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Abstract From cellular activation to drug combinations, immunological responses are shaped by

the action of multiple stimuli. Synergistic and antagonistic interactions between stimuli play major

roles in shaping immune processes. To understand combinatorial regulation, we present the

immune Synergistic/Antagonistic Interaction Learner (iSAIL). iSAIL includes a machine learning

classifier to map and interpret interactions, a curated compendium of immunological combination

treatment datasets, and their global integration into a landscape of ~30,000 interactions. The

landscape is mined to reveal combinatorial control of interleukins, checkpoints, and other immune

modulators. The resource helps elucidate the modulation of a stimulus by interactions with other

cofactors, showing that TNF has strikingly different effects depending on co-stimulators. We

discover new functional synergies between TNF and IFNb controlling dendritic cell-T cell crosstalk.

Analysis of laboratory or public combination treatment studies with this user-friendly web-based

resource will help resolve the complex role of interaction effects on immune processes.

Introduction
Immunological processes are regulated by a broad diversity of stimuli, such as growth factors, cyto-

kines, integrins, and pathogen components. Studies of immune regulation have largely focused on

individual stimuli, elucidating transcriptional and functional programs induced by major immune

modulators such as TNF (Locksley et al., 2001; Kalliolias and Ivashkiv, 2016; Bouwmeester et al.,

2004), interferons (Pestka, 2007; Schneider et al., 2014; González-Navajas et al., 2012), and Toll-

like Receptor (TLR) ligands (Kawasaki and Kawai, 2014; Vidya et al., 2018). However, immunologi-

cal responses are constantly shaped by the combined action of multiple stimuli. As a fundamental

example, T helper (Th) cell activation requires a combination of antigen presentation and costimula-

tory molecules (Smith-Garvin et al., 2009). Due to combinatorial effects, the study of individual

stimuli alone may provide a misleading oversimplification of their role in complex microenviron-

ments. Developing a systematic understanding of how combinations of stimuli control the immune

system is an unmet challenge, with broad biological and therapeutic implications.

What makes studying immunology from a combinatorial perspective essential is that nonlinear

interactions often make the effects of combined stimuli dramatically different from merely additive

effects seen with each stimulus alone. Immunological studies have discovered that interaction effects

play major roles in shaping immune system processes (Noubade et al., 2014; Min et al., 2012;

Tuvim et al., 2012; Walasek et al., 2012; Hartmann et al., 2014; Teles et al., 2013). However, the

complexity of these effects and the lack of resolution of current combinatorial experiment analysis

methods are a barrier to understanding how interactions regulate immunological functions. The
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standard approach to this problem is to identify genes showing positive (synergistic) or negative

(antagonistic) deviations in the combined treatment condition from the sum of individual effects.

This restricted binary classification has critical limitations. First, it does not distinguish between bio-

logically relevant and artifactual interactions that depend on the specific assay (Cappuccio et al.,

2015). Second, it does not allow for meaningful aggregation of interactions to delineate coherent

functional programs. Finally, this standard approach does not support integration and shared inter-

pretation of interactions from multiple combination treatments. These limitations obscure general

properties and functions of interactions between immunological stimuli.

To overcome this barrier, we develop a framework based on combinatorial analysis and machine

learning. Using combinatorial analysis, we derive a comprehensive taxonomy of all interaction pat-

terns that can occur in a combination treatment experiment. Next, we train a machine learning classi-

fier able to robustly map noisy -omics data across the pre-defined taxonomy. As we demonstrate,

this framework now resolves the most informative synergistic and antagonistic effects. Annotation of

genes assigned to each discrete regulatory pattern identifies the regulated immunological functions.

In addition, assignment of responses from multiple combinatorial datasets to a standardized taxon-

omy enables global integration to systematically elucidate the interactions that shape immune

functions.

The resulting immune Synergistic and Antagonistic Interaction Learner (iSAIL) resource includes

the machine learning classifier, a curated compendium of immunological combination treatment

datasets and a global dataset integration to produce a landscape of ~30,000 interactions from

diverse immune cell types and combinations of stimuli. We show how the landscape can be mined

to reveal new insight into the prevalence of different types of interactions, and into their immunolog-

ical functions. Further, we show that the resource facilitates the discovery of new combinatorial regu-

latory processes. iSAIL analysis of data on TNF and IFNb co-treatment led us to discover new

synergistic mechanisms implicated in dendritic cell-T cell crosstalk.

iSAIL is available as a user-friendly web-accessible resource to help elucidate the combinatorial

complexity of immunity.

Results

Background and motivation
The prototypical combination treatment experiment comprises -omics data obtained from the fol-

lowing conditions: a vehicle control (denoted by 0), two individual stimuli (X, Y), and their combina-

tion (X+Y), Figure 1A, left subpanel. The goal of this experiment is to discover cellular processes

regulated by positive (synergistic) and negative (antagonistic) interactions. This requires a fine-

grained analysis able to distinguish between biologically relevant and artifactual interactions, and

able to aggregate similar interactions to delineate coherent functional programs. The standard

approach, which classifies interactions as positive or negative, does not do this adequately, leading

to a loss of important biological information. For example, biologically meaningful positive interac-

tions such as emergent responses (e.g. an increase or decrease with the combination in the absence

of any effect in the individual treatment conditions), would not be distinguished from nominal inter-

actions with low biological significance related to saturation effects. Furthermore, the aggregation

of all the positive (or negative) interactions obscures the inference of coherent biological processes

as typically obtained through pathway enrichment analysis, because this crude aggregation con-

founds very diverse interaction effects.

Machine learning framework to map interaction effects from -omics
data from combination treatment studies
To improve the extraction of biological insight from a combination experiment, we develop a

machine learning framework within the immune Synergistic and Antagonistic Interaction Learner

(iSAIL) resource. The framework increases the resolution of a standard approach by using an

abstract, pre-defined taxonomy of 123 distinguishable response profiles that can theoretically occur

in a combination treatment experiment (Figure 1—figure supplement 1). These profiles represent

qualitatively different scenarios for the expression of a gene in a combination treatment experiment.

To analyze data on combination treatment, iSAIL applies a machine learning classifier trained to
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robustly classify the experimental gene response across the taxonomy (Figure 1A, middle subpanel).

Interaction classification makes it possible to resolve the most meaningful interactions (e.g. emer-

gent responses), while automatically excluding from downstream analysis all the nominal interactions

(e.g. saturation effects) that carry minimal biological information. Importantly, genes classified in the

same interaction profile are likely to share a coherent functional program. These coherent gene

groups are then interrogated for mechanistic insight via pathway enrichment analysis (Figure 1A,

right subpanel). By breaking down the combinatorial effects into these functional units, we greatly

improve the functional interpretation of biological processes regulated by interactions.

A key problem we address is to robustly classify gene response from noisy -omics data across. To

solve this problem, the classifier generates a probabilistic assignment of the response for each gene

to the taxonomy-defined profiles. This solution is more robust to noise than the deterministic match-

ing previously used for related problems (Cappuccio et al., 2015). We systematically validate our

Figure 1. Comprehensive approach to map interaction effects within and among -omics datasets from combination treatment experiments. (A) We

developed iSAIL (immune Synergistic/Antagonistic Interaction Learner), a machine learning framework to decipher the effect of combination

treatments. iSAIL accommodates -omics datasets from the four prototypical conditions of combination treatments: 0 (control), stimulus X, stimulus Y,

and the combination X+Y (left subpanel). The dataset is analyzed by a classifier previously trained to map each gene into a complete taxonomy of

theoretically possible interaction profiles (middle subpanel, see also Figure 1—figure supplement 1). The slanting of a single profile rendition in the

middle subpanel is to indicate that the slanted pattern is one of an entire deck of synergistic or antagonistic patterns classified by iSAIL. The taxonomy

helps infer the functional role of different types of positive and negative interactions (right subpanel). (B) By applying iSAIL to combination treatments

from diverse immune cell types (right subpanel), we built a combinatorial landscape of immunity comprising ~30,000 interactions. Global analysis of the

landscape and of user-generated data drive new hypotheses on the role of interactions in immune cells.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. A comprehensive taxonomy of response profiles to combination treatments.

Figure supplement 2. Machine learning classification of treatment interactions.

Figure supplement 3. Distribution of precision and recall of LDA and RF across the taxonomy of response profiles.
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approach by evaluating the classification performance on simulated data. Furthermore, in order to

select the optimal framework, we investigate multiple machine learning models and compare their

probabilistic output using the synthetic data under different noise regimes. These analyses identify

Random Forest as a robust method with high predictive accuracy across all noise regimes (Figure 1—

figure supplements 2 and 3).

A resource to analyze user-generated or public immunological
combination treatment datasets
The taxonomy of interaction profiles used by the learning framework provides a standardized

abstract space, independent of any specific dataset, where interactions from multiple datasets can

be mapped and integrated for global analysis. Based on immunological relevance and data quality

(see Materials and methods), we select a compendium of 25 human and 7 murine combination treat-

ment studies for inclusion in the resource (Table 1). These datasets include studies of innate immune

cells including several dendritic cell populations, macrophages, and monocytes, as well as epithelial

cells and adaptive immune cells. Stimuli include diverse combinations of cytokines, Toll-Like Recep-

tor (TLR) ligands, and drugs. We apply our classification framework to each dataset from the com-

pendium and agglomerate the results in an overall interaction landscape, including it as a

component of the resource (Figure 1B).

The implemented interaction classification methodology, along with the interaction landscape, is

made available in a user-friendly platform. The platform allows researchers to upload and analyze

interactions from newly generated data, or to mine the interaction landscape, derived from our com-

pendium, for global insight. To facilitate the functional interpretation of interactions, the platform is

integrated with external resources including ImmPort (Bhattacharya et al., 2014), Gene Cards

(Stelzer et al., 2016), and enrichR (Kuleshov et al., 2016), that provide extensive single-gene and

pathway level annotations. The iSAIL resource has the capacity to generate insight into combinato-

rial immunity and help guide hypothesis generation and further experimentation.

Exploring and visualizing the interaction landscape
To build the interaction landscape, we systematically applied our interaction classification framework

(Figure 2A) to the data compendium, mapping a total of 29,479 interactions. The number of interac-

tions vary widely with the different cell types and combinations of stimuli (Figure 2—figure supple-

ment 1). The landscape, extensively annotated using external databases, is an information-rich

object that can be mined to gain new insight on general properties of interactions and on the immu-

nological functions they regulate.

For example, mining the landscape enables a systematic quantification of the prevalence of inter-

actions that may occur with combination treatments, which is currently unknown. We find that the

most frequent interactions likely represent range limitations of the assay or biological responses,

which we refer to as floor and ceiling effects (Figure 2B, top subpanel). These effects provide limited

biological information in the absence of dose-response curves (Chou, 2006), unavailable in our con-

text. Our approach segregates floor and ceiling effects from less frequent but more biologically rele-

vant interactions, including suppression (9%), inhibition (8%), restoration (4%), emergence (4%), and

potentiation (3%) (Figure 2B, middle subpanel). Our analysis also reveals that several theoretically

possible combinatorial effects were nearly absent (<0.04%). These rare profiles include reversals,

where two signals with the same individual effect (e.g. upregulation of a gene separately by X and Y)

are reversed by the combination (e.g. downregulation of the same gene by X+Y) (Figure 2B, bottom

subpanel).

To explore the immunological functions regulated by interactions, we visualize the landscape

using an interactive 3D representation. The three axes represent datasets, genes, and scores quanti-

fying the intensity and robustness of the identified interactions (Figure 2C). Each axis is then anno-

tated with additional information. The dataset axis is annotated with metadata on the experiments

including species, cell type, stimuli, and time point. The gene axis is annotated with immunological

gene families such as chemokines, interleukins, checkpoints and other terms from the ImmPort data-

base (Bhattacharya et al., 2014). The interaction axis is annotated by the taxonomy profiles

assigned to each interaction by the machine learning classifier. Slicing the landscape along specific

dimensions provides different types of insight into immunological interactions.
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For example, slicing by gene family allows systematic identification of positive and negative inter-

actions involving immune modulators of interest. Figure 2D shows a 2D projection of the landscape

involving stimulatory and inhibitory checkpoints for a selection of datasets including macrophage,

moDC, pDC, and T cells. Genes in these families show a variable propensity toward synergistic and

antagonistic regulation across datasets. While CD40 and CD80 presented sparse, selective interac-

tion effects across datasets, IDO1 shows positive interactions in 5 out of the 15 selected datasets.

The profiles of these synergies contain two cases of potentiation from different experimental mod-

els, one involving pDC stimulated with IL3 and influenza virus (Flu), and the other involving moDC

stimulated with TNF and IFNb (Figure 2E). Because IDO1 inhibits T cell division and promotes regu-

latory T cells (van Baren and Van den Eynde, 2015), these positive interactions may serve to restrict

overreacting immune responses in the inflammatory microenvironment.

Table 1. Datasets used to construct the combinatorial landscape of immunity.

Accession Species Cell type Signal X Signal Y Time point

GSE5054 Human Thyroid cells IFNg IL1b 1d

GSE36331 Human ARPE-19 cells IFNg TNF 2d

GSE43409 Human Innate lymphoid cells cocktail (IL-1/IL-7/IL-23) aNKp44 3.5 hr

GSE53712 Human Monocytic THP-1 LPS SB203580 4h

GSE53712 Human Monocytic THP-1 LPS SB203580 1d

GSE59179 Human Hut78 cells Enzastaurin AR-A014418 3d

GSE63038 Human NK cells FcR activation IL-12 12 hr

GSE79077 Human MDMs Dexamethasone IFNg 20 hr

GSE57915 Human pDC IL3 Flu 6h

GSE57915 Human pDC GM-CSF Flu 6h

GSE57915 Human pDC GM-CSF Flu 1d

GSE57915 Human pDC GM-CSF LL37 1d

GSE57915 Human Monocytes NOD2 TLRs 6h

GSE57915 Human Monocytes NOD2 TLRs 1d

GSE57915 Human Monocytes IFNg TLRs 6h

GSE46903 Human Macrophage IFNg TNF 3d

GSE46903 Human Macrophage TNF P3C 3d

GSE36323 Human Monocytic THP-1 D3 TsA 2.5 hr

GSE52819 Human Macrophage Vitamin D H37Rv 24 hr

GSE44392 Human CD4+ T cell edelfosine beads 30 hr

GSE24767 Human Keratinocyte IL-17 TNF 1d

GSE77814 Human BMSC IFNg TNF (1.5 ng/ml) 2d

GSE77814 Human BMSC IFNg TNF (15 ng/ml) 2d

GSE134209 Human moDC TNF IFNb 1h

GSE134209 Human moDC TNF IFNb 2.5 hr

GSE20302 Mouse DC Lact acidophilus Bifid bifidum 10 hr

GSE28994 Mouse Lung Pam2CSK4 ODN2395 4h

GSE32986 Mouse DC Curdlan (1 mg/ml) GM-CSF 4h

GSE32986 Mouse DC Curdlan (100 mg/ml) GM-CSF 4h

GSE35291 Mouse HSPCs Valproic acid lithium 7d

GSE53986 Mouse macrophage IFNg LPS 1d

GSE62249 Mouse SB-3123p cells Cocktail (TNF/IFNg) Vemurafenib 4d

Non-standard abbreviations: MDM = Monocyte Derived Macrophages; P3C = Pam3 CSK; D3 = nuclear hormone 1,25(OH)2D3; TsA = trichostatin A;

BMSC = Bone Marrow Stromal Cells; HSPCs = hematopoietic stem/progenitor cells; Lact = Lactobacillus; Bifid = Bifidobacterium.
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Our results show that mining the interaction landscape can reveal new insight on combinatorial

interactions and their immunological functions.

Interactions determine a context-dependent TNF biology
To further illustrate how the interaction landscape can be analyzed, we study how TNF biology can

be altered by the presence of cofactors. To this end, we sliced the combinatorial landscape along

two axes (Figure 3, top-left). From the dataset axis, we selected combination treatments involving

TNF with other stimuli, including IFNg and IFNb in four human cell models (Figure 3, left-margin).

From the interaction axis, we extracted interaction profiles that encoded a qualitative change of the

TNF effect when considered as a mono-treatment. We started by considering three types of

Figure 2. Building a combinatorial landscape of immunity. (A) We developed a strategy to map and investigate combinatorial effects from multiple

combination treatment experiments. Using public repositories, we selected 32 -omics datasets of combination treatment experiments from diverse

immune cells and combinations of stimuli. For each dataset, we applied iSAIL and classified a total of ~30,000 interaction effects. (B) The first seven

cards represent the most frequent interactions across datasets. The last two cards represent interactions that occur with vanishingly low frequency. (C)

To integrate interactions from different datasets, we created a 3D structure with axes representing datasets, genes, and scores quantifying the intensity

and robustness of the effects. The resulting landscape, supplemented with metadata and prior knowledge, makes it possible to comprehensively

investigate the effect of combination treatments on immune cells. (D) The plane shows a 2D projection of the landscape focusing on immune

checkpoints in selected datasets: (stimulat = stimulatory; inhibit = inhibitory). The size and color of the rectangles keep track respectively of the

interaction score and sign (blues: positive interactions, red: negative interactions). The immune checkpoint IDO1 is synergistically induced in multiple

datasets. Non-standard abbreviations: P3C = Pam3 CSK; vD = vitamin D; GM = GM CSF; edelf = edelfosine; Flu = influenza virus. (E) By looking at the

specific nature of these synergies, we found two cases of potentiation in human moDC (top) and pDC (bottom).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Quantification of interaction by cell type and type of combination.
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qualitative changes: suppression, antagonistic reversal, and synergistic reversal of TNF effects (Fig-

ure 3, top-margin).

For each pair of dataset and profile, we processed the corresponding gene list with enrichment

analysis to gain insight at the functional level. Genes showing suppression and reversal of TNF

effects were significantly enriched in important immune processes including Th1 polarization and

antigen presentation (Figure 3). Further analysis (Figure 3, top-right, Materials and methods) also

suggested that co-modulators can drive the emergence of new functions, not observed by TNF stim-

ulation in isolation. Although these emerging functions were relatively few, they comprised key pro-

cesses such as proteasome degradation, an alternative NF-kB activation pathway, and T cell

chemotaxis.

Our results suggest that TNF biology can be qualitatively altered by other stimuli through a vari-

ety of interaction effects including suppression, reversal, and the emergence of entirely new func-

tions. This provides a new insight into the function of a cytokine.

Figure 3. Combinatorial interactions determine a context-dependent TNF biology. To explore how cofactors might alter the TNF biology, we sliced the

combinatorial landscape (top-left) along two axes. From the dataset axis, we extracted combination treatments involving TNF and concomitant factors

including IFNg and IFNb in four human cellular models (left-margin). From the interaction axis, we extracted interaction profiles that encode a

qualitative change of the effect of TNF mono-treatment. We started by considering three types of qualitative changes: suppression, antagonistic

reversal, and synergistic reversal (top-margin). For each dataset and profile, we processed the corresponding gene list with enrichment analysis to gain

insight at functional level. The matrix elements correspond to selected significantly enriched functions (hypergeometric test; * adjusted p<0.05, **

adjusted p<0.01, *** adjusted p<0.001). Example hits from each function are shown in parentheses. In the case of emergent effects (last column), we

looked for the presence of new functions, not regulated by TNF alone (top right, see also Materials and methods). The results suggest that cofactors

could drive the emergence of new TNF functions.
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Prediction and validation of TNF and IFNb interaction effects in human
monocyte-derived dendritic cells
Finally, we investigate in-depth the interactions in our newly generated dataset of TNF combined

with the cytokine IFNb (see Materials and methods), and illustrate the hypothesis generation and val-

idation cycle enabled by iSAIL. Although TNF and IFNb are key modulators of immune function

whose individual effects have been extensively studied, their interactions remain poorly understood.

We previously reported that TNF and IFNb act synergistically to induce an antiviral state in mono-

cyte-derived dendritic cells (moDC) (Hartmann et al., 2014). To study the systems level impact of

TNF and IFNb co-treatment on human moDC, we applied iSAIL to this transcriptomic combination

treatment experiment.

iSAIL detected 374 positive interactions, which we mapped to the corresponding profile groups.

The interaction groups with the largest number of positive interactions were ‘emergent synergy’,

‘TNF potentiates IFNb’, ‘IFNb restores TNF’, and ‘IFNb potentiates TNF’ (Figure 4A). To understand

the function of these interaction profiles, we sorted the corresponding gene lists based on the syn-

ergy score and searched for candidates with potential key immunological roles.

Focusing on emergent synergies, we found the largest synergy scores for LIMK2, MCOLN2,

SLC7A5, TP53BP2, and several genes having more established immunological roles such as RELB,

IL15RA, and VCAM1. The protein VCAM-1 has been described as a regulator of leukocyte migration

and cell adhesion (Deem et al., 2007). Due to the fundamental importance of the DC-T cell axis in

the generation of an immune response, we hypothesized that TNF and IFNb synergistically induce

VCAM-1 to promote moDC-T cell adhesion. We experimentally tested this hypothesis by quantifying

DC-T cell adhesion using imaging flow cytometry (see Materials and methods). When exposed to

the combination of TNF and IFNb, moDC showed an increased adhesion to T cells that was not

observed with either cytokine alone (Figure 4B). The increased DC-T cell adhesion was mediated by

VCAM-1, since VCAM-1 neutralization abolished the synergistic effect (Figure 4B). To our knowl-

edge, these results identify for the first time a role for synergistic induction of VCAM-1 by TNF and

IFNb in promoting DC-T cell adhesion.

To further explore the immune processes controlled by TNF and IFNb synergies, we performed

enrichment analysis (Figure 4C, left) separately for the different profiles, and compared the results

with a conventional analysis that aggregates all the synergies in a single gene set (Figure 4C, right).

Annotation by profile increased the number and significance of annotation terms compared to the

conventional analysis. Interestingly, we found a reciprocal potentiation of TNF and IFNb signaling

pathways by the combination treatment. Both iSAIL and conventional analysis captured a highly sig-

nificant enrichment in mineral absorption. However, iSAIL analysis also revealed the pattern ‘IFNb

restores TNF’ as the main contributor to this enrichment. This pattern contains several members of

the family of metallothioneins (MT1X, MT1E, MT1F, MT1HL1), which are increasingly recognized as

important players in the response to cytokines and pathogen signals (Subramanian Vignesh and

Deepe Jr., 2017).

Some annotation terms appeared only in the iSAIL analysis and were not resolved by conventional

analysis. In particular, we found the pattern ‘TNF potentiates IFNb’ enriched in NK cell proliferation,

and the pattern ‘IFNb potentiates TNF’ enriched in T cell proliferation. We studied allogeneic cross-

donor stimulation to test the hypothesis suggested by this analysis that a synergistic effect on T cell

proliferation resulted from IFNb and TNF stimulation (Figure 4D, left panel). We observed a nearly

twofold increase in the percent of proliferating T cells upon the combination treatment, an effect

not seen with either stimulus alone. The synergy pattern of the T cell proliferation measurement

diverged slightly from the gene level profile, which showed some effect by TNF alone. It is not sur-

prising that the interactions profiles comparing mRNA level regulation and protein-dependent func-

tional effects show marginal differences. Importantly, the synergistic induction of T cell proliferation,

predicted by iSAIL, was validated experimentally.

Next, we wanted to identify the molecular mediators of the increased T cell proliferation. Candi-

date genes for mediating this synergistic response predicted by enrichment analysis included

TNSFS9 and CCL5. Review of the literature suggested CCL-5 as the most likely candidate

(Makino et al., 2002). We therefore hypothesized that CCL-5 may contribute to increased prolifera-

tion of T cells induced by TNF and INFb exposed DC. This hypothesis was confirmed by
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immunoneutralization of CCL-5 (Figure 4D, right panel). These validation experiments demonstrate

the value of iSAIL in mining interaction data for new hypotheses leading to biological and mechanis-

tic insight.

Discussion
In this work, we present a comprehensive resource to map and interpret interaction effects from

individual and multiple combination treatment studies. Applying our machine learning classification

method to the compendium of immunological combination treatment datasets, we identify ~30,000

interactions. We show that the collection of interactions visualized as a landscape can be mined for

general insight into the microenvironment-dependent role of key immunomodulators, for specific

testable hypotheses about combinatorial control of immune processes.

A potential consequence of interactions is the radical modification of effects observed with indi-

vidual treatments. Using the iSAIL framework, these events are easily identified by isolating

Figure 4. Prediction and validation of IFNb and TNF synergistic effects in monocyte-derived dendritic cells . (A) We applied iSAIL to analyze the

synergistic effects induced by IFNb (3000 pg/mL) and TNF (4500 pg/mL) on monocyte-derived dendritic cells after 1 hr of exposure. We focused on the

four profile groups with the largest number of synergies. In the group of emergent synergies, we found VCAM1, a gene involved in the regulation of

cell adhesion. (B) We tested the hypothesis that the emergent induction of VCAM1 in the DC would mediate an increase in DC-T cell interaction.

Assayed by imaging flow cytometry, moDCs exposed to IFNb+TNF showed an emergent increase in DC-T cell adhesion. VCAM-1 neutralization

abolished this synergistic effect. The right subpanel shows the mean synergy score of the three replicates, plus or minus the standard error of the mean.

VCAM-1 neutralization significantly reduced the synergy score (t-test, p=0.03). (C) To explore whether TNF+IFNb synergy profiles represented coherent

gene programs, we determined the functional enrichment for each of the four patterns, shown in the columns. (C, left panel). We compared these

iSAIL-based functional analyses to results obtained with a conventional analysis of unclassified synergy genes. (C, right panel). iSAIL-based enrichment

provided a richer functional annotation. In particular, it suggested that synergy genes in the ‘IFNb potentiates TNF’ pattern rightmost panel in (A) may

mediate T cell proliferation. (D) This hypothesis was tested using allogeneic cross donor stimulation. The synergy group ‘IFNb potentiates TNF’

contained two hits potentially responsible for T cell proliferation: TNFSF9 and CCL5. Using CCL-5 neutralizing antibodies, we confirmed that IFNb and

TNF act in synergy to promote T cell proliferation, and that this proliferation depends on CCL-5. The right subpanel shows the mean synergy score of

the three replicates, plus or minus the standard error of the mean. CCL-5 neutralization significantly reduced the synergy score (t-test, p=0.008).
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interaction profiles that encode qualitative combination changes in the effect of a treatment of inter-

est. In the case of TNF, we found that co-modulators alter fundamental immunological processes,

such as antigen presentation and T helper cell polarization, and may produce the emergence of

entirely new functions, not modulated by TNF exposure alone. Identifying the context-dependent

effects of an agent may be useful from a therapeutic perspective. Our approach may assist in the

design of drug combinations that leverage antagonistic interactions to selectively reduce pathogenic

activity while preserving necessary homeostatic effects.

A fundamental tool for biological interpretation of -omics experiments is pathway-level enrich-

ment analysis. iSAIL uncovers biological processes regulated in combination treatment studies by

fine-grained aggregation of genes showing similar interaction responses. These aggregates can

reflect coherent biological processes, providing insight into the principles and functions of interac-

tions. In the analysis of TNF and IFNb co-treatment, iSAIL uncovered novel synergies that control the

DC-T cell interactions and T cell proliferation, both of which are critical immune processes. Impor-

tantly, iSAIL analysis generated hypotheses on the molecular mediators controlling these functions,

VCAM-1 and CCL-5, which were validated by additional experiments. The ability to identify new

interactions and mechanisms in a relatively well characterized combination such as TNF and IFNb

points to an even greater potential for discovery in less characterized combinations.

In its current version, iSAIL was developed to analyze transcriptomics experiments. Consistent

with this, the classifier was trained under the assumption of normally distributed data, which is com-

monly held in the analysis of microarray and RNA-seq data (upon a suitable transformation). How-

ever, under alternative distributional assumptions, our framework can be adapted to any -omics data

from combination treatment experiments, including proteomics, metabolomics, and epigenomics.

Understanding the dynamic properties of combinatorial interactions is a very relevant, yet largely

unexplored area. Included in our compendium are time-course datasets with only two time points.

Due to such poor temporal sampling, these studies were analyzed as separate experiments.

Although the dynamics of combinatorial responses is not addressed in our work, the iSAIL frame-

work would still provide a fundamental grammar to map gene trajectories from longer time series.

Time-dependent interrelationships could be included in our analysis, for example, by imposing addi-

tional constraints that guarantee smooth transitions between interaction profiles at successive time

points. Our analysis framework, applied to a large compendium of time course experiments, should

they become available, will enable the identification of preferential trajectories and dynamic rules

governing time transitions between interaction profiles.

Despite the centrality of combinatorial interactions to the control of the immune system, many

important questions remain open. In particular, the ability to predict combinatorial interaction effects

based on the individual effects remains elusive (Preuer et al., 2018; Ryall and Tan, 2015;

Menden et al., 2019). Although predicting interactions is unrelated to the objectives of our study,

iSAIL may still support research in this direction. For example, our global estimates of the frequency

of different interactions may be used as prior information to enhance the predictive power of future

models.

Finally, insight into combination treatment experiments is relevant to the field of drug therapeu-

tics, as thousands of clinical trials in the United States alone are studying the effects of drug combi-

nations (Schmidt, 2017; Nature Medicine, 2017; Wu et al., 2015). Drug interactions can drive both

clinical therapeutic efficacy and treatment side effects. The success of drug combinations relies on

the control of pathogenic pathways while preserving the homeostatic pathways. By uncovering rele-

vant interactions and their functions, iSAIL user-friendly online tools can further the understanding

and therapeutic applications of interaction mechanisms.

Materials and methods

Definition and simulation of interaction profiles
The notion of interaction profile was introduced in our previous work (Cappuccio et al., 2015) and is

briefly summarized here. Figure 1—figure supplement 1 shows the taxonomy of 123 profiles used

in this study. Mathematically, each of these profiles corresponds to a linear system of inequalities

satisfied by the mean expression levels of a gene in the conditions 0, X, Y, X+Y. These mean expres-

sion levels are respectively denoted by eO, eX , eY , eXþY . The system that defines a given profile
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admits infinitely many solutions, each of which can be seen as a particular instance of the profile. For

example, an emergent synergy (Figure 1—figure supplement 1, profile 3) is satisfied by the vectors

(2.2, 2.2, 2.2, 5.5), (4.1, 4.1, 4.1, 7.8), as well as by infinitely many other qualitatively similar vectors.

To simulate a profile, our strategy starts by sampling the solution space of the corresponding sys-

tem of inequalities. The solution space is sampled within a range of admissible values, calibrated to

mimic the typical numerical ranges of -omics data. Next, a noise term is added to each instance of a

profile using a random number generator. To account for the relatively small number of samples in -

omics data, we simulated four replicates for each of the conditions 0, X, Y, X+Y. The noise term is

assumed to be normally distributed. This assumption is widely held in the analysis of microarray

data, and still applicable to RNA-seq data upon a suitable transformation (Law et al., 2014). Increas-

ing noise levels correspond to a decreasing effect size, which is defined in terms of the standardized

differences between the group means in the four conditions, as further described below.

The steps to simulate interaction profiles are as follows:

Definition of a range of admissible expression values. This was chosen as the interval [�14, 14],
consistent with the log2-transformed expression values from microarray and RNA-seq upon a
Voom transformation (Law et al., 2014).
Sampling the solution space for the given profile in the specified range. The vector of numbers
(e0, eX , eY , eXþY ) for the given profile were found with the function xsample from the package
limsolve. For each profile, we extracted 400 instances for each level of noise.
Definition of the signal of a simulated profile. The signal can be seen as a generalization of the
fold-change in A vs. B experiments. In a combination treatment, we first consider all pairwise
fold-changes from the conditions 0, X, Y, X+Y. Except for the case of constant genes, at least
one of these contrasts must be different from 0. The signal d is defined as the absolute value
of the smallest non-zero differences. To avoid very weak signals, not meaningful in the analysis
of expression data, a minimum signal of 0.5 is used in the simulated data.
Simulation of random noise. To simulate random variability around the values e0, eX , eY , eXþY ,
the data was assumed to be normally distributed around the group means: ei ~N ei;sð Þ, with i
= 0, X, Y, X+Y. The parameter s was assumed the same for all groups. For each of the four
conditions, we simulated n=4 replicates. Different levels of noise, were simulated by setting
different values of the ratio d=s.
Enforcement of the range of the expression values. The addition of random noise can push
some of the values ei outside the initially prescribed range of expression. In this case, we
forced the simulated values to be at the limit of the range. For example, a value of -18.5 was
reset to -14, the lower limit of the prescribed range.

Training and testing of the machine learning classifier
To train the machine learning classifiers, we generated a training set by simulating multiple instances

of every profile in the admissible range of expression values. Each instance of a simulated profile

was represented as a vector of statistical features. These include the estimated mean values e0, eX ,

eY , eXþY , the p-values of all possible pairwise contrasts among these four values, and additional sta-

tistics returned by the Limma package (Ritchie et al., 2015) served as predictors of the true class.

The training set comprised different noise regimes. These were simulated by fixing different val-

ues for the parameter d=s, as described in the previous section. We considered the following values:

low noise (d=s = 4), medium noise (d=s = 2.5), high noise (d=s = 2). Training of the machine learning

classifiers was done using the R packages Caret and RandomForest.

To select the best model, we generated additional simulated data and measured the out-of-sam-

ple classification accuracy per profile and for the same values of d=s that were used to build the

training set. For each of these values, the accuracy was quantified as the proportion of correct pre-

dictions. An advantage of RF and LDA over the deterministic match is the possibility for a ‘soft’ (i.e.

probabilistic) classification of an input profile into any element of the taxonomy. The quality of the

full probabilistic output of RF and LDA was quantified for all noise levels using the multi-class log

gain (Figure 1—figure supplement 2D). To further assess the performance of RF and LDA for the

different classes, the distribution of precision and recall over all taxonomy classes was examined

(Figure 1—figure supplement 2). All these criteria indicated RF as the most robust classifier. The

multiclass log-gain, and the class-specific precision and recall were computed with the R packages

MLmetrics and mltest.
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Generating the combinatorial landscape of immunity
Public combination treatment datasets were retrieved from Gene Expression Omnibus using the

package GEOquery (Davis and Meltzer, 2007). The relevant datasets were identified using key

terms typically associated with combination treatments such as ’synergy’, ’antagonism’, ’combinato-

rial’, and similar. This approach was designed to facilitate automatic update of the resource as new -

omics data from combination treatment experiments become publicly available. To facilitate com-

parisons, all the datasets were imported in the format of the original publications. The datasets were

preprocessed as follows. First, if different probes were available for the same gene, the probe with

the largest coefficient of variation was selected. Second, genes with low coefficient of variation

(lower than the median across all genes) were filtered out. Next, differentially expressed genes were

determined with the Limma package. A significance cutoff of 0.05 was applied on the p-values cor-

rected for multiple testing. An additional cutoff was imposed on the d (defined above): genes with d

lower than the median value computed across all differentially expressed genes were filtered out.

The resulting differentially expressed genes were then analyzed by the machine learning classifier

which assigned to each gene the predicted element of the taxonomy. For each identified interaction,

a score was defined to measure its magnitude as well as its significance. The magnitude of the inter-

action b was measured as the average Bliss index, defined as the average deviation from additivity

b ¼ DeXþY � ðDeX þ DeYÞ, where Dei ¼ ei � e0 (i = X, Y, X+Y), b>0 for positive interactions and b<0 for

negative interactions. The significance of the interaction was measured as the class probability p

returned by the classifier. To account for both the significance and the magnitude of an interaction,

an overall score was defined as the product b � p:

The identified interactions were annotated using a manually curated list of stimulatory and inhibi-

tory immune checkpoints, as well as the gene lists provided by the ImmPort database

(Bhattacharya et al., 2014).

Enrichment analysis
The functional enrichment of interactions was done using the Enrichr library (Kuleshov et al., 2016).

Four annotation databases were considered: GO Biological Processes (2017b), KEGG (2016), Wiki-

pathways (2016), Reactome (2016). Enrichment was considered significant if the enrichment p-value

adjusted for multiple testing was lower than 0.05.

To analyze the synergies induced by IFNb and TNF co-treatment, we focused on annotation terms

with size lower than 500 genes, to increase the specificity of the identified functions and pathways.

Moreover, we imposed a minimum threshold on the overlap between the annotation term and the

gene set being analyzed. This threshold was meant to identify annotation terms covering a minimum

proportion of the gene set being analyzed. We chose a minimum coverage of 2%.

DC differentiation
All human subjects research protocols were reviewed and approved by the IRB of the Icahn School

of Medicine at Mount Sinai. Monocyte-derived DCs were obtained from healthy human blood

donors following a standard protocol described elsewhere (Hartmann et al., 2017). All experiments

were replicated using cells obtained from different donors.

Microarray data of human moDC treated with TNF and IFNb
DC were treated with 4500 pg/mL TNF, 3000 pg/mL IFNb, or the combination of both for either 1

hr or 2.5 hr. Untreated DC served as a negative control. Three samples were taken per treatment

and time point. RNA was extracted with the RNeasy plus kit (Qiagen) following the manufacturer’s

instructions. Gene expression was assayed using broad human genome specific HG-U133_Plus_2

GeneChip expression probe arrays (Affymetrix). Affymetrix microarray data were normalized using

gcRMA (Wu and Irizarry, 2004). Additional data processing was done as described above (see in

Materials and methods section ‘Generating the combinatorial landscape of immunity’).

Experimental validation of TNF and IFNb synergistic effects
To test the involvement of VCAM-1 in mediating TNF and IFNb induced synergy, DCs were exposed

to TNF, IFNb, the combination of TNF and IFNb or control as described above. Four hours after

treatment DCs were exposed to allogeneic T cells in a 1:3 ratio for an additional 4 hr and then fixed
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with paraformaldehyde. Cells were stained with fluorochrome labeled antibodies against CD11c

(DCs) and CD3 (T cells) and analyzed by imaging flow cytometry. DCs interacting with T cells were

identified in images where one or multiple T cells had a direct contact with a DC.

To test the involvement of CCL-5 on TNF and IFNb induced synergy, DCs were exposed to the

cytokine mixtures as described above. After 4 hr, DCs were exposed to CFSE stained allogeneic T

cells for 5 days and then fixed with paraformaldehyde. Cells were stained with a monoclonal anti-

body against CD11c and the extent of T cell proliferation was measured by the dilution of CFSE in

the CD11c-negative population, as CFSE gets weaker with every T cell division. The stain to exclude

DCs was necessary as DCs also digest CFSE-positive parts of T cells.
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The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Hartmann BM, Za-
slavsky E

2019 Microarray data of human moDC
treated with IFN� and TNF�

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE134209

NCBI Gene
Expression Omnibus,
GSE134209
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