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SARS-coronavirus 2 (SARS-CoV-2), pathogen of coronavirus disease 2019 (COVID-19),
is constantly evolving to adapt to the host and evade antiviral immunity. The newly
emerging variants N501Y.V1 (B.1.1.7) and N501Y.V2 (B.1.351), first reported in the
United Kingdom and South Africa respectively, raised concerns due to the unusually rapid
global spread. The mutations in spike (S) protein may contribute to the rapid spread of
these variants. Here, with a vesicular stomatitis virus (VSV)-based pseudotype system, we
demonstrated that the pseudovirus bearing N501Y.V2 S protein has higher infection
efficiency than pseudovirus with wildtype (WT) and D614G S protein. Moreover,
pseudovirus with N501Y.V1 or N501Y.V2 S protein has better thermal stability than WT
and D614G, suggesting these mutations of variants may increase the stability of SARS-
CoV-2 S protein and virion. However, the pseudovirus bearing N501Y.V1 or N501Y.V2 S
protein has similar sensitivity to inhibitors of protease and endocytosis with WT and
D614G. These findings could be of value in preventing the spread of virus and developing
drugs for emerging SARS-CoV-2 variants.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has become a great threat to the health of
human beings. As of May 23, 2021, more than 160 million confirmed cases and approximately 3.4
million deaths have been reported worldwide (https://covid19.who.int). SARS-coronavirus 2
(SARS-CoV-2), pathogen of COVID-19, can cause infection of multiple organs throughout the
body, mainly respiratory, digestive, circulatory, genitourinary and nervous systems. Although most
symptoms of COVID-19 patients are mild, some may have severe pneumonia, even multiple organs
failure, particularly in older people and those pre-existing chronic diseases (Lv et al., 2020).

SARS-CoV-2 uses spike (S) protein to bind host receptor angiotensin-converting enzyme 2
(ACE2), followed by membrane fusion and the release of viral RNA genome into the cytoplasm (Li
et al., 2003; Benton et al., 2020; Shang et al., 2020; Wan et al., 2020; Zhou et al., 2020). As a type I
membrane fusion protein, SARS-CoV-2 S protein composed of S1 and S2 subunits. S1 subunit
gy | www.frontiersin.org October 2021 | Volume 11 | Article 7203571
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mediates the attachment of virion to host cell, while S2 subunit
mediates the fusion between viral and cellular membrane
(Belouzard et al., 2009; Walls et al., 2020; Watanabe et al.,
2020). Therefore, the S protein is essential to viral infectivity
and transmissibility in the host (Hulswit et al., 2016). Before the
membrane fusion, SARS-CoV-2 S protein needs to be cleaved by
proteases, such as furin, cathepsins, trypsin, or transmembrane
protease serine 2 (TMPRSS2). The cleavage of S protein by these
proteases greatly affects the efficiency of virus infection on host
cells (Palacios et al., 2020).

RNA viruses have a high mutation rate in the process of host
transmission. Some mutations may alter viral pathogenicity,
virulence, and/or transmissibility (Duffy, 2018). The mutations
of SARS-CoV-2 S protein probably alter virus infectivity. In
particular, D614G mutation was first identified in Europe, then
replaced previously circulating lineages and led to a global
pandemic (Korber et al., 2020). Studies show that the D614G
substitution leads to the enhancement of viral replication and
infectivity in human lung epithelial cells (Hou et al., 2020; Korber
et al., 2020). Since December 2020, emergence of new SARS-
CoV-2 variants N501Y.V1 (also known as B.1.1.7) in the United
Kingdom and N501Y.V2 (also known as B.1.351) in South Africa
(James et al., 2020; Kirby, 2021; Makoni, 2021; Rubin et al., 2021;
Tegally et al., 2021) aroused widespread concern because of their
extensive mutations and enhanced transmissibility.

The SARS-CoV-2 N501Y.V1 lineage has 17 non-synonymous
mutations and deletions, and many of them locate in the S
protein. N501Y.V2 lineage includes ten mutations in the S
protein, and three of them are located in the receptor binding
domain (RBD) (K417N, E484K and N501Y). As a common
mutation of N501Y.V1 and N501Y.V2, N501Y mutation was
first reported in a mouse model and hereafter identified in
populations of many countries and regions (Gu et al., 2020;
James et al., 2020; Kirby, 2021). In the mouse model, N501Y
mutation enhances the binding affinity of SARS-CoV-2 S protein
with mouse ACE2, and increase infectivity in mouse lung tissue
(Gu et al., 2020). E484K mutation was first identified in
N501Y.V2, and was reported to be associated with escaping
from neutralizing antibodies (Baum et al., 2020; Weisblum et al.,
2020). Interestingly, N501Y.V3 (also known as P.1) lineage in
Brazil almost has the same three RBD mutations as N501Y.V2
lineage, except for the K417N/T substitution (Greaney et al.,
2021). A701V, one of S protein mutation in N501Y.V2 lineage
(Tegally et al., 2021), become the dominant strain in the third
wave in Malaysia, and may affect the infectivity of the virus. In
addition, the P681H substitution in SARS-CoV-2 S protein is
adjacent to the furin cleavage site, implying the potential
influence on the infection tropism and efficiency of virus
(Millet and Whittaker, 2014; Hoffmann et al., 2020a).

SARS-CoV-2 N501Y.V1 and N501Y.V2 lineages rapidly
replaced the original strain, suggesting the mutations of these
variants may be related to increased transmissibility. Preliminary
studies have shown that N501Y.V1 and N501Y.V2 lineages have
high transmission efficiency and immune escape from neutralizing
antibodies than the original strain (Galloway et al., 2021; Hoffmann
et al., 2021; Roquebert et al., 2021). However, the transmission
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properties and biological characteristics of these variants remain
elusive. In this study, we constructed pseudoviruses bearing SARS-
CoV-2 S protein with mutations of N501Y.V1 and N501Y.V2
variants. We investigated the infectivity, S protein cleavage,
thermal stability and drug inhibition properties of N501Y.V1 and
N501Y.V2 pseudoviruses. This research promotes our
understanding to the evolution of SARS-CoV-2 variants as well as
the development of COVID-19 therapeutic drugs.
MATERIALS AND METHODS

Construction of Expression Plasmids
Expression vector pcDNA3.1-2S (GenBank: MT_613044) with
codon-optimized S gene of SARS-CoV-2 was obtained from
Genscript Biotechnology Company. In order to effectively
integrate S protein into pseudovirion, the last 19 amino acids
of S protein were replaced with HA tag according to previously
reported with modifications (Whitt, 2010; Zettl et al., 2020). The
S genes with single-site mutation were obtained with the site-
directed mutagenesis kit (KOD). To construct variants with
multiple mutations, the plasmids were synthesized with
ClonExpress Ultra One Step Cloning Kit (Vazyme). Briefly,
primers containing site-directed mutation and homologous
sequences were designed for PCR amplification to generate
several fragments carrying different mutations, then these
overlapping fragments were ligated together using homologous
recombinase to re-assemble the expression vector with complete
S gene coding sequence. All the resulting S protein expression
vectors were verified by Sanger’s DNA sequencing at GenewiZ
Biotechnology Co., Ltd. The sequencing results of SARS-CoV-2 S
mutants are presented in Supplementary Figures S1A–D. The
primers used for mutagenesis are listed in Supplementary
Tables S1, S2.

Cell Lines
Human cell lines (293T, Caco-2, Calu3, Huh7, H460, A549, NCI-
H1299), Africa monkey kidney Vero cell, and mouse cell lines
(MC38 and LLC-JSP) were obtained from American Type
Culture Collection. Cells stably expressing human ACE2 and/
or TMPRSS2 (293T-hACE2/293T-hACE2-TMPRSS2, Caco2-
hACE2, A549-hACE2) were constructed with lentiviral
mediated gene transduction. H460 cell line was cultured in
RPMI (HyClone), and the others were cultured in DMEM
(HyClone). All above cells were maintained in the medium
containing 10% fetal bovine serum (FBS, Gibco) and 100 U/
mL of Penicillin-Streptomycin solution (Gibco). The cells were
cultured in an incubator with atmosphere of 5% CO2 at 37°C.

Production and Quantification of
SARS-CoV-2 Pseudovirions
Pseudovirions bearing SARS-CoV-2 S protein were generated
according to published protocols (Nie et al., 2020b). Briefly, on
the day before transfection, 5x106 293T cells were seeded into 10
cm cell culture dish. The next day, when the cells reached 70–
90% confluent, 293T cells were transfected to express the S gene
October 2021 | Volume 11 | Article 720357
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with lipofectamine 3000 (Invitrogen). 12 h post transfection, the
cells were infected with G*△G-VSV dual reporter virus, a GP-
deleted replication defective recombinant VSV virus containing
firefly luciferase and eGFP reporter genes (kindly provided by
UltraImmune Inc., Patent pending CN112760297A). 6 h post
infection, the cell supernatant was discarded, and the cells were
gently washed twice with PBS. Next, 10 mL fresh DMEM
medium was added into the cell culture dish. 24 h post
infection, the supernatant containing pseudovirions was
harvested, then centrifuged at 3500 g for 5 min to remove the
cell debris, and stored at -80°C in 1.5 mL aliquots until use.

Pseudovirions were quantified by RT-qPCR. Virus RNA was
extracted from 200 mL of supernatant containing pseudovirions
with Viral RNA/DNA Mini kit, and reversed to cDNA by
PrimeScript™ RT reagent Kit (Takara). Pseudovirions
quantification was performed using FastStart Essential DNA
Green Master (Roche) following the manufacturer’s protocols.
The copy numbers of pseudovirions were calculated by the VSV-
P protein gene. Primers are listed in Supplementary Table S3.

Infection Assay
Before the infection assay, the pseudovirions were normalized to
the same amount by quantitative RT-qPCR. The day before virus
infection, 2x104/100 mL cells were seeded into 96-well plates. The
next day, cells were infected with 100 mL of media containing
pseudovirions. 16 or 24 h post infection, cells were lysed with 60mL
diluted passive lysis buffer (Promega) at room temperature for 10
min. The infection efficiency of the pseudovirus was detected by
measuring the activity of luciferase using Luciferase Assay System
(Promega). For analysis of pseudovirus entry into 293T-hACE2
cells at indicated timepoints, imageswere captured ineachwellwith
a Nikon inverted microscope ECLIPSE Ts2 epifluorescence
microscope. Each group contained 4 replicates, and each
experiment was repeated at least two times.

Thermal Stability Assay of
SARS-CoV-2 Pseudovirions
Pseudovirions incorporated with S protein of SARS, SARS-CoV-
2 WT, D614G, N501Y.V1 and N501Y.V2 lineages were diluted
with DMEM and incubated in a 37°C or 42°C water bath. At
indicated time points, 100 mL DMEM containing the
pseudovirions was taken out and added into the wells with
293T-hACE2. 24 h post infection, the infection efficiency of
pseudovirus was detected by measuring the activity of luciferase.
The relative infection efficiency of pseudovirus was calculated by
dividing the relative luminescence unit (RLU) values at each time
point by the mean viral RLU at 0 h.

SARS-CoV-2 S Expression and
Incorporation Assay
In order to verify the expression of S protein in cells, the SARS-
CoV-2 S expression vectors were transfected into 293T cells with
lipofectamine 3000 (Invitrogen). 40 h post transfection, cells
were lysed by RIPA Lysis Buffer (Beyotime) for 30 min on ice. In
order to analyze incorporation of S protein into pseudotyped
particles, VSV pseudovirions was concentrated with PEG8000.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Briefly, medium containing pseudovirions was loaded by 6%
PEG8000 and 0.1M NaCl, and shaked on the ice overnight. Next,
the mixture was centrifugated (10,000 g) for 120 min at 4°C.
After that, the supernatant was discarded, and the residual
volume was mixed with 50 uL RIPA.

All the samples were heated at 96°C for 10 minutes, and then
the expression of S protein was detected by SDS-PAGE. After
protein transfer, the nitrocellulose membrane was blocked by 5%
milk for 1 h. Then the membranes were blotted with primary
antibodies, followed by incubation with a secondary antibody
and visualized by Bio-Rad ChgmiDoc MP Bio-Rad Laboratorigs.
The primary antibodies used for western blot analysis were as
follows: mouse anti-SARS-CoV/SARS-CoV-2 (COVID-19) spike
[1A9] (Genetex, 1:2000), mouse anti-b-actin monoclonal
antibody (TransGen Biotech, 1:2000), mouse anti-VSV matrix
protein (Kerafast, 1:2500). We used a horseradish peroxidase-
linked anti-mouse IgG antibody (Cell Signaling Technology,
1:5000) as secondary antibody.

Effects of Endocytosis and Protease
Inhibitors on Pseudovirion Entry
For experiments involving endocytosis and protease inhibitors,
293T-hACE2 or 293T-hACE2-TMPRSS2 cells were pretreated
wi th e i ther endocy to s i s inh ib i to r s (Ch loroqu ine ,
MedChemExpress, 0-10 mM; Tetradrine, Sigma-Aldrich, 0-2
mM and Apilimod, MedChemExpress, 0-100 nM) or protease
inhibitors (E64d, MedChemExpress, 0-5 mM; Camostat,
MedChemExpress, 0-100 mM) for 2 h. Then the pseudovirions
was added into the corresponding wells of plates. 24 h post
infection, cells were lysed, and the infection efficiency of viruses
was detected by measuring the luciferase activity using Luciferase
Assay System.

Statistical Analysis
The GraphPad Prism 7 software package was used for all
statistical analyses. The unpaired two-tails Student’s t-test was
used to determine the statistical significance. The values were
presented as mean ± SEM and p < 0.05 was defined as statistically
significant [ns represents no significant difference, p < 0.05 (*),
p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****)].
RESULTS

The Expression and Pseudovirion
Incorporation of SARS-CoV-2 S Protein
The purpose of this study was to gain insights into the differences
of N501Y.V1 and N501Y.V2 lineages with previous WT and
D614G. For this, we first constructed S genes expression vectors
of N501Y.V1 variant (with all nine mutations) and N501Y.V2
RBD mutations (K417N, E484K, N501Y and D614G)
(Figure 1A). Then, the S protein expression in 293T cells was
detected by western blot. There were two major bands, 180 kDa
band (full-length S protein) and 90 kDa band (cleaved S protein,
S2 subunit). The full-length S protein was observed in cells, but
cleaved S protein was not obvious (Figure 1B). We also detected
October 2021 | Volume 11 | Article 720357
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the S protein expression of single-site mutation in N501Y.V1 and
N501Y.V2 RBD. The differences in cleavage of S protein with
point mutations were also not observed (Figure 1C).

The efficiency of S protein incorporation into pseudovirions
was analysed by western blot using antibody against SARS-CoV-
2 spike and VSV-M. The results indicated that all four S proteins
successfully incorporate into pseudovirions, and the cleaved S
protein (S2 subunit) is at the similar level, except for a slightly
weakened band in N501Y.V1 (Figure 1B).

Infectivity of SARS-CoV-2 Variants
N501Y.V1 and N501Y.V2 Lineages
Replication-defective VSV pseudovirus incorporated with S
protein from coronavirus faithfully reflect the key aspects of
virus entry into host cells, and have been applied in neutralizing
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
antibody quantification and entry mechanism study of SARS-
CoV-2 (Kleine-Weber et al., 2019; Condor Capcha et al., 2020;
Nie et al., 2020a; Nie et al., 2020b). Moreover, several monoclonal
antibodies targeting S protein of SARS-CoV-2 could completely
inhibit the infection of VSV-based pseudovirus (data not
shown). To determine the infectivity of N501Y.V1 and
N501Y.V2 variants, a panel cell lines originated from human
and animals were infected with VSV pseudoviruses of SARS-
CoV-2 WT, D614G, N501Y.V1 and N501Y.V2 RBD
(Figure 2A). All four pseudoviruses could efficiently infect
certain cell lines, including 293T-hACE2-TMPRSS2, 293T-
hACE2, Huh-7, Caco-2, Caco2-hACE2, Vero, Calu-3, A549-
hACE2 and H460. Compared with WT, pseudovirirus bearing
S protein with D614G mutation (including D614G, N501Y.V1
and N501Y.V2 RBD) were significantly more infectious in
A

B

C

FIGURE 1 | SARS-CoV-2 variants spike protein expression and incorporation into pseudovirions. (A) Construction of SARS-CoV-2 variants N501Y.V1, N501Y.V2,
and N501Y.V2 RBD S protein. The S protein of N501Y.V1 include nine mutations (HV69-70 del, 144 del, N501Y, D614G, P681H, T716I, S982A, and D1118H),
N501Y.V2 include ten mutations (L18F, D80A, D215G, 242-244 del, R246I, K417N, E484K, N501Y, D614G and A701V) and N501Y-V2 RBD include D614G and
three major mutations in the RBD (K417N, E484K and N501Y). (B) Analysis of S protein expression and particle incorporation of N501Y.V1 and N501Y.V2 RBD
lineages. The S proteins expression and incorporation to pseudovirion were measured by western blot using antibody against spike. b-Actin (cell lysates) and VSV-M
(particles) served as loading controls. Full-length S protein and S1/S2 cleavage are annotated. Shown are representative blots from three experiments. (C) Analysis of
the S protein expression of single-site mutation of spike protein in N501Y.V1 and N501Y.V2 lineages by western blot. The S proteins expression were detected in
cell lysate by western blot using antibody against S protein, and b-Actin served as loading controls.
October 2021 | Volume 11 | Article 720357
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several susceptible cells. More importantly, N501Y.V2 RBD
pseudovirus has higher infection efficiency than D614G in all
susceptible cells, while N501Y.V1 has no obviously difference.
Next, we detected the infectivity of N501Y.V2 pseudovirus to
different cells (Supplementary Figures S2A–E). Compared with
D614G, N501Y.V2 pseudovirus had significant difference in the
infection efficiency of 293T-hACE2-TMPRSS2, Caco2 and
Caco2-hACE2 cells. However, the infection efficiency of
N501Y.V2 RBD pesudovirus is higher than N501Y.V2 in some
susceptible cells. In addition, we detected the infection efficiency
of SARS-CoV-2 WT, D614G, N501Y.V1 and N501Y.V2 RBD in
target cells at 10 h, 14 h, 18 h, 24 h, and 36 h. The infection rate of
N501Y.V2 at different time point was also higher than that of
D614G (Figures 3A–D).

We also tested the infectivity of pseudoviruses with single-site
S protein mutations in 293T-hACE2, Caco2-hACE2 and Vero
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
cells (Figure 2B). Compared with WT pseudovirus, the viral
infectivities of D614G and HV69-70 deletion were increased in
all three cells. In contrast, T716I, A570D, D118H and A701V
mutations caused a modest reduction in viral infectivity. It is
worth noting that the N501Y mutation does not result in a
significant change in the infectivity of the pseudovirus.

Thermal Stability Analysis of N501Y.V1 and
N501Y.V2 Pseudovirions
In order to study the effect of S mutations of N501Y.V1 and
N501Y.V2 lineages on the stability of the virus, we measured the
infectivity decay of pseudoviruses incorporated S protein of SARS,
SARS-CoV-2 WT, D614G N501Y.V1 and N501Y.V2 RBD
overtime at 37°C (normal body temperature) and 42°C (possible
body temperature in fever). The infectivity of the five pseudoviruses
decreased faster at 42°C than 37°C (Figures 4A, B). It is worth
noting that pseudovirions bearing S protein of N501Y.V1 and
N501Y.V2 RBD variants retained higher infectivity than WT and
D614G at any temperature (Figures 4A, B). In addition, we
detected the thermal stability of N501Y.V2 pseudovirus at 37°C
and 42°C (Supplementary Figures S3A–D). Similar to N501Y.V2
RBD mutation, the stability of N501Y.V2 pseudovirus was
significantly higher than that of WT and D614G.

We also examined the effect of single-site mutations of
N501Y.V1 and N501Y.V2 lineages on the thermal stability
of SARS-CoV-2. We measured the infectivity decay of
pseudovirions bearing single-site mutations at 37°C or 42°C
(Figures 4C–F). The results indicated that pseudovirions bearing
HV69-70 deletion, 144 deletion, E484K, D614G, P681H, S982A or
D1118H single-site mutations were more stable than SARS-CoV-2
WT, whereas A570D and T716I mutations decrease the stability of
SARS-CoV-2 pseudovirion. Our findings show that, the S protein
mutations of N501Y.V1 and N501Y.V2 variants may increase the
conformational stabilityof spike topromote the infectivity ofSARS-
CoV-2 virion.

Effect of Cathepsin Inhibitors and Serine
Protease Inhibitor on Virus Entry
The endosomal cysteine proteases cathepsin B and L (CatB/L) and
the serine protease TMPRSS2 were required for coronavirus S
protein priming in target cells (Simmons et al., 2005; Glowacka
et al., 2011). We next investigated the effect of S protein mutations
in N501Y.V1 andN501Y.V2 on protease dependent entry in 293T-
hACE2 (TMPRSS2-) and 293T-hACE2-TMPRSS2. Cathepsins
inhibitor E64d treatment absolutely inhibited the infection of
WT, D614G, N501Y.V1 and N501Y.V2 RBD pseudoviruses into
293T-hACE2 cells (Figure 5A and Supplementary Figures S4A,
B), indicating that CatB/L is the dominant proteases required
for priming of SARS-CoV-2 S protein in TMPRSS2- cells.
Compared with 293T-hACE2 cells, the inhibition efficiency of
E64d was attenuated in 293T-hACE2-TMPRSS2 cells
(Supplementary Figures S4A, B). Camostat, a serine protease
inhibitor, cannot inhibit SARS-CoV-2 entry into 293T-hACE2
cells (Figures 5B, C), while partially reduced SARS-CoV-2 entry
into 293T-hACE2-TMPRSS2 cells (Supplementary Figure S4B).
Moreover, the combined inhibitory effect of E64d and Camostat
in 293T-hACE2-TMPRSS2 cells was more obvious than any of
FIGURE 2 | Infection efficiency of SARS-CoV-2 variants N501Y.V1 and
N501Y.V2 in mammalian cell lines. (A) Infection efficiency of SARS-CoV-2
WT, D614G, N501Y.V1 and N501Y.V2 RBD variants in human and animal
cell lines. (B) Infectivity analysis of N501Y.V1 and N501Y.V2 RBD single-site
mutants. N501Y.V1 and N501Y.V2 RBD single-site mutants conducted in
293T-hACE2 (top), Caco2-hACE2 (middle) and Vero (bottom). At 24 h
postinoculation, transduction efficiency was analyzed by luciferase activity in cell
lysates. The infection efficiency of viruses was calculated by dividing the RLU
values by the mean SARS-CoV-2 WT RLU. Experiments were done in 4
replicates and repeated at least twice. One representative is shown with error
bars indicating SEM. The significant changes were marked with colored
symbols, red stars for increased, blue stars for decreased. ns represents no
significant difference, p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****).
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them alone (Supplementary Figure S4B). These results indicated
that Cat B/L is required for priming of S protein both in TMPRSS2-

and TMPRSS2+ 293T cells, while TMPRSS2 is required only in
TMPRSS2+ 293T cells. More importantly, Camostat had a more
significant inhibitory effect on N501Y.V1 and N501Y.V2-RBD
pseudoviruses than D614G (Supplementary Figure S4B),
indicating that the priming of N501Y.V1 and N501Y.V2-RBD S
protein maybe more dependent on TMPRSS2 activities.

SARS-CoV-2 Enters Cell Lines
Through Endocytosis
Previous studies have shown that SARS-CoV-2 enters target cells
mainly throughendocytosis (Palacios et al., 2020).Next,weevaluated
whether N501Y.V1 and N501Y.V2 lineages enter into host
cells through endocytosis. 293T-hACE2 and 293T-hACE2-
TMPRSS2 cells were pretreated with endocytosis inhibitors
Chloroquine, Tetradeine, and Apilimod, and then their effect on
virus entry was evaluated. Consistent with the previous study, all
three inhibitors decreased the infection of WT, D614G N501Y.V1
and N501Y.V2 RBD pseudovirions in a dose-dependent manner
(Figures 5D–F and Supplementary Figures S4C, D). Compared
with 293T-hACE2 cells, the inhibition efficiency of the three
inhibitors in 293T-hACE2-TMPRSS2 cells was also attenuated
(Supplementary Figures S4C, D). However, compared with WT
andD614G, the inhibitionefficiencyof these inhibitorsonN501Y.V1
and N501Y.V2 RBD lineages has no significant difference
(Supplementary Figures S4C, D). These results indicated that
entry of N501Y.V1 and N501Y.V2-RBD pseudovirions into host
cells mainly depend on the endocytosis in 293T-hACE2 cells, but
presence of TMPRSS2 attenuate this dependence.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
DISCUSSION AND CONCLUSION

As RNA virus, SARS-CoV-2 has a high mutation rate during
transmission in the population. Moreover, some mutations are
adaptive because they alter pathogenesis, virulence, and/or
transmissibility (Zhou et al., 2020). Particularly, the D614G
mutation in the spike leads to increased virus infectivity and
subsequently spread rapidly in the world, thereby gradually
replacing previously circulating lineages (Hou et al., 2020;
Korber et al., 2020; Li et al., 2020; Plante et al., 2020). In
December 2020, newly emerging SARS-CoV-2 N501Y.V1 and
N501Y.V2 variants are raising concerns in the UK and South
Africa respectively, due to the enhancive spread ability of the
virus. It is believed that mutations of N501Y.V1 and N501Y.V2
variants possibly change their immunogenicity and virus
infectivity (Wang et al., 2021; Wibmer et al., 2021). In the
present study, using a VSV-based pseudotyped system, we
packaged pseudovirions bearing S protein with combination
and single-site mutations of N501Y.V1 and N501Y.V2
variants. In this study, we investigated the infectivity, S protein
cleavage, thermal stability and drug inhibition properties of the
N501Y.V1 and N501Y.V2 lineages.

Our results demonstrated that the mutations of N501Y.V2
lineage enhanced the infection efficiency of SARS-CoV-2 in
several susceptible cell lines. Interestingly, the infection
efficiency of N501Y.V2 RBD pesudovirus is higher than
N501Y.V2, implying the non-RBD S mutations of N501Y.V2
have negative effect on the infection of SARS-CoV-2. Recently,
Li et al. (2021) showed that the infectivity of pseudovirions
incorporated with N501Y.V2 S proteins was not obviously
A B

D

C

FIGURE 3 | Infection efficiency of SARS-CoV-2 variants N501Y.V1 and N501Y.V2 RBD in target cells at different time points. (A–C) Infectivity analysis of SARS-
CoV-2 WT, D614G, N501Y.V1 and N501Y.V2 RBD entry into 293T-hACE2 (A), Caco2-hACE2 (B), and Vero (C) cells at 10 h, 14 h, 18 h, 24 h, and 36 h.
Transduction efficiency was analyzed by luciferase activity in cell lysates. The infection efficiency of viruses was calculated by dividing the RLU values at each time
point by the average SARS-CoV-2 WT RLU values at 36h. Experiments were done in 4 replicates and repeated at least twice. One representative is shown with error
bars indicating SEM. (D) Representative images of SARS-Cov-2 WT, D614G, N501Y.V1 and N501Y.V2 RBD entry into 293T-hACE2 cells at indicated time points.
The scale bar indicates 200 µm.
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changed in human cells, while N501Y.V2 RBD mutations
slightly but obviously increase the viral infection efficiency,
which is consistent with our research. Previous studies in mice
have shown that N501Y can increase the affinity for the mouse
ACE2 receptor (Gu et al., 2020), which proves that this new
variant can enhance its infectivity in the host. Kuzmina et al.
(Kuzmina et al., 2021) reported that pseudovirions with N501Y
+K417N or N501Y+E484K exhibited higher infection rates than
the N501Y pseudovirion alone. Indeed, N501Y.V3 lineage
includes three mutations in the RBD region (K417T, E484K
and N501Y), and it almost has the same three mutations present
in RBD as N501Y.V2 lineage, except for K417N/T substitution.
These three RBD mutations of S protein maybe cause the higher
infection efficiency of N501Y.V2 and N501Y.V3 via promoting
the binding affinity with ACE2 (Khan et al., 2021). Therefore, the
mutation sites of N501, E484 and K417 in RBD region are
essential for virus infectivity. Compared with D614G, N501Y.V1
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
lineage had no significant change in infectivity. In 293T-hACE2
cells, the infection efficiency of N501Y.V1 was slightly lower than
D614G; however, in cells expressed TMPRSS2, such as 293T-
hACE2-TMPRSS2 and Caco-2 cells, its infectivity increased.
These results indicate that the infection of N501Y.V1 lineage
may be more dependent on TMPRSS2 activity. The effects of
single-site mutations of N501Y.V1 and N501Y.V2 lineages on
viral infectivity were variable. Pseudovirion with HV69-70
deletion could enhance the infectivity of the virus, while single-
site mutation T716I, A570D, D118H, and A701V caused a
modest reduction in viral infectivity. So, the infectivity of
SARS-CoV-2 may be associated with the synergistic effects
of different mutations, particularly the mutations in RBD
region of S protein.

Priming of SARS-CoV S proteins by target cell proteases is
crucial for virus entry into cells (Glowacka et al., 2011; Li, 2015).
SARS-CoV-2 spike protein could be cleaved in cells, and the
cleaved S protein was incorporated into VSV pseudovirions
(Hoffmann et al., 2020b). In our study, the S protein of SARS-
CoV-2 and its mutations were weakly cleaved in cells, and there
was no significant difference between these mutants. Previous
studies show that the cleavage efficiency of S protein into S1/S2
regulates virus infection (Hoffmann et al., 2020a). We compared
the cleavage of S protein in WT, D614G, N501Y.V1 and
N501Y.V2 RBD pseudovirions. To our surprise, the cleaved S
protein band was slightly weakened in particles of N501Y.V1
than WT and D614G (Figure 1B). However, N501Y.V2 lineage,
which is more infectious in cell lines, had no substantial
differences in spike cleavage than WT and D614G virions,
suggesting that the enhanced virus infectivity of N501Y.V2
lineage is not likely due to the difference of S protein cleavage.

It is reported that SARS-CoV-2 D614G mutant has a higher
thermal stability than WT virions, and its strong infectivity and
transmissibility may be related to the stability of the virus (Plante
et al., 2020). However, it is reported that there is no significant
difference among the stability of N501Y.V1, N501Y.V2 and
N501Y.V3 pseudovirus, which is incubated at 33°C for a
period of time (Hoffmann et al., 2021). To better detect the
thermal stability of SARS-CoV-2 variants virions in the host, we
choose 37°C (normal body temperature) and 42°C (possible
body temperature in fever) for treating virus. Importantly, we
found that N501Y.V1 and N501Y.V2 lineages are more stable
than D614G, indicating that the enhanced infectivity of
N501Y.V1 and N501Y.V2 lineages in the population may be
partly correlated with its higher thermal stability in the host and
environment. The inconsistency between the research results is
probably caused by the incubation temperature. The
pseudovirion will be more unstable at 37°C and 42°C than
33°C, making the difference in thermal stability manifest.
Moreover, the thermal stability of N501Y.V2 pesudovirus is
higher than N501Y.V2 RBD, implying the non-RBD S
mutations of N501Y.V2 have positive effect on the thermal
stability of SARS-CoV-2. We further evaluated the effect of
single-site mutations of N501Y.V1 and N501Y.V2 lineages on
the stability of the virus. We found that several single-site
mutations of N501Y.V1 and N501Y.V2 lineages can increase/
FIGURE 4 | SARS-CoV-2 variants N501Y.V1 and N501Y.V2 RBD are more
thermal stable than WT and D614G. (A, B) SARS-CoV, SARS-CoV-2 WT,
D614G, N501Y.V1 and N501Y.V2 RBD S pseudovirions were incubated in
cell culture medium DMEM at 37°C (A) or 42°C (B) for the specified times (0
to 6 h). The viruses were quantified for their infectious levels by luciferase on
293T-hACE2 cells. The infection efficiency of remaining viruses was
normalized by the average fluorescence values at 0h. (C–F) The single-site
mutations of N501Y.V1 and N501Y.V2 RBD S pseudovirions were incubated
in cell culture medium DMEM at 37°C for 4 h (C) and 6 h (D) or 42°C for 4 h
(E) and 6 h (F). The experiments were repeated twice, and means with SEM
are shown. The significant changes were marked with colored symbols, red
stars for increased, blue stars for decreased. ns represents no significant
difference, p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****).
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decrease the thermal stability of pseudovirion. Therefore, the
higher stability of N501Y.V1 and N501Y.V2 lineages may be
related to the synergistic effects of different mutations.

SARS-CoV S protein is primed by the endosomal cysteine
CatB/L protease in TMPRSS2- cells (Simmons et al., 2005; Zhou
et al., 2016). However, S protein priming by TMPRSS2 is also
critical for viral entry into host cells (Kawase et al., 2012; Zhou
et al., 2015; Iwata-Yoshikawa et al., 2019). Recent studies show
that SARS-CoV-2 entry target cells depends on CatB/L and/or
TMPRSS2 activity (Iwata-Yoshikawa et al., 2019; Hoffmann
et al., 2020b; Hoffmann et al., 2021). The present study
indicates that CatB/L is required for all SARS-CoV-2 variants
entry in TMPRSS2- cells, while TMPRSS2 is required for priming
of all SARS-CoV-2 variants entry into TMPRSS2+ cells. More
importantly, Camostat has a better inhibition effect on
N501Y.V1 and N501Y.V2 lineages than D614G in TMPRSS2+

cells, indicating that the priming of N501Y.V1 and N501Y.V2 S
protein maybe more dependent on TMPRSS2 activity.

In this study,wedemonstrated that the infectivity ofSARS-CoV-
2 N501Y.V2 was increased in susceptible cells, and the enhanced
virus infectivity was not likely related to the cleavage of S protein.
We further found that SARS-CoV-2 N501Y.V1 and N501Y.V2
mutants are more thermal stable in the host and environment,
which may be associated with the rapid transmission of the two
variants in the population. Finally, we proved that SARS-CoV-2
WT,D614G,N501Y.V1 andN501Y.V2 entry into host cellsmainly
through endocytosis, while both cathepsin and TMPRSS2 play
important roles in virus entry. However, in view of the limitations
of pseudoviruses and immortalized cell lines used in this study, our
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
findings still need to be verified using infectious live virus and
primary cells or tissues in future studies. In conclusion, our study
plays a vital role in understanding the evolution and infectivity of
SARS-CoV-2 variants, as well as the development of COVID-19
therapeutic drugs.
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Supplementary Figure 1 | DNA sequencing results of S gene mutations of
N501Y.V1, N501Y.V2-RBD and N501Y.V2. SARS-CoV-2 S genes were
sequenced with Sanger’s DNA sequencing at GenewiZ Biotechnology Co., Ltd.
The DNA sequences of SARS-CoV-2 S mutants were compared with SARS-CoV-2
WT S gene with SnapGene software, and the related nucleotide mutation sites were
marked in red boxes.

Supplementary Figure 2 | Infection efficiency of SARS-CoV-2 N501Y.V2 in
mammalian cell lines. Infection efficiency of SARS-CoV-2 WT, D614G, N501Y.V2
and N501Y.V2 RBD variants in 293T-hACE2 (A), Vero (B), 293T-hACE2-TMPRSS2
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(C), Caco2 (D), Caco2-hACE2 (E) cells. ns represents no significant difference,
p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****).

Supplementary Figure 3 | SARS-CoV-2 N501Y.V2 is more thermal stable than
WT and D614G. SARS-CoV-2 WT, D614G, N501Y.V2 and N501Y.V2 RBD S
pseudovirions were incubated in cell culture medium DMEM at 37°C for 4 h (A) and
6 h (B) or 42°C for 4 h (C) and 6 h (D). The viruses were quantified for their infectious
levels by luciferase on 293T-hACE2 cells. The infection efficiency of remaining
viruses were normalized by the average fluorescence values at 0 h. ns represents no
significant difference, p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****).

Supplementary Figure 4 | The effects of protease and endocytosis pathway
inhibitors on the entry of SARS-CoV-2 N501Y.V1 and N501Y.V2 RBD. (A, B) Effect
of CatB/L or TMPRSS2 on SARS-CoV-2 N501Y.V1 and N501Y.V2-RBD entry into
host cells. E64d (0.4 mM), Camostat (50 mM) or the combination of them (E64d (0.4
mM) + Camostat (50 mM)) were added into 293T-hACE2 (A) or 293T-hACE2-
TMPRSS2 (B) cells 2 h prior to transduction. The luciferase activity was measured
24 h post transduction. (C, D) Effect of endocytosis on SARS-CoV-2 N501Y.V1 and
N501Y.V2 RBD entry into host cells. Endocytosis inhibitors Chloroquine (1 mM),
Tetradeine (0.2 mM), and Apilimod (5 nM) were added into 293T-hACE2 (C) or
293T-hACE2-TMPRSS2 (D) cells 2 h prior to transduction. Experiments were done
in 4 replicates and repeated at least twice. One representative is shown with error
bars indicating SEM. ns represents no significant difference, p < 0.05 (*), p < 0.01
(**), p < 0.001 (***), p < 0.0001 (****).
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