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Abstract

Motivation: Protein sequence alignments are essential to structural, evolutionary and functional analysis, but
their accuracy is often limited by sequence similarity unless molecular structures are available. Protein structures
predicted at experimental grade accuracy, as achieved by AlphaFold2, could therefore have a major impact on
sequence analysis.

Results: Here, we find that multiple sequence alignments estimated on AlphaFold2 predictions are almost as
accurate as alignments estimated on experimental structures and significantly closer to the structural reference than
sequence-based alignments. We also show that AlphaFold2 structural models of relatively low quality can be used
to obtain highly accurate alignments. These results suggest that, besides structure modeling, AlphaFold2 encodes
higher-order dependencies that can be exploited for sequence analysis.

Availability and implementation: All data, analyses and results are available on Zenodo (https://doi.org/10.5281/zen
odo.7031286). The code and scripts have been deposited in GitHub (https://github.com/cbcrg/msa-af2-nf) and the
various containers in (https://cloud.sylabs.io/library/athbaltzis/af2/alphafold, https://hub.docker.com/r/athbaltzis/
pred).

Contact: cedric.notredame@crg.eu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein multiple sequence alignment (MSA) is the most widely used
modeling technique in biology (Van Noorden et al., 2014). Its
many applications include structural, functional and evolutionary
analyses (Mistry et al., 2021; Spence et al., 2021). Their computa-
tion typically relies on amino-acid substitution matrices and only
achieves sufficient levels of accuracy when comparing sequences
that are more than 20% identical (Rost, 1999). Alignments based
on structural comparisons are, by contrast, much less sensitive to
low sequence identity levels and have routinely been employed as
standards of truth when evaluating sequence alignment algorithms
(Thompson et al., 1999). There remains, however, some discussion
as to whether structure-based sequence alignments lend themselves
to support accurate phylogenetic reconstruction. Indeed, compel-
ling evidence suggests that non-structural signals such as indels
(Dessimoz and Gil, 2010) or non-structurally supported sequence
alignments (Nute et al., 2019) provide stronger evolutionary

support than structure-based sequence alignments. In this context,
having access to unlimited amounts of high-quality structural
data would obviously expand the usability of sequence alignments
for any application involving homology modeling, but it will also
make it possible to power any analysis aimed at quantifying the
capacity of structural comparisons to support phylogenetic
analysis.

While the scarcity of experimental structural data currently limits
the use of structure-based sequence alignments, recent results indicate
that inferring protein structure using deep learning techniques is
becoming increasingly effective, with claims that AlphaFold2 (AF2)
(Jumper et al., 2021) can predict structures at angstrom-level accur-
acy for most proteins (Porta-Pardo et al., 2022; Tunyasuvunakool
et al., 2021; Varadi et al., 2022). Furthermore, other work indicates
that predicted protein folding code elements can be used to improve
sequence homology detection (Gao and Skolnick, 2021). Given these
advances, we asked whether AF2 models can be used to compute
highly accurate protein MSAs.
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2 Materials and methods

2.1 Reference datasets
We assembled a structure-based dataset suitable for AF2 (Jumper
et al., 2021) predictions, highly discriminative and independent of
any AF2 training set. This was achieved by collecting all the 23 300
Protein Data Bank (PDB) (Berman et al., 2000) entries (07/2020 re-
lease) with a release date posterior to AF2 (04/2018). These entries
were assigned to PFAM (Finn et al., 2016) families (release 28) using
HMMER3/f (Version 3.1b1 j May 2013) with default parameters
(E-value threshold set at 10.0). This procedure gave rise to 39 476
domain segments longer than 80 AA that were turned into a non-
redundant dataset featuring 3419 segments [CD-HIT (Fu et al.,
2012; Li and Godzik, 2006) version 4.8.1, threshold 70% sequence
identity], each unambiguously assigned to a PFAM family. We
grouped all the segments labeled with the same PFAM family and
kept the 31 datasets featuring 10 or more segments (461 segments in
total). Some of these datasets were poorly informative because of
the high similarity level between the sequences. In order to build the
most compact and discriminative reference dataset, we therefore
selected the families for which the agreement between the sequence
and structure-based MSAs was lower than 75%. This procedure
generated a total of 15 datasets. We also removed two datasets
featuring sequences longer than 400 amino acids and one dataset
containing a multi-domain protein. On top of this, we discarded
two segments from the PF00520 dataset whose very short length
suggests truncation. Overall this procedure led to a test set featuring
153 PDB chains belonging to 12 distinct PFAM families and com-
prising between 8 and 16 sequences each (Supplementary Table S1).
The complete list of all the selected segments, including the dis-
carded ones, is available from Zenodo (https://doi.org/10.5281/zen
odo.7031286).

2.2 Sequence and structure-based MSAs
On the basis of recent benchmarks (Carpentier and Chomilier,
2019; Deorowicz et al., 2016), five different sequence-based MSA
algorithms [FAMSA v.1.6.218 (Deorowicz et al., 2016), MAFFT
G-INS-i v.7.45319 (Katoh et al., 2005), MSAProbs v.0.9.720 (Liu
et al., 2010), T-Coffee v.13.45.57.844f401 (Notredame et al.,
2000), PSI-Coffee v.13.45.57.844f401 (Kemena and Notredame,
2009)] and three structure-based MSA algorithms [3D-
Coffee_SAPþTMalign v.13.45.57.844f401 (O’Sullivan et al., 2004),
3D-Coffee_TMalign v.13.45.57.844f401 (O’Sullivan et al., 2004)
and mTM-align v.20180725 (Dong et al., 2018)] were tested.

The sequences of the PDB-derived structures were multiply
aligned using either structure-based or sequence-based alignment
algorithms. The best algorithms for sequences or structures respect-
ively were selected on the basis of their average structural correct-
ness using normalized intra-molecular root mean squared deviation
(NiRMSD, Supplementary Table S4). NiRMSD is a normalized
distance-based-RMSD (Armougom et al., 2006) that compares
intramolecular distance variations to assess the structural correct-
ness of sequence alignments. 3D-Coffee_SAPþTMalign, the best-
performing structure-based MSA algorithm, was used as a reference
method to perform all the structural MSAs using either PDB or AF2
structures (MSA-PDB and MSA-AF2, respectively). The best
sequence-based MSA alignment algorithm was MAFFT G-INS-i
which was used for MSA-Seq. The PSI-Coffee alignments (MSA-PSI)
were assembled using the psicoffee mode of T-Coffee
(v.13.45.57.844f401, -mode¼psicoffee) where we fetched for each
input sequence the 100 most informative homologs by conducting a
BLAST search against UniRef50. The collected BLAST alignments
were stacked onto the corresponding query sequence, such that
the result could be used as profile templates when generating the
T-Coffee pairwise libraries (Chang et al., 2012) used to produce a
regular T-Coffee MSA.

2.3 De novo structure prediction and evaluation
Structure predictions were carried out using AlphaFold2 (AF2)
v.2.0.0 (Jumper et al., 2021) with the default parameters:

-full_dbs preset -max_template_date 2020-05-14

AF2 provides for each predicted structure a reliability index named
predicted local distance difference test (pLDDT) that reports the pre-
dicted fraction of preserved local distances between the Ca atoms of
all the residues. Furthermore, the correctness of the predicted struc-
tures was estimated via the Global Distance Test Total Score
[GDT-TS, TM-Score (Zhang and Skolnick, 2004) package], one of
the standard CASP measures. Given an experimental structure
(PDB-derived) and its corresponding prediction, GDT-TS reports
the fraction of Cb (Ca in case of glycines) superimposed below differ-
ent distance thresholds after a rigid superposition.

2.4 Alignment accuracy measures
The sequence-based alignments (MSA-Seq, MSA-PSI) and the
structure-based alignments estimated on AF2 predicted models
(MSA-AF2) were compared with the structure-based MSAs com-
puted on experimental structures (MSA-PDB) and evaluated using
the sums of pairs (SoP) measure as implemented in the T-Coffee
package (Version_13.45.57.844f401). The SoP reports the fraction
of aligned pairs occurring in the reference MSA that are recovered in
the evaluated one. The SoP can be estimated on complete MSAs as
well as pairwise projections (i.e. pairs of sequences extracted from
the MSA they are part of while retaining the gaps). Here, the SoP
scores used in the main analysis were computed only on those resi-
dues that were assigned to the same structural state by DSSP
(Kabsch and Sander, 1983) while excluding loops. For the sake of
completeness, the equivalent SoP scores computed on all the pairs of
residues are also provided and yield a similar trend to the one meas-
ured on residues of identical structural categories (Supplementary
Table S1a and b).

2.5 Transitive consistency score
The transitive consistency score (TCS) (Chang et al., 2014) estimates
the level of agreement between the alignment of any pair of sequen-
ces in an MSA and the realignment of this same pair across all
possible sequence triplets within the same dataset. Triplets are
estimated by combining all pairs of pairwise alignments featuring a
common sequence. The method has been extensively described in
Chang et al. (2014) and has shown to be a robust predictor of se-
quence alignment accuracy. Given an MSA, the pairwise alignments
required for the triplet analysis are generated by separately applying
to every pair of sequences the same method used to generate the
MSA being evaluated. This procedure is supported by the T-Coffee
package in version v.13.45.57.844f401 and can be invoked by the
following commands:

t_coffee -infile <MSA-Seq> -evaluate -method mafftginsi_pair

t_coffee -infile <MSA-AF2> -evaluate -method sap_pair,

TMalign_pair -pdb_dir <AF2>

2.6 Kendall correlation analysis
Kendall correlation analysis quantifies the concordance between
two different measures evaluated on the same samples. It estimates
the frequency with which any increase of one measure is associated
with an increase or decrease of the other measure. We applied this
analysis on each of the structural accuracy measures (GDT-TS and
pLDDT) and on the sequence accuracy predictor (TCS) in order to
explore the agreement between these three measures, and the
true sequence alignment accuracy as defined by the SoP. Since our
datasets are independent from one another, we only included in the
analysis the differences measured across pairs within families while
ignoring differences across families. Kendall’s correlation (s) coeffi-
cients were computed using:

s ¼ C�D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ D þ Xoð Þ CþDþ Yoð Þ

p ; (1)

where C is the number of the concordant pairs within families, D is
the number of the discordant pairs within families, Xo is the number
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of pairs tied only in the first variable, and Yo is the number of pairs
tied only in the second variable. Statistical significance was esti-
mated by shuffling 1000 times the vector of the first variable, esti-
mating the resulting s, and comparing them to the true s value. The
p-value is then defined as the fraction of cases for which the true
value was exceeded or equaled.

2.7 Computation
All computation was carried out on a cluster running Scientific
Linux release 7.2. The structure predictions as well as the align-
ments, comparisons and evaluations were run within separate con-
tainers based on Ubuntu and Debian operating systems. The whole
computational pipeline was implemented in the Nextflow language
(Di Tommaso et al., 2017) and was deployed in a containerized
form using Singularity. We collected the time needed for the
computation of all the alignments and the AF2 prediction in
Supplementary Table S5.

3 Results

3.1 Alignments computation and comparisons
To validate the potential of AF2 models for the generation of accur-
ate structure-based sequence alignments, we filtered the PDB
(Berman et al., 2000) (https://www.rcsb.org/) to select protein
sequences that were not part of the AF2 training set (see Section 2).
This highly stringent process left us with a total of 153 proteins that
can be associated with 12 PFAM (Finn et al., 2016) families.
Sequences within each family were multiply aligned using: (i) experi-
mental structures (MSA-PDB, 3D-Coffee_SAPþTMalign); (ii) pre-
dicted structures (MSA-AF2, 3D-Coffee_SAPþTMalign); or (iii)
sequence information only (MSA-Seq, MAFFT G-INS-i). We used
MSA-PDB as a reference to assess the alignment accuracy of every
pair of sequences within MSA-Seq and MSA-AF2. Accuracy was
estimated using the SoP measure, which reports the fraction of pairs
of residues identically aligned across two alternative alignments of
the same sequences. Our results indicate that MSA-AF2 is clearly
more similar to the structural reference than sequence-based align-
ments, with 78% of the sequence pairs being more accurately
aligned in MSA-AF2 than in MSA-Seq (Fig. 1). Across all MSAs, the
difference is highly significant, with an average improvement by
23.62 percent points of MSA-AF2 over MSA-Seq (93.95% versus
70.33% and Wilcoxon test p-value¼0.0002, Table 1,
Supplementary Table S1a). This difference is particularly clear in
datasets containing repeated elements, a feature known to com-
promise most sequence alignment procedures (e.g. PF13306,
Supplementary Fig. S1). The high levels of accuracy measured on
MSA-AF2 alignments confirm that the quality of these alignments is
comparable to their reference (Carpentier and Chomilier, 2019).
These results support the notion that AF2 predicted structures could
be systematically used to replace sequence information.

3.2 Alphafold2 performance on alignment accuracy
To determine whether AF2 performance is the main driver of se-
quence alignment accuracy (Supplementary Fig. S2), we compared
sequence alignment and structural prediction accuracies. We did so
by measuring the alignment score of every pair of sequences as they
appear in their respective MSAs (SoP) versus the average correctness
of the corresponding AF2 structures computed as the percentage of
Ca distances under definite distance thresholds after superposing
every experimental structure with its corresponding prediction
(GDT-TS geometric mean). The results paint a more complex pic-
ture than anticipated. Many aligned pairs achieve high alignment ac-
curacy despite being based on AF2 models scoring lower than the
75% GDT-TS threshold required for atomic resolution precision
(Kryshtafovych et al., 2019). Specifically, 80.7% of such pairs give
rise to AF2-based alignments that are more similar to the reference
than their sequence-based counterparts. Altogether, these pairs of
lower correctness structures occur in 18.3% of all the 938 possible
pairs of sequences (Supplementary Table S2). Given that the

structure-based alignments of sequence pairs rely only on Ca super-
positions and ignore sequence information (see Section 2), it is
unclear why so many incorrect AF2 models contribute to highly
accurate sequence alignments.

One possible explanation is that some of the AF2 predictions, al-
beit different from the experimental reference (i.e. low GDT-TS),
may preserve amino-acid homologous relationships across protein
family members. This preservation could make the AF2 structures
easier to superpose and would therefore lead to more consistent
alignments (see Section 2). We quantified this effect using the TCS,
an alignment reliability index based on the comparison between the
alignment of a pair of sequences in the MSA and the realignment of
this same pair across all possible sequence triplets within the same
dataset (Chang et al., 2014). Our results indicate that MSA-AF2
alignments featuring low GDT-TS sequences can display a wide
range of TCS scores (gradient overlay Fig. 2). Overall the 22.8%
pairs with a GDT-TS lower than 75% have TCS scores ranging be-
tween 54.5% and 95.5%. The very existence of low GDT-TS/high
TCS alignments confirms that some of the incorrectly predicted
structures are sufficiently superposable to yield consistent align-
ments. Their relatively high accuracy shows the benefits of such
predictions for sequence analysis.

3.3 Predicting alignment accuracy
These results appear to be at odds with the expectation that struc-
tural correctness measures such as GDT-TS and the AF2 prediction
reliability index, pLDDT, should be the best predictors of accuracy
for alignments evaluated against structure-based references. To ana-
lyze this effect further, we compared the capacity of GDT-TS,
pLDDT and TCS to discriminate between high and low accuracy
alignments. We did so by quantifying the average SoP of each se-
quence within its MSA and by estimating its concordance with each
of the three measures. When running a Kendall correlation analysis
within families only (see Section 2), we observed considerably less
discordance between TCS and SoP (21.43% of discordant pairs,
Kendall s¼0.3, Fig. 3a) than for GDT-TS (33.48%, s¼0.13,
Fig. 3b) or pLDDT (32.73%, s¼0.15, Fig. 3c) (Supplementary
Table S3). This indicates that when aligning AF2 structures,

Fig. 1. Comparison of alignment accuracy of MSAs based on sequence information

(MSA-Seq) and on predicted structural information (MSA-AF2). Accuracy is meas-

ured against the reference MSAs based on experimental structural data (MSA-PDB)

using the sums-of-pairs (SoP) measure estimated of every pair of sequences within

the respective MSA. Points are colored by dataset and the marginal density plots

represent their distribution across the considered axis (A color version of this figure

appears in the online version of this article.)
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consistency, as estimated by the TCS, is a much better predictor of
alignment accuracy than the estimators of structural correctness.

4 Discussion

The high accuracy of the MSA-AF2 alignments, regardless of the
correctness of their predicted structures, may also indicate the AF2

algorithm’s capacity to integrate structural and evolutionary data.
Indeed, the training of AF2 involves combining the information con-

tent of experimentally determined structures along with MSAs

consisting of large compilations of naturally occurring mutations
selected for maintaining a functional fold. Evolutionary information
is well established as a means to improve sequence alignments
(Kemena and Notredame, 2009; Pei and Grishin, 2007). For in-
stance, PSI-Coffee encompasses evolutionary information by replac-
ing every sequence with a position-specific scoring scheme, often
referred to as a profile. This provides a powerful way to average in-
formation content across protein family members, but it discards
any information associated with covariation between sites. When
we applied the PSI-Coffee profile-based approach to our dataset, it
systematically produced MSAs of intermediate accuracy between se-
quence and AF2-based alignments (Table 1, Supplementary Table
S1). This observation suggests that the way AF2 models incorporate
evolutionary information possibly accounts for some aspects of co-
variation between sites.

We showed here that the structural models generated using AF2
lead to alignments closer to the structural reference than the ones
achieved using the best profile-based solution (Nute et al., 2019). We
hypothesize that this improvement results from deep networks identify-
ing higher-order relationships among sites thus allowing for more ac-
curate alignments than simpler methods like PSI-Coffee. It is worth
pointing out that our method was only tested on small datasets of sin-
gle domain families due to the limitation imposed by excluding the
AlphaFold2 training set. There is, however, no reason to suspect the
results would not scale with a larger number of sequences. Limitations,
if any, would most likely arise from the computational cost of
consistency-based MSAs that are currently limited to a few hundred
sequences. Furthermore, even though our benchmark suggests a slight-
ly improved accuracy for consistency-based MSAs that rely on struc-
tures (i.e. 3D-Coffee), one could also deploy non-consistency-based
aligners that are expected to scale better on large datasets, a prospect
very likely to be made possible thanks to the expansion of the
AlphaFold Protein Structure Database (Varadi et al., 2022). The ques-
tion remains, however, of how well these methods would perform on
multi-domain proteins. The scarcity of PDB multi-domain chains
makes it challenging to propose a quantified benchmark, and in the
current state of the art, one should probably restrict the application of
these methods to proteins processed into single-domain peptides. This
situation may soon change as an increasing amount of protein complex
data is acquired using next-generation structure determination meth-
ods such as cryogenic electron microscopy.
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Table 1. Average alignment length, percent identity (PID) with its standard deviation, SoP, TCS and NiRMSD scores per MSA algorithm

over the 12 datasets

MSA algorithm Average alignment length Average PID (%) SD PID SoP (%) TCS (%) NiRMSD (A)

MSA-Seq 292.67 23.61 4.98 70.33 53.08 2.00

MSA-PSI 299.50 21.23 5.08 77.30 70.97 1.77

MSA-AF2 292.33 21.31 5.23 93.95 83.43 1.52

MSA-PDB 295.42 21.26 5.05 100.00 83.17 1.46

Fig. 2. Comparison between the geometric mean of the model structural correctness

(GDT-TS) and alignment accuracy (SoP) for every pair of aligned sequences within

the MSA-AF2 MSAs. Points are colored by the geometric mean of the predicted se-

quence accuracy (TCS) for each pair. The marginal density plot represents the distri-

bution of the number of pairs along the considered axis. The blue line represents the

Pearson correlation (R¼0.29 and p-value¼ 2.2e�16) as provided by the ggpubr

package

Fig. 3. Log/log representation of discordance between predicted sequence alignment

accuracy (TCS) (a), model structural accuracy (GDT-TS) (b) or predicted model struc-

tural accuracy (pLDDT) (c) and the equivalent differences in sequence accuracy (SoP)

scores when comparing MSA-AF2 against MSA-PDB. The green-shaded areas corres-

pond to the first and third quadrants. The relationship between the two variables is

indicated by a Kendall correlation coefficient (s) and its assigned p-value. The text label

also includes the number and percentage of discordant pairs over all the given pairs
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