cm−1, 1078 cm−1, 1330 cm−1, 1362 cm−1, 1573 cm−1 and
1689 cm−1. It can be concluded that SERS is promising non-
invasive technique, which offers valuable insights for the
quick diagnosis of type II diabetes (pancreatic inammation),
particularly by using 100 kDa ltration devices for the blood
serum samples. This additional step is helpful in acquiring the
ltrate parts of the samples having <100 kDa protein
biomarkers associated with type II diabetes. As these marker
proteins are in a narrow size range (cutoff value 100 kDa), their
identication via characteristic SERS spectral features can be
achieved more easily from the ltrate, as compared to their
© 2025 The Author(s). Published by the Royal Society of Chemistry
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analysis in the respective whole blood serum samples, due to
the exclusion of larger size proteins.
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and S. Sánchez-Enŕıquez, Lasers Med. Sci., 2018, 33, 1791–
1797.

36 S. K. Das, T. S. Bhattacharya, M. Ghosh and J. Chowdhury,
New J. Chem., 2021, 45, 2670–2682.

37 J. Lin, Z. Huang, S. Feng, J. Lin, N. Liu, J. Wang, L. Li,
Y. Zeng, B. Li and H. Zeng, J. Raman Spectrosc., 2014, 45,
884–889.

38 H. Fang, X. Zhang, S. J. Zhang, L. Liu, Y. M. Zhao and
H. J. Xu, Sens. Actuators, B, 2015, 213, 452–456.

39 F. Bonnier, G. Brachet, R. Duong, T. Sojinrin, R. Respaud,
N. Aubrey, M. J. Baker, H. J. Byrne and I. Chourpa, J.
Biophotonics, 2016, 9, 1085–1097.

40 H. Nawaz, F. Bonnier, P. Knief, O. Howe, F. M. Lyng,
A. D. Meade and H. J. Byrne, Analyst, 2010, 135, 3070–3076.

41 f. f. M. Fisher, M. Trujillo, W. Hanif, A. Barnett,
P. G. McTernan, P. Scherer and S. Kumar, Diabetologia,
2005, 48, 1084–1087.

42 O. Asbaghi, F. Fouladvand, M. J. Gonzalez,
V. Aghamohammadi, R. Choghakhori and A. Abbasnezhad,
Complement. Ther. Med., 2019, 46, 210–216.

43 W. Mohammed Saeed and D. Nasser Binjawhar, Diabetes,
Metab. Syndr. Obes.: Targets Ther., 2023, 2129–2140.

44 L. D. Roberts, A. Koulman and J. L. Griffin, Lancet Diabetes
Endocrinol., 2014, 2, 65–75.

45 A. Cabre, I. Lazaro, J. Girona, J. Manzanares, F. Marimon,
N. Plana, M. Heras and L. Masana, J. Int. Med., 2007, 262,
496–503.

46 A. D. Pradhan, J. E. Manson, N. Rifai, J. E. Buring and
P. M. Ridker, JAMA, 2001, 286, 327–334.

47 G. Kumar, D. Ponnaiyan, H. Parthasarathy, A. Tadepalli and
S. Veeramani, Genet. Test. Mol. Biomarkers, 2020, 24, 431–435.

48 Y. C. Woo, C. H. Lee, C. H. Fong, A. Xu, A. W. Tso,
B. M. Cheung and K. S. Lam, Clinical Endocrinology, 2017,
86, 37–43.

49 P. A. C. Freitas, L. R. Ehlert and J. L. Camargo, Arch.
Endocrinol. Metab., 2017, 61, 296–304.

50 X. Hu, Q. Guo, X. Wang, Q. Wang, L. Chen, T. Sun, P. Li,
Z. Shan, L. Liu and C. Gao, Nutrients, 2022, 14, 2953.

51 V. M. Lindley, K. Bhusal, L. Huning, S. N. Levine and
S. K. Jain, J. Am. Coll. Nutr., 2021, 40, 98–103.
2296 | RSC Adv., 2025, 15, 2287–2297
52 J. Dai Kim, D.-M. Lim, K.-Y. Park, S. E. Park, E. J. Rhee,
C.-Y. Park, W.-Y. Lee and K. W. Oh, Endocrinol. Metab.,
2020, 35, 610.

53 L. Gao, Y. Zhang, X. Wang and H. Dong, BMC Endocr. Disord.,
2021, 21, 1–11.

54 S. Rasul, A. Ilhan, M. H. Reiter, J. Todoric, S. Farhan,
H. Esterbauer and A. Kautzky-Willer, Clinical
Endocrinology, 2012, 76, 499–505.

55 M. Hermans, V. Brandenburg, M. Ketteler, J. Kooman, F. Van
der Sande, E. Boeschoten, K. Leunissen, R. Krediet,
F. Dekker and Netherlands cooperative study on the
adequacy of Dialysis, Kidney Int., 2007, 72, 202–207.

56 S. Sharma, R. Uttam, A. S. Bharti, N. Shukla and K. N. Uttam,
Natl. Acad. Sci. Lett., 2019, 42, 365–368.

57 Z. Movasaghi, S. Rehman and I. U. Rehman, Appl. Spectrosc.
Rev., 2007, 42, 493–541.

58 J. De Gelder, K. De Gussem, P. Vandenabeele and L. Moens,
J. Raman Spectrosc., 2007, 38, 1133–1147.

59 T. G. Spiro, Biological Applications of Raman Spectroscopy,
Wiley, 1987.

60 H. Schulz and M. Baranska, Vib. Spectrosc., 2007, 43, 13–25.
61 N. Stone, C. Kendall, N. Shepherd, P. Crow and H. Barr, J.

Raman Spectrosc., 2002, 33, 564–573.
62 C. Kra, L. Neudert, T. Simat and R. Salzer, Spectrochim.

Acta, Part A, 2005, 61, 1529–1535.
63 J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara

and T. Huser, Biophys. J., 2006, 90, 648–656.
64 N. Stone, C. Kendall, J. Smith, P. Crow and H. Barr, Faraday

Discuss., 2004, 126, 141–157.
65 A. Ruiz-Chica, M. Medina, F. Sánchez-Jiménez and
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