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A B S T R A C T

The lesions of COVID-19 CT image show various kinds of ground-glass opacity and consolidation, which are
distributed in left lung, right lung or both lungs. The lung lobes are uneven and it have similar gray value
to the surrounding arteries, veins, and bronchi. The lesions of COVID-19 have different sizes and shapes in
different periods. Accurate segmentation of lung parenchyma in CT image is a key step in COVID-19 detection
and diagnosis. Aiming at the unideal effect of traditional image segmentation methods on lung parenchyma
segmentation in CT images, a lung parenchyma segmentation method based on two-dimensional reciprocal
cross entropy multi-threshold combined with improved firefly algorithm is proposed. Firstly, the optimal
threshold method is used to realize the initial segmentation of the lung, so that the segmentation threshold
can change adaptively according to the detailed information of lung lobes, trachea, bronchi and ground-glass
opacity. Then the lung parenchyma is further processed to obtain the lung parenchyma template, and then
the defective template is repaired combined with the improved Freeman chain code and Bezier curve. Finally,
the lung parenchyma is extracted by multiplying the template with the lung CT image. The accuracy of lung
parenchyma segmentation has been improved in the contrast clarity of CT image and the consistency of lung
parenchyma regional features, with an average segmentation accuracy rate of 97.4%. The experimental results
show that for COVID-19 and suspected cases, the method has an ideal segmentation effect, and it has good
accuracy and robustness.
1. Introduction

1.1. Background problem domain

COVID-19 is an acute respiratory infectious disease caused by the
type of new coronavirus infection, which is highly contagious [1,2].
Until October 6, 2021, there have been more than 235.67 million
confirmed cases of COVID-19 worldwide and 4.81 million cases died.
With the rapid development of CT, CT images have been able to
provide high-definition lung images with high contrast among lung
tissues [3]. Therefore, high-resolution CT images are gradually used
for the diagnosis of COVID-19 [4]. Computer aided detection (CAD)
technology can effectively detect various ground-glass opacity from
lung CT images, so as to lay a foundation for the early diagnosis
and treatment of COVID-19 [5]. The main processes of CAD tech-
nology based on CT images include preprocessing, lung parenchyma
segmentation, candidate lesion segmentation, feature extraction and
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optimal selection, disease classification, etc [6]. Among them, the most
important step is lung parenchyma segmentation, and it is also a key
link affecting the stability and accuracy of CAD. Rapid and accurate
segmentation of lung parenchyma from CT images is the key to the
diagnosis of COVID-19, which has very important practical significance
and clinical value.

1.2. Review of literature

The main clinical symptoms of COVID-19 are fever, cough and
fatigue, which may lead to acute respiratory distress syndrome (ARDS)
[7,8]. The main obstacle to controlling the spread of this disease is the
lack of efficient detection methods. Reverse transcription polymerase
chain reaction (RT-PCR) is the gold standard for the diagnosis of
COVID-19, but it takes 4–6 h to obtain the results, and the RT-PCR
test also has a high false negative rate [9]. It takes several times of
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RT-PCR test every few days to confirm the diagnostic results [10].
In addition, RT-PCR reagents are also insufficient in many severely
epidemic areas [11]. In contrast, CT examination has been widely used
in various hospitals. In clinical practice, CT is a more efficient and
safer method to diagnose COVID-19 by combining clinical symptoms
and signs [12]. At the same time, CT images can also be used in the
tracking and prognosis of COVID-19. The size and shape of COVID-
19 ground-glass opacity (GGO) are the main factors for COVID-19
tracking and prognosis. In the early stage of COVID-19, the density
of GGO is low. The GGO is not obvious, and it is easy to cause the
miss diagnosis. The CAD technology based on CT images can accurately
classify COVID-19, and the real time observation of GGO changes
can improve prognosis and reduce mortality. The GGO of COVID-19
involve both lungs. The manifestations of the lesions are diverse, and
the CT images of GGO change rapidly. Therefore, CT diagnosis and
timely treatment for COVID-19 patients are very important to improve
tracking and prognosis of COVID-19. The lung image of early patients
show multiple small patchy opacities. Advanced patients show multiple
GGO and infiltration shadow of both lungs, and severe patients can
have lung consolidation [13]. In conclusion, medical imaging plays a
vital role in limiting virus transmission and diagnosing COVID-19.

In the medical image diagnosis of COVID-19, due to the need to
screen and treat a large number of patients, in order to reduce the
workload of doctors, artificial intelligence technology can be used to
automatically diagnose the medical images and calculate the severity
of infection [14,15]. Jin [16] has designed an AI-assisted diagnosis
system, which can achieve comparable performance to that of doctors,
and the system has been deployed to many hospitals. In addition,
self-diagnosis technology can also predict high-risk patients according
to the clinical characteristics of COVID-19, which can help doctors
find and treat the disease [17]. Wang [18] proposed the PatchShuffle
convolutional neural network (PSCNN) and applied it for COVID-19
image classification to highlight the influence of neighboring pixels
on the classification results of central pixels, so as to improve the
classification accuracy of COVID-19. Zhang [19] divides the COVID-
19 image into self-similar blocks and non-self-similar blocks by using
the Pseudo Zernike moment and deep stacked sparse autoencoder. The
Pseudo Zernike moments of the self-similar blocks are calculated to
select the most robust moment. The CT image of COVID-19 is diagnosed
by quantizing and modulating the amplitude of the pseudo Zernike
moments.

In the lung CT image, the structure of each tissue is complex and the
shape is different. The difference of gray contrast between the lung and
the surrounding tissues (muscles, blood vessels) is low. These factors
increase the difficulty of lung parenchymal segmentation. Threshold
segmentation is a method of image segmentation, which segments
the target and background in the image by selecting an appropriate
threshold. The threshold segmentation method divides the original CT
image pixel into several subsets by setting a threshold to segment the
lung parenchyma. It mainly uses the difference in grayscale between
the lung parenchyma to be extracted from the CT image and the lung
organs to perform image segmentation. The traditional segmentation
threshold method of lung images with a small time complexity, but its
stability is not high [20]. When the threshold is not selected properly,
it is easy to ignore the edge lesions and the surrounding tissues. The
gray contrast is not obvious and the region of interest may be over
segmented. The appropriate threshold method can achieve better seg-
mentation, and it segments the CT image into lung parenchyma target
region and background region. When the image is complex or there
are many target objects [21,22], the multi-threshold segmentation is
needed. It aims to effectively segment background and multiple targets,
which is an extension of single threshold segmentation.

The traditional threshold segmentation methods find the appropri-
ate threshold by setting specific criteria, and the operation speed is
slow, such as Otsu method [23], minimum error method [24], image
2

entropy method [25] and so on. Many scholars have proposed improved
algorithms to increase the speed of segmentation. Raja [26] used parti-
cle swarm optimization (PSO) with improved inertia factors to optimize
the Otsu threshold segmentation method. Rajinikanth [27] proposed a
fast threshold segmentation method based on Otsu criterion and line
intercept histogram. Wang [28] proposed an improved adaptive genetic
algorithm, combined with the two-dimensional fisher image segmenta-
tion evaluation function for global optimization, in order to improve
the speed of the segmentation threshold. In recent years, image entropy
threshold segmentation has been widely used in image segmentation.
Zhou [29] used the maximum entropy of one-dimensional grayscale
to segment gray image effectively, but the algorithm is sensitive to
noise. In order to overcome the noise sensitivity, Estanon [30] proposed
a threshold segmentation method of two-dimensional entropy. This
method makes full use of the gray value and local spatial information
of the image, and it can achieve good segmentation results. But this
method still has the problem of time-consuming.

Most of the threshold segmentation methods are time-consuming,
while the multi-threshold segmentation method has a larger amount
of calculation, so its calculation time is longer and it occupies more
memory. Aiming at this problem, many scholars combine the multi-
threshold segmentation with the optimization algorithm. Chakraborty
[31] used PSO algorithm, Darwin particle swarm optimization (DPSO)
and fractional order Darwin particle swarm optimization (FODPSO)
to find the optimal threshold under the criterion of maximum vari-
ance between classes respectively. Horng [32] proposed to find the
optimal threshold under the minimum cross entropy by using the
honey-bee mating optimization (ABCA) algorithm. Ozyurt [33] com-
bined genetic algorithm (GA) and improved maximum fuzzy entropy
for multi-threshold segmentation. These methods improve the speed
of finding multi-threshold, but PSO, GA and ABCA algorithm are easy
to fall into local extremum, which makes the optimization results
inaccurate.

Hrosik [34] proposed a firefly algorithm (FA) for multi-mode op-
timization. The algorithm is optimized by the phototaxis between
fireflies, and it has the ability of fast global search. Wu [35] solved
multiple constrained optimization problems by using firefly algorithm.
Horng [36] combined the firefly algorithm and the minimum cross en-
tropy criterion for image multi-threshold segmentation, and it achieved
a good result. In this paper, the firefly algorithm is combined with two-
dimensional entropy multi-threshold segmentation method to segment
multi-target images.

There are some state-of-the-art methods about image segmentation
algorithm reported. Alqazzaz [37] proposed an improved SegNet model
for image segmentation. Through the global gray information to guide
the curve to approach the target edge, it has stronger segmentation
adaptability for the image with uneven foreground gray level. However,
this model does not abstract the higher-level semantic features for
image segmentation. Therefore, when the target size is small, the
background is complex, and the features are not significant, the im-
age segmentation effect is still not good. Ghaffari [38] proposed a
fast and robust fuzzy c-means clustering algorithm (FRFCM) based
on the morphological reconstruction and membership filtering. This
algorithm effectively uses the local spatial information of the image
and it replaces the traditional distance calculation with the membership
filtering to ensure the superiority of anti-noise performance. But the
clustering result is too smooth, and too much detailed information
will be lost. Li [39] proposed a contextualized convolutional neural
network (Co-CNN) structure. This method integrates the multi-level
image content into a unified network, and the weighted multiscale
features are trained at each pixel position. However, this method is
realized by introducing different scales of input, which cannot realize
the human-like attention mechanism, and the algorithm runs for a
long time. Basukala [40] proposed a dual tree-complex wavelet trans-
form (DT-CWT) image segmentation algorithm. MRF sequences are
constructed in wavelet domain multi-resolution, which are nested with

each other, and this method realizes the effective image segmentation
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Fig. 1. Paper structure.
by recursive operation between adjacent scales in the wavelet domain.
This algorithm not only represents the image structure information,
but also better describes the instability of the image. However, the
wavelet transform lacks translation invariance, and it can only model
the feature information of the image in the horizontal, vertical and 45
directions. Therefore, the continuity of image segmentation based on
wavelet is not ideal in obtaining the target edge, and there is a certain
‘‘hole’’ phenomenon in the detection result. Yan [41] proposed a GAN-
Unet image segmentation method. This model consists of two parts
including 2D and 3D Unet. The 2D part extracts the features in the slice,
and the 3D part integrates the information of the slice. The network
can be used for organ and lesion segmentation. However, because the
model uses 3D convolutional network, it becomes difficult to train and
it requires higher demand for hardware.

1.3. Highlights

The highlights of this work can be summarized as the following:
(i) a multi-threshold segmentation method based on two-dimensional
reciprocal cross entropy is proposed to make up for the problem of
undefined and zero value of Shannon cross entropy due to logarithm
operation; (ii) aiming at the problem the traditional histogram only
considers the background and the target area, the edge and the noise
information are ignored. This paper improves the segmentation of the
binary histogram that is divided the four-region histogram into two-
region of the target and the background, and the gray information
is fully considered; (iii) traditional threshold segmentation algorithms
only use the value of gray level in the image without considering the
spatial neighborhood information of pixels, which greatly increases the
ratio of misclassification between the target and the background of the
gray image. Aiming at this problem, a weighted fuzzy threshold seg-
mentation based on the spatial neighborhood information is proposed;
(iv) aiming at the problem that the standard firefly algorithm is easy
to fall into local optimization, this paper improves the attraction term
by using exponential distribution in the position movement and the
exponential decreasing inertia weight to enhance the global detection
ability. The step size monotone decreasing mode is used to improve the
random item to enhance the local mining ability in the later stage of
the optimization; (v) the lung parenchyma template is repaired by the
proposed eight-direction Freeman chain code combined with quadratic
3

Bezier curve can make up for the under-segmentation problem when re-
pairing large-area defects with straight lines. It has flexible adjustment
to better meet the characteristics of lung parenchyma edge, which can
achieve a good repair effect.

1.4. Paper structure

The rest of this paper is organized as follows. Section 2 describes
the two-dimensional reciprocal cross entropy multi-threshold image
segmentation based on the two-region histogram and spatial neigh-
borhood information. In Section 3, we propose the improved firefly
algorithm to optimize the parameters of the two-dimensional reciprocal
cross entropy. Section 4 describes the refinement segmentation of lung
parenchyma. The defective template is repaired combined with the
improved Freeman chain code and Bezier curve, and then the lung
parenchyma is extracted by multiplying the template with the lung
CT image. In Section 5, we show the simulation experiments for the
different kinds of COVID-19 CT images. The paper is structured as
shown in Fig. 1.

2. Two-dimensional reciprocal cross entropy image segmentation

2.1. Two-dimensional reciprocal cross entropy single-threshold image seg-
mentation

The size of the gray image 𝐼 is set to 𝑀 ×𝑁 . 𝐼(𝑥, 𝑦) represents the
gray value of the pixel (𝑥, 𝑦) in the image 𝐼 . 1 ≤ 𝑥 ≤ 𝑀 , 1 ≤ 𝑦 ≤ 𝑁 ,
and the gray level of the image is 𝐿. The average gray value of the
𝑛 × 𝑛 neighborhood corresponding to each pixel (𝑥, 𝑦) of the image
𝐼 is defined as 𝐺(𝑥, 𝑦), and its mathematical expression is: 𝐺(𝑥, 𝑦) =
1
𝑛2

∑𝑛∕2
𝑖=−𝑛∕2

∑𝑛∕2
𝑗=−𝑛∕2 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗).

The frequency of simultaneous occurrence of the pixel gray value 𝑖
at a certain position in the image 𝐼(𝑥, 𝑦) and the pixel gray value 𝑗 at the
corresponding position of the neighborhood average gray image 𝐺(𝑥, 𝑦)
is set as 𝑟𝑖𝑗 . The corresponding joint probability density is defined as
𝑝𝑖𝑗 = 𝑟𝑖𝑗∕(𝑀 × 𝑁)(𝑖, 𝑗 = 0, 1,… , 𝐿 − 1). Where: ∑𝐿−1

𝑖=0
∑𝐿−1

𝑗=0 𝑝𝑖𝑗 = 1.
𝑝𝑖𝑗 constitutes a two-dimensional histogram of the image, as shown
in Fig. 2. Zone 𝐴 and zone 𝐵 represent the background and goal
respectively; Zone 𝐶 and zone 𝐷 represent the edge and noise respec-
tively (zone 𝐶 and zone 𝐷 are usually ignored when calculating the
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Fig. 2. Two-dimensional histogram.

reciprocal cross entropy). The probabilities of zone 𝐴 and zone 𝐵 are:
𝑃𝐴 =

∑𝑠
𝑖=0

∑𝑡
𝑗=0 𝑝𝑖𝑗 , 𝑃𝐵 =

∑𝐿−1
𝑖=𝑠+1

∑𝐿−1
𝑗=𝑡+1 𝑝𝑖𝑗 .

The normalized probabilities corresponding to the gray level in zone
𝐴 and zone 𝐵 are: 𝑃𝐴

𝑖𝑗 =
𝑝𝑖𝑗

∑𝑠
𝑖=0

∑𝑡
𝑗=0 𝑝𝑖𝑗

, 𝑃𝐵
𝑖𝑗 =

𝑝𝑖𝑗
∑𝐿−1

𝑖=𝑠+1
∑𝐿−1

𝑗=𝑡+1 𝑝𝑖𝑗
.

The reciprocal cross entropy of the image corresponding to the
threshold (𝑠, 𝑡) is defined as:

𝐻(𝑠, 𝑡) = 𝐻(𝐴) +𝐻(𝐵)

= −
𝑠
∑

𝑖=0

𝑡
∑

𝑗=0

𝑖 ⋅ 𝑗 ⋅ 𝑝𝑖𝑗
1 + 𝑖⋅𝑗

𝑃𝐴
𝑖𝑗

−
𝐿−1
∑

𝑖=𝑠+1

𝐿−1
∑

𝑗=𝑡+1

𝑖 ⋅ 𝑗 ⋅ 𝑝𝑖𝑗
1 + 𝑖⋅𝑗

𝑃𝐵
𝑖𝑗

(1)

When 𝐻(𝑠, 𝑡) takes the minimum value, the best single threshold of
the two-dimensional reciprocal cross entropy can be obtained: (�̇�, �̇�) =
argmin0≤𝑠≤𝐿−1 min0≤𝑡≤𝐿−1 𝐻(𝑠, 𝑡).

2.2. Two-dimensional reciprocal cross entropy multi-threshold image seg-
mentation based on the improved histogram

The traditional histogram only considers the background and the
target area, but the edge and the noise information in area 𝐶 and 𝐷
are ignored, resulting in poor effect of the image segmentation. When
calculating the optimal threshold, if the area C and D are ignored,
the points with large difference between the pixel gray level and the
average gray level of the neighborhood are not fully considered. These
points may exist in area C and D, and the calculated optimal threshold
will be biased and the segmentation results are inaccurate. In order to
improve the quality of segmentation, this paper improves the division
of the binary histogram, as shown in Fig. 3.

In Fig. 3, 𝐶, 𝐶𝑜 and 𝐶𝑏 represent the whole area, target and
background area respectively. The equations are:

𝐶 ={(𝑖, 𝑗)|𝑖 = 0, 1,… , 𝐿 − 1; 𝑗 = 0, 1,… , 𝐿 − 1}

={(𝑥, 𝑦)|𝐼(𝑥, 𝑦) = 0, 1,… , 𝐿 − 1;

𝐺(𝑥, 𝑦) = 0, 1,… , 𝐿 − 1}
(2)

𝐶𝑜 ={(𝑖, 𝑗)|𝑖 = 0, 1,… , 𝑡; 𝑗 = 0, 1,… , 𝑠}

={(𝑥, 𝑦)|𝐼(𝑥, 𝑦) = 0, 1,… , 𝑡;

𝐺(𝑥, 𝑦) = 0, 1,… , 𝑠}
(3)

𝐶𝑏 = 𝐶∖𝐶𝑜 (4)

Where, 𝐼(𝑥, 𝑦) represents the gray value of the pixel (𝑥, 𝑦) in the
image 𝐼 ; 𝐺(𝑥, 𝑦) represents the average gray value of the 𝑛×𝑛 neighbor-
hood corresponding to each pixel (𝑥, 𝑦) of the image 𝐼 . The threshold
is used to change the four-region segmentation of the histogram into
two-region segmentation of the target and the background, and the gray
4

Fig. 3. Segmentation of improved histogram.

Fig. 4. Segmentation of two-dimensional multi-threshold histogram.

information of the target and the background is fully considered, then
the normalized probabilities corresponding to the gray level in zone 𝑜
and zone 𝑏 are: 𝑃 𝑜

𝑖𝑗 =
𝑝𝑖𝑗

∑𝑡
𝑖=0

∑𝑠
𝑗=0 𝑝𝑖𝑗

, 𝑃 𝑏
𝑖𝑗 =

𝑝𝑖𝑗
∑𝐿−1

𝑖=𝑡+1
∑𝐿−1

𝑗=𝑠+1 𝑝𝑖𝑗
.

The two-dimensional reciprocal cross target entropy and back-
ground entropy are respectively: 𝐻(𝑜) = −

∑𝑡
𝑖=0

∑𝑠
𝑗=0

𝑖 ⋅ 𝑗 ⋅ 𝑝𝑖𝑗
1 + 𝑖⋅𝑗

𝑃 𝑜
𝑖𝑗

, 𝐻(𝑏) =

−
∑𝐿−1

𝑖=𝑡+1
∑𝐿−1

𝑗=𝑠+1
𝑖 ⋅ 𝑗 ⋅ 𝑝𝑖𝑗
1 + 𝑖⋅𝑗

𝑃𝐵
𝑖𝑗

. The total entropy of two-dimensional recipro-

cal cross is: 𝐻(𝑡, 𝑠) = 𝐻(𝑜) +𝐻(𝑏).
The lesions of COVID-19 CT image showed various ground-glass

opacity and consolidation. The lung lobe is uneven and it has similar
gray value to the surrounding arteries, veins and bronchus. Aiming at
the problems of low contrast and fuzzy boundary in the traditional
two-dimensional single-threshold lung image segmentation algorithm,
it is proposed to extend the two-dimensional reciprocal cross entropy
single-threshold to multi-threshold segmentation. The image 𝐼 is seg-
mented by 𝑛 − 1 gray levels, and the two-dimensional reciprocal cross
entropy single-threshold segmentation is extended to multi-threshold.
The values of the threshold are (𝑡1, 𝑠1)(𝑡2, 𝑠2)...(𝑡𝑛−1, 𝑠𝑛−1).

As shown in Fig. 4, the image 𝑃 is segmented into n classes
{𝐶1, 𝐶2,… , 𝐶𝑛}. The normalized probability corresponding to the gray
level 𝐶𝑘(𝑘 = 1, 2,… , 𝑛) is:

𝑃𝐶𝑘
𝑖𝑗 =

𝑝𝑖𝑗
∑𝑡𝑘 ∑𝑠𝑘

(5)

𝑖=𝑡𝑘−1+1 𝑗=𝑠𝑘−1+1

𝑝𝑖𝑗
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Assuming that {𝑖1, 𝑖2, . . . , 𝑖𝑚+1} is a subset of {1, 2,… , 𝑛}, and the
total entropy of the two-dimensional reciprocal cross is:

𝐻(𝑡1, 𝑠1, 𝑡2, 𝑠2,… , 𝑡𝑛−1, 𝑠𝑛−1) = 𝐻(𝐶1) +𝐻(𝐶2) +⋯ +𝐻(𝐶𝑛)

= −
𝑡1
∑

𝑖=0

𝑠1
∑

𝑗=0

𝑖 ⋅ 𝑗 ⋅ 𝑝𝑖𝑗
1 + 𝑖⋅𝑗

𝑃𝐶1
𝑖𝑗

−
𝑡2
∑

𝑖=𝑡1+1

𝑠2
∑

𝑗=𝑠1+1

𝑖 ⋅ 𝑗 ⋅ 𝑝𝑖𝑗
1 + 𝑖⋅𝑗

𝑃𝐶2
𝑖𝑗

−⋯

−
𝐿−1
∑

𝑖=𝑡𝑘+1

𝐿−1
∑

𝑗=𝑠𝑘+1

𝑖 ⋅ 𝑗 ⋅ 𝑝𝑖𝑗
1 + 𝑖⋅𝑗

𝑃𝐶𝑛
𝑖𝑗

(6)

2.3. Calculation of spatial neighborhood information

The traditional image threshold segmentation method only uses the
gray value information in the image pixels but ignores the influence of
the spatial information between the pixels, which makes the segmenta-
tion not very effect. In this paper, a threshold segmentation algorithm
combined with fuzzy theory is proposed. The algorithm comprehen-
sively uses the gray value and the spatial neighborhood information
of image pixels to design the membership function and the evaluation
standard of fuzzy distance to solve the optimal threshold solution.

2.3.1. Calculation of similarity between pixels in spatial neighborhood
This function is to calculate the similarity between the pixels in the

neighborhood of the window and the central pixel. For ∀𝑥(𝑚, 𝑛, 𝑓𝑚𝑛) ∈
𝑊(𝑥,𝑦), there is the following equation:

𝑤(𝐼(𝑥, 𝑦), 𝑥(𝑚, 𝑛, 𝑓𝑚𝑛)) = 1 − |𝐼(𝑥, 𝑦) − 𝑥(𝑚, 𝑛, 𝑓𝑚𝑛)|𝜎

= 1 −
𝑛
∑

𝑡=0
𝜎(𝑡)|𝐼(𝑥, 𝑦)(𝑡) − 𝑥(𝑚, 𝑛, 𝑓𝑚𝑛)(𝑡)|

= 1 − (0.5 × 𝑑1(𝐼(𝑥, 𝑦), 𝑥(𝑚, 𝑛, 𝑓𝑚𝑛)) × ℎ

+ 0.5 × 𝑑2(𝐼(𝑥, 𝑦), 𝑥(𝑚, 𝑛, 𝑓𝑚𝑛)) × 𝑐)

(7)

Where, 𝐼(𝑥, 𝑦) means that the value of pixel in the position (𝑥, 𝑦).
𝑊(𝑥,𝑦) represents the range of window centered on pixel 𝐼(𝑥, 𝑦), this
paper selects eight neighborhoods for the range of window. 𝑥(𝑚, 𝑛, 𝑓𝑚𝑛)
represents the pixels within the window. 𝑤(𝐼(𝑥, 𝑦), 𝑥(𝑚, 𝑛, 𝑓𝑚𝑛)) repre-
sents the similarity weight between the pixels in the neighborhood of
the window and the center pixel. 𝜎(𝑡) is the weight in the 𝑡th similarity
measure. In this paper, two measures are taken: the geometric distance
between the central pixel and the neighborhood pixels, the Euclidean
distance of the gray value. 𝑛 is the number of the similarity measure;
|𝐼(𝑥, 𝑦)(𝑡) − 𝑥(𝑚, 𝑛, 𝑓𝑚𝑛)(𝑡)| represents the similarity degree of the t-th
similarity measure between pixels; ℎ is the maximum geometric dis-
tance from the central pixel in the neighborhood; 𝑐 is the normalization
factor.

2.3.2. Calculation of fuzzy membership degree of spatial neighborhood
information

This function is to calculate the membership degree of the spatial
neighborhood information: in region 𝐶𝑖, the similarity of the pixels
is calculated whose gray value is less than or equal to (𝑡𝑖, 𝑠𝑖) in the
neighborhood of the center pixel as shown in Eq. (7), then sum and
its calculation is shown in Eq. (8). Similarly, the similarity of the
pixels is calculated whose gray value in the neighborhood of the
window is greater than (𝑡𝑖, 𝑠𝑖) as shown in Eq. (9). Finally, the spatial
neighborhood information is transformed into the range of (0,1) by
normalization processed according to Eq. (10) and Eq. (11).

𝜇𝑛𝑠𝑢𝑚1 =
𝑛1
∑

𝑠=0
𝑤(𝐼(𝑥, 𝑦), 𝑥(𝑚, 𝑛, 𝑓𝑚𝑛)) (8)

𝜇𝑛𝑠𝑢𝑚2 =
𝑛2
∑

𝑠=0
𝑤(𝐼(𝑥, 𝑦), 𝑥(𝑚, 𝑛, 𝑓𝑚𝑛)) (9)

𝜇𝑛1 =
𝜇𝑛𝑠𝑢𝑚1 × 𝑛1

(10)
5

1 + 𝜇𝑛𝑠𝑢𝑚1 × 𝑛1 + 𝜇𝑛𝑠𝑢𝑚2 × 𝑛2
𝑛2 =
𝜇𝑛𝑠𝑢𝑚2 × 𝑛2

1 + 𝜇𝑛𝑠𝑢𝑚1 × 𝑛1 + 𝜇𝑛𝑠𝑢𝑚2 × 𝑛2
(11)

Where, 𝑛1 and 𝑛2 are the number of pixels in the window neighbor-
hood under the conditions of Eq. (8) and Eq. (9) respectively.

2.3.3. Calculation of fuzzy membership function of gray value information
In the region 𝐶𝑖, the gray histogram of the image is calculated, and

he whole gradient image is divided into two categories by using the
hreshold (𝑡𝑖, 𝑠𝑖). The value of threshold less than or equal to (𝑡𝑖, 𝑠𝑖) is
alled background, and the value of threshold greater than (𝑡𝑖, 𝑠𝑖) is
alled foreground. On this basis, the calculation of the mean value 𝜇0
or the background class can be obtained:

0 =

∑𝑡𝑖
𝑖=𝑡𝑖−1+1

∑𝑠𝑖
𝑗=𝑠𝑖−1+1

𝐼(𝑥, 𝑦) × ℎ𝑖𝑠𝑡(𝐼(𝑥, 𝑦))
∑𝑡𝑖

𝑖=𝑡𝑖−1+1
∑𝑠𝑖

𝑗=𝑠𝑖−1+1
ℎ𝑖𝑠𝑡(𝐼(𝑥, 𝑦))

(12)

Similarity, the calculation of the mean value 𝜇1 for the foreground
class can be obtained:

𝜇1 =

∑𝑡𝑖+1
𝑖=𝑡𝑖+1

∑𝑠𝑖+1
𝑗=𝑠𝑖+1

𝐼(𝑥, 𝑦) × ℎ𝑖𝑠𝑡(𝐼(𝑥, 𝑦))
∑𝑡𝑖+1

𝑖=𝑡𝑖+1
∑𝑠𝑖+1

𝑗=𝑠𝑖+1
ℎ𝑖𝑠𝑡(𝐼(𝑥, 𝑦))

(13)

Where, 𝐼(𝑥, 𝑦) in Eq. (12) and Eq. (13) means that the value of pixel
in the position (𝑖, 𝑗) is 𝑓𝑖𝑗 . ℎ𝑖𝑠𝑡(𝐼(𝑥, 𝑦)) is the number of pixels whose
value of pixel at (𝑖, 𝑗) is 𝑓𝑖𝑗 .

The fuzzy membership of the gray information of the image pixels
is calculated: the maximum and minimum gray values are counted by
scanning the gray information of each pixel in the image. In the region
𝐶𝑖, assuming that the threshold is (𝑡𝑖, 𝑠𝑖), the mean value is solved by
q. (12) and Eq. (13), and then the gray information value of each pixel
s taken out. The fuzzy membership degree of the gray information of
he corresponding image pixels is calculated by Eq. (14) and Eq. (15),
nd the form is following:

𝑔1(𝐼(𝑥, 𝑦)) = 1 −
|𝐼(𝑥, 𝑦) − 𝜇0|

𝐼(𝑥, 𝑦)𝑓𝑚𝑎𝑥 − 𝐼(𝑥, 𝑦)𝑓𝑚𝑖𝑛
(14)

𝑔2(𝐼(𝑥, 𝑦)) = 1 −
|𝐼(𝑥, 𝑦) − 𝜇1|

𝐼(𝑥, 𝑦)𝑓𝑚𝑎𝑥 − 𝐼(𝑥, 𝑦)𝑓𝑚𝑖𝑛
(15)

Where, 𝐼(𝑥, 𝑦)𝑓𝑚𝑎𝑥 is the maximum gray value of the image pixel;
(𝑥, 𝑦)𝑓𝑚𝑖𝑛 is the minimum gray value of the image pixel; the maximum
ray value and the minimum gray value are not equal; 0 ≤ 𝜇𝑔𝑖(𝐼(𝑥, 𝑦)) ≤
, 𝑖 = 1, 2.

.3.4. The total membership function of pixels
In region 𝐶𝑖, the sum of the total membership degree of the image

ixels greater than the threshold (𝑡𝑖, 𝑠𝑖) and less than the threshold (𝑡𝑖, 𝑠𝑖)
s calculated respectively. Firstly, each pixel in the image is scanned,
hen the gray information and the spatial neighborhood information
f the pixel are calculated respectively. The membership degree of the
ixel that is less than the threshold (𝑡𝑖, 𝑠𝑖) is counted in Eq. (16). The
embership degree of the pixel that is greater than the threshold (𝑡𝑖, 𝑠𝑖)

s counted in Eq. (17). Finally, the values of the two parts are compared.
f the result of Eq. (16) is greater than or equal to the result of Eq. (17),
he pixel belongs to the class less than or equal to (𝑡𝑖, 𝑠𝑖), otherwise it
elongs to class greater than (𝑡𝑖, 𝑠𝑖). The calculation is as following:

(𝐼(𝑥, 𝑦)) = (𝜇𝑛1 + 𝜇𝑔1(𝐼(𝑥, 𝑦)))∕2 (16)

(𝐼(𝑥, 𝑦)) = (𝜇 + 𝜇 (𝐼(𝑥, 𝑦)))∕2 (17)
𝑛2 𝑔2
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2.3.5. Calculation of the optimal threshold
Fuzzy distance is defined: 𝐴 is the discrete fuzzy set defined on in-

terval [𝜇𝑚𝑖𝑛, 𝜇𝑚𝑎𝑥], and 𝜇𝐴(𝑢) is its membership function, then defining:

𝜙(𝐴) =
∑𝑛

𝑖=0 𝜇𝑖
𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛

(18)

𝜙′(𝐴) =
𝜙(𝐴)
𝜙(𝑈 )

(19)

Where, 𝑈 is a finite element fuzzy set on [𝜇𝑚𝑖𝑛, 𝜇𝑚𝑎𝑥] and 𝜇(𝑢) =
1∀𝑢 ∈ 𝑈 , namely:

𝜙(𝑈 ) =
𝑓𝑚𝑎𝑥
∑

𝑓=𝑓𝑚𝑖𝑛

ℎ𝑖𝑠𝑡(𝐼(𝑥, 𝑦)(𝑓 )) (20)

Where, ℎ𝑖𝑠𝑡(𝑥(𝑖, 𝑗, 𝑓 (𝑓 )
𝑖𝑗 )) represents the number of pixels whose pixel

value is 𝑓 in the image. The distance between fuzzy sets 𝐴 and 𝐵 is
defined as:

𝑑(𝐴,𝐵) =
|𝜙(𝐴) − 𝜙(𝐵)|

1 + 𝜙′(𝐴) + 𝜙′(𝐵)
(21)

𝜙(𝐴) and 𝜙(𝐵) can be regarded as the quotient of the membership
degree and its membership span of all elements in fuzzy sets 𝐴 and
𝐵. When 𝜙′(𝐴) and 𝜙′(𝐵) are constant, 𝑑(𝐴,𝐵) increases with the
increase of the absolute value of the difference between 𝜙(𝐴) and 𝜙(𝐵).
𝜙′(𝐴) and 𝜙′(𝐵) are approximately equal to the average value of the
membership degrees of all elements in the set 𝐴 and 𝐵. When the
absolute value of the difference between 𝜙(𝐴) and 𝜙(𝐵) is the same,
the larger the 𝜙′(𝐴) and 𝜙′(𝐵) are, and the smaller the 𝑑(𝐴,𝐵) is.
It can be seen that the greater the 𝑑(𝐴,𝐵), the greater the distance
between the two sets is. The greater the value of distance, the clearer
the difference between the image target and the background is, and
the better the image segmentation effect is. Therefore, maximizing the
distance between the two sets means minimizing the probability of
misclassification between the target and the background.

The total entropy of the two-dimensional reciprocal cross based on
the two-region histogram and the spatial neighborhood information is:

𝐻(𝑡1, 𝑠1, 𝑡2, 𝑠2,… , 𝑡𝑛−1, 𝑠𝑛−1) = 𝑑(𝐶1, 𝐶2) ⋅𝐻(𝐶1) + 𝑑(𝐶1, 𝐶2)

⋅𝐻(𝐶2) ⋅ 𝑑(𝐶2, 𝐶3) + 𝑑(𝐶2, 𝐶3) ⋅𝐻(𝐶3) ⋅ 𝑑(𝐶3, 𝐶4)+

... + 𝑑(𝐶𝑛−1, 𝐶𝑛) ⋅𝐻(𝐶𝑛)

= −
|𝜙(𝐶1) − 𝜙(𝐶2)|

1 + 𝜙′(𝐶1) + 𝜙′(𝐶2)
⋅

𝑡1
∑

𝑖=0

𝑠1
∑

𝑗=0

𝑖 ⋅ 𝑗 ⋅ 𝑝𝑖𝑗
1 + 𝑖⋅𝑗

𝑃𝐶1
𝑖𝑗

−

|𝜙(𝐶1) − 𝜙(𝐶2)|
1 + 𝜙′(𝐶1) + 𝜙′(𝐶2)

⋅
𝑡2
∑

𝑖=𝑡1+1

𝑠2
∑

𝑗=𝑠1+1

𝑖 ⋅ 𝑗 ⋅ 𝑝𝑖𝑗
1 + 𝑖⋅𝑗

𝑃𝐶2
𝑖𝑗

⋅
|𝜙(𝐶2) − 𝜙(𝐶3)|

1 + 𝜙′(𝐶2) + 𝜙′(𝐶3)
−

|𝜙(𝐶2) − 𝜙(𝐶3)|
1 + 𝜙′(𝐶2) + 𝜙′(𝐶3)

⋅
𝑡3
∑

𝑖=𝑡2+1

𝑠3
∑

𝑗=𝑠2+1

𝑖 ⋅ 𝑗 ⋅ 𝑝𝑖𝑗
1 + 𝑖⋅𝑗

𝑃𝐶3
𝑖𝑗

⋅
|𝜙(𝐶3) − 𝜙(𝐶4)|

1 + 𝜙′(𝐶3) + 𝜙′(𝐶4)
−

...... −
|𝜙(𝐶𝑛−1) − 𝜙(𝐶𝑛)|

1 + 𝜙′(𝐶𝑛−1) + 𝜙′(𝐶𝑛)

𝐿−1
∑

𝑖=𝑡𝑘+1

𝐿−1
∑

𝑗=𝑠𝑘+1

𝑖 ⋅ 𝑗 ⋅ 𝑝𝑖𝑗
1 + 𝑖⋅𝑗

𝑃𝐶𝑛
𝑖𝑗

(22)

The criterion of two-dimensional reciprocal cross entropy multi-
threshold image segmentation is to find the threshold ( ̇𝑡1, ̇𝑠1)( ̇𝑡2, ̇𝑠2)...
(�̇�𝑛−1, �̇�𝑛−1) to minimize the two dimensional reciprocal cross entropy
𝐻(𝑡1, 𝑠1, 𝑡2, 𝑠2,… , 𝑡𝑛−1, 𝑠𝑛−1).

3. Two-dimensional reciprocal cross entropy multi-threshold im-
age segmentation combined with improved firefly algorithm

In order to solve the problems of large amount of calculation and
time-consuming in the multi-threshold image segmentation method, by
improving the firefly algorithm, this paper proposes the two-
dimensional reciprocal cross entropy multi-threshold image segmenta-
tion combined with the improved firefly algorithm, so as to transform
6

Fig. 5. Improved firefly algorithm based on the best position of population.

the calculation of the multi-threshold segmentation into the opti-
mization of the two-dimensional reciprocal cross entropy function
𝐻(𝑡1, 𝑠1, 𝑡2, 𝑠2,… , 𝑡𝑛−1, 𝑠𝑛−1) by the firefly algorithm.

The firefly algorithm is a bionic optimization method whose princi-
ple is to simulate individual firefly individuals in nature with points
in the search space [42]. By using the phototaxis of fireflies in the
process of optimization, the objective function of solving the problem
is transformed into finding the firefly with the largest brightness. In
each iteration, the position of the firefly is updated by attracted and
moving to find the firefly with the greatest brightness [43]. Therefore,
the firefly algorithm can carry out the global optimization quickly. The
formula for the movement of the firefly 𝑖 to the brighter firefly 𝑗 is
defined as:

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝛽(𝛾) × (𝑋𝑗 (𝑡) −𝑋𝑖(𝑡)) + 𝛼 × (𝑟𝑎𝑛𝑑 − 0.5) (23)

Where, 𝑋𝑖 and 𝑋𝑗 represent the position of firefly 𝑖 and firefly 𝑗

respectively; 𝛽(𝛾) = 𝛽0𝑒
−𝛾𝛾2𝑖𝑗 is the attraction of firefly 𝑗 to firefly 𝑖;

𝛾𝑖𝑗 is the distance between fireflies 𝑖 and 𝑗, 𝛾𝑖𝑗 = ‖𝑋𝑖 − 𝑋𝑗‖; 𝛽0 is the
degree of attraction when 𝛾𝑖𝑗 is zero; 𝛾 is the absorption coefficient of
light intensity; 𝛼 is the step factor and it is a constant within [0,1];
rand is a random factor submitted to uniform distribution on [0,1];
𝛼 × (𝑟𝑎𝑛𝑑 − 0.5) is the perturbation term, which is used to avoid falling
into local optimization too early.

3.1. Limitation analysis of traditional firefly algorithm

The firefly algorithm mainly relies on the best individual in the field
to guide the optimization. Once the field is an empty set, the algorithm
will stagnate, which greatly reduces the optimization efficiency [44]. In
addition, the location update formula of the algorithm is too simple and
the search step is fixed, so that the algorithm cannot quickly optimize
the optimal solution [45]. The lesions of COVID-19 CT image can be
seen in left lung, right lung or both lungs. Aiming at the problems
of complex structure and uneven gray distribution of various tissues
in lung CT image, it is difficult to accurately segment and extract
lung parenchyma and lesions. The exponentially decreasing inertia
weight and random mechanism are proposed to make the segmentation
threshold change adaptively according to the detailed information of
lung lobes, trachea, bronchi and carina. The attraction term of firefly
algorithm is matched and switched by combining exponential distri-
bution and weber distribution, so as to obtain more accurate contour
boundaries of each target with relatively fewer iterations.

3.2. Improved firefly algorithm based on the best position of the population

The principle of the improved firefly algorithm based on the optimal
position of the population is shown in Fig. 5.
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The position update formula of the firefly 𝑖 under the influence by
the optimal position of the population is:

𝑋𝑖(𝑡 + 1) =𝑋𝑖(𝑡) + 𝛽0 × 𝑒−𝛾𝑅
2
𝑖𝑗 × (𝑋𝑗 (𝑡) −𝑋𝑖(𝑡))+

𝛽0 × 𝑒−𝛾𝑅
2
𝑖,𝑏𝑒𝑠𝑡 × (𝑋𝑏𝑒𝑠𝑡(𝑡) −𝑋𝑖(𝑡)) + 𝛼 × (𝑟𝑎𝑛𝑑 − 0.5)

(24)

Where, 𝛽0×𝑒−𝛾𝑅
2
𝑖,𝑏𝑒𝑠𝑡 ×(𝑋𝑏𝑒𝑠𝑡(𝑡)−𝑋𝑖(𝑡)) represents the update position

of firefly 𝑖 under the influence by the optimal position of the population.

3.3. Improved firefly algorithm based on random mechanism

The balance between detection and search ability is the core issue
of the firefly algorithm. The detection ability can be improved by the
random mechanism, which can make the algorithm jump out of the lo-
cal optimization with a greater probability to realize the global search.
The improvement of search ability depends on local information, such
as gradient, mode and the historical information in the process of the
algorithm.

Aiming at the problem of traditional firefly algorithm that is easy to
fall into local optimality, the attraction is improved by using exponen-
tial distribution in the position movement formula, so as to enhance the
global detection. In addition, the random item is improved by the step-
size monotonous decreasing mode to enhance the local mining ability
in the later stage of the algorithm. In this paper, random factor is added
to disturb the attraction coefficients and it enhances the ability to jump
out of the local optima. The expression of 𝛽 is:

𝛽 = 𝛽0𝑒
−𝛾𝛾2𝑖𝑗𝑅𝑖 (25)

Where, 𝑅𝑖 is the exponential distribution. If the step factor 𝛼 takes
a fixed value, the detection and search ability of the algorithm cannot
be effectively adjusted. In this paper, 𝛼 is decremented so that the
random function has a large random step at the beginning of iteration,
and the algorithm can search better in the global scope. The step size
is gradually reduced in the later stage of the iteration, so that the
algorithm can refine the search in the local scope. The expression of
𝛼 is:

𝛼 = 𝛼0𝛿
𝑡𝑆, 0 < 𝛿 < 1 (26)

Where, 𝛼0 is the initial random step size, 𝛿 is the cooling coefficient,
0<𝛿<1, 𝑆 is the step factor. In the early stage of the algorithm, the
larger step search is required to traverse a wide range of feasible
solutions. In the later stage of the algorithm, the position function
has slowly converged near the optimal solution. At this time, a small
step is required to search. According to this improved idea, it can
be found that in the tangent function tan(𝑥), when the independent
variable 𝑥 is 0.785, the value of function is 1, which decreases with
the decrease of the independent variable, and the reduction rate also
decreases gradually. Therefore, the tangent function is introduced into
the step factor, and the expression is:

𝑆 = tan(0.785 ×
𝑡𝑚𝑎𝑥 − 𝑡
𝑡𝑚𝑎𝑥

) ⋅ 𝑠0 (27)

Where, 𝑡𝑚𝑎𝑥 is the maximum number of iterations; 𝑡 is the maximum
umber of iterations; 𝑠0 is the fixed step parameter.

.4. Exponentially decreasing inertia weight

The inertia weight 𝑤(𝑡) is used to control the influence on the
urrent position by the previous position of the firefly, which adjusts
he global optimization. At the beginning, the inertia weight is large,
hich makes the relative attraction small. The global optimization is
nhanced and the local search ability is weakened. On the contrary,
ith the increase of the iteration, the inertia weight gradually de-

reases, and the local search ability is enhanced, so as to avoid repeated
scillation on the extreme point due to the excessive movement of
he firefly. According to the idea of linear decline, combined with the
7

s

andom and exponential inertia weight in particle swarm optimization,
n improved exponential decline inertia weight is proposed, and the
andom disturbance term is added for adjustment. The weight formula
s expressed as:

(𝑡) = 𝑤𝑚𝑖𝑛 ⋅ (
𝑤𝑚𝑎𝑥
𝑤𝑚𝑖𝑛

)1−
𝑡
𝑇 + 𝑟𝑎𝑛𝑑 ⋅𝑤𝑚𝑖𝑛 (28)

Where, 𝑡 is the current number of iteration, and 𝑤𝑚𝑎𝑥 = 0.8, 𝑤𝑚𝑖𝑛 =
0.2, 𝑇 = 150. rand is the random number between [0,1] to ensure 𝑤(𝑡) ∈
0, 1). In summary, the position movement formula of the improved
irefly algorithm is:

𝑖(𝑡 + 1) = 𝑤(𝑡)𝑋𝑖(𝑡) + 𝛽0 ⋅ 𝑒
−𝛾𝑅2

𝑖𝑗𝑅𝑖 ⋅ (𝑋𝑗 (𝑡) −𝑋𝑖(𝑡))+

0 ⋅ 𝑒
−𝛾𝑅2

𝑖,𝑏𝑒𝑠𝑡𝑅𝑖 ⋅ (𝑋𝑏𝑒𝑠𝑡(𝑡) −𝑋𝑖(𝑡)) + 𝛼0𝛿
𝑡𝑆 ⋅ (𝑟𝑎𝑛𝑑 − 0.5)

(29)

Where: 𝑋𝑖(𝑡+ 1) is the location of the firefly after updating; 𝑋𝑏𝑒𝑠𝑡(𝑡)
s the optimal individual of the current population.

.5. Time computational complexity of improved firefly algorithm

For the time computational complexity, 𝑂(𝑓 ) is set as the time
omputational complexity in each iteration of each firefly, then it can
e seen that the time computational complexity of the traditional firefly
lgorithm is 𝑂(𝑇 ⋅𝑁 ⋅𝑓 ). Where, 𝑇 is the maximum number of iteration
nd 𝑁 is the maximum population size. For the traditional firefly
lgorithm, the value of the inertia weight in each iteration remains
nchanged, so there is 𝑂(𝑓1) = 𝑂(𝑓2) = ⋯ = 𝑂(𝑓𝑇 ) = 𝑂(𝑓 ). For the
roposed firefly algorithm, the value of the inertia weight gradually
ecreases with the increase of iteration, so there is 𝑂(𝑓1) ≥ 𝑂(𝑓2) ≥
≥ 𝑂(𝑓𝑇 ). It can be seen from the above analysis that compared with

he traditional firefly algorithm, the proposed firefly algorithm greatly
educes the time computational complexity.

.6. Steps and flow chart of multi-threshold image segmentation method

The two-dimensional reciprocal cross entropy 𝐻(𝑡1, 𝑠1, 𝑡2, 𝑠2,… , 𝑡𝑛−1,
𝑛−1) is set as the objective function of the firefly algorithm, and the
ptimization result is the firefly position 𝑋( ̇𝑡1, ̇𝑠1, ̇𝑡2, ̇𝑠2,… , �̇�𝑛−1, �̇�𝑛−1)
ith the highest brightness. Where: 𝑘 is the number of threshold,
̇𝑡1, ̇𝑠1)( ̇𝑡2, ̇𝑠2)...(�̇�𝑛−1, �̇�𝑛−1) is the required threshold.

The steps of the two-dimensional reciprocal cross entropy multi-
hreshold combined with improved firefly algorithm are as following:

(1) The parameters of firefly algorithm are initialized, including
he number of fireflies 𝑛, the initial position 𝑋𝑖(𝑡𝑖1, 𝑠𝑖1, 𝑡𝑖2, 𝑠𝑖2,… , 𝑡𝑖(𝑛−1),
𝑖(𝑛−1)), the initial attraction 𝛽0, the light intensity absorption 𝛾, the
tep factor 𝛼0, and the maximum number of iteration 𝑇 , the fixed step
arameter 𝑠0. We use the horizontal test [46] to obtain the combination
ith the most occurrences of the optimal solution, then the number
f fireflies n and the maximum number of iteration 𝑇 are fixed. The
numeration method [47] is used to obtain the range of a series optimal
alue combinations for the initial attraction 𝛽0 ∈ [0, 2], the light
ntensity absorption 𝛾 ∈ [0.01, 10], the step factor 𝛼0 ∈ [0, 1], and the
ixed step parameter 𝑠0 ∈ [0, 0.8]. Finally, we analyze the results to
btain the optimal parameters of the improved firefly algorithm. 𝛽0 = 1,
0 = 0.5, 𝑛 = 100, 𝑇 = 150, 𝛾=1, 𝑠0 = 0.4;

(2) The two-dimensional reciprocal cross entropy function 𝐻𝑖(𝑡𝑖1,
𝑖1, 𝑡𝑖2, 𝑠𝑖2,… , 𝑡𝑖(𝑛−1), 𝑠𝑖(𝑛−1)) is calculated. We sort the value of objective
unction to obtain the position of the firefly with the largest brightness;

(3) We judge whether the maximum number of iteration 𝑇 is
eached. If it is reached, turn to Step.(4), otherwise turn to Step.(5);

(4) The position of the firefly with the highest brightness is output,
nd the calculated is used as the threshold to segment the image;

(5) The position of the firefly is updated according to Eq. (29),
andomly disturb the fireflies in the best position, increase the search
imes by 1, and turn to Step.(2) for the next search.

The flow chart is shown in Fig. 6. Taking early COVID-19 as an
xample, the CT image after multi-threshold image segmentation is
hown in Fig. 11(a).
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Fig. 6. The flow chart of two-dimensional reciprocal cross entropy multi-threshold combined with improved firefly algorithm for image segmentation.
4. Refinement segmentation of lung parenchyma

4.1. Removal of trachea and bronchus based on morphology

The lung parenchyma is more obvious after the initial segmentation
of CT image through the above optimal threshold iterative method,
but the presence of blood vessels and trachea in the image has a great
impact on the accurate segmentation of the lung area. Therefore, the
processed binary image is separated from the trachea adhering to the
lung parenchyma by mathematical morphology [48]. Then combined
with the hole filling algorithm to remove the lung trachea tree and
small-area lung parenchyma holes, the strel function expansion corro-
sion is used to remove the boundary irrelevant to the lung parenchyma
in the image and smooth the edge of the lung parenchyma, in order to
obtain a complete lung parenchyma template. Taking early COVID-19
as an example, the CT image after removal of the trachea and bronchi
is shown in Fig. 11(b).

4.2. Removal of bed board and elimination of holes based on closed
operation

It can be seen from the binary image of lung parenchyma that
there are a large number of holes inside the lung parenchyma and bed
shadow outside the lung parenchyma. Moreover, due to the existence of
X-ray pulse interference, there are many isolated noises in CT images.
Therefore, in order to improve the quality of image, the holes inside
the lung parenchyma are filled, the boundary of the lung parenchyma
is smoothed, and the shape and size of the lung parenchyma remain
unchanged. This paper proposes the closed operation of binary mor-
phology to further process the lung parenchyma image obtained in
Section 4.1.
8

The closed operation in binary morphology is defined as a mathe-
matical morphological operator that uses the same structure element
to perform the dilation and erosion operations on binary images suc-
cessively. Where, the structural elements are the basic operators in
binary morphology. Through the specific logical operation with the
surrounding area of each pixel in the lung parenchyma image, the
new value of each pixel is obtained. The structural elements include
circle, rectangle, diamond, straight line and other shapes. In view
of the advantages of isotropy and strong operability for the square
structural elements, the closed operation is carried out by using the
square structural elements.

According to the sequence of the closed operation, the lung
parenchyma image is expanded firstly. The expansion operation can
fill the holes in the lung parenchyma and smooth the boundary of
the lung parenchyma. Assuming that the lung parenchyma image is
𝐹 and the structural element is 𝐽 , the structural element 𝐽 is moved
sequentially on the image plane. When passing through each pixel, 𝐽 [𝑠]
has the following three states: (1)𝐽 [𝑠1] ⊆ 𝐹 ; (2)𝐽 [𝑠2] ⊆ 𝐹 𝑐 ; (3)𝐽 [𝑠3]∩𝐹 ≠
∅, 𝐽 [𝑠3] ∩ 𝐹 𝑐 ≠ ∅; as shown in Fig. 7.

The expansion operation corresponds to the third state above. 𝐽 [𝑠]
is related to part 𝐹 , and each pixel in 𝐹 is expanded into structural
element 𝐽 to obtain a new image, which can be described as:

𝐹 ⊕ 𝐽 = {𝑠|𝐽 [𝑠] ∩ 𝐹 ≠ ∅} (30)

The erosion operation can remove the isolated noise and restore
the size of lung parenchyma at the same time. The erosion operation
corresponds to the first state above, and 𝐽 [𝑆] is most correlated to 𝐹 .
The image after the erosion operation can be described as:

𝐹 ⊛ 𝐽 = {𝑠|𝐽 [𝑠] ⊆ 𝐹 } (31)

In summary, the image obtained after the closed operation is:

𝐶𝐿𝑂𝑆𝐸(𝐹 ) = (𝐹 ⊕ 𝐽 )⊛ 𝐽 (32)
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Fig. 7. Three possible states of 𝐽 [𝑠].

Taking early COVID-19 as an example, the CT image after removal
of bed board and elimination of holes is shown in Fig. 11(c).

4.3. Separation of the left and right lungs

Due to the complex structure of the two lung regions, and the
similar tissue gray levels or the influence of lung disease, it is difficult
to define the edges of the two lung regions, which will interfere with
the detection of lung disease in the later stage. Therefore, it is necessary
to separate the left and right lungs in the process of lung parenchyma
segmentation. In this paper, the two lung regions are separated by com-
bining the grayscale integral projection and scanning algorithm [49].
Firstly, whether there is adhesion between the left and right lungs is
judged, and each connected domain in the image is marked and then
its size in descending order is arranged. The ratio of the minimum and
maximum area of the pixel column coordinate connected domain is
recorded as 𝑆1, and the ratio of the minimum and maximum area of
the pixel row coordinate connected domain is recorded as 𝑆2. When
𝑆1 > 0.5 and 𝑆2 > 0.5, it is judged that the left and right lungs are
separated, otherwise, the left and right lungs are adhered. Secondly,
the position of the connection between the two lungs is determined
according to the gray scale integral projection feature of the image.
Finally, the two lung regions are made independent by the rule-based
row and column scanning. Taking early COVID-19 as an example, the
result of lung parenchyma separation is shown in Fig. 11(d).

4.4. The edge repair template of lung parenchyma

If the edge of the processed lung parenchyma template is com-
plete and smooth, it indicates that there is no nodule at the edge,
which does not affect the integrity of the lung parenchyma and it is
directly saved as a template. If the edge of the template is rough and
concave at this time, there may be neglected fuzzy problems such as
edema, inflammation or nodules. At this time, the template needs to
be repaired.

The convex hull algorithm [50] fails to achieve the desired ideal
effect when inpainting the lung parenchyma template of large area
lesions. The rolling ball method cannot accurately determine the size of
the defect when repairing the edge of the lung parenchyma template,
and it is difficult to accurately set the radius of the sphere. If the
radius is not selected properly, it is easy to have the problem of under
segmentation or over segmentation.

The Freeman chain code can provide sufficient information about
the target image and it is not affected by image noise. It represents
the boundary of the image by line segments of unit length and preset
direction. In this paper, the Freeman chain code and the difference of
9

Fig. 8. Freeman chain code (a)four-direction connection chain code; (b)eight-direction
connection chain .

Table 1
Correspondence between the chain code value of eight
neighborhood and the boundary coordinates (x, y).

x offset y offset The value of chain code

1 0 0
1 1 1
0 1 2
−1 1 3
−1 0 4
−1 −1 5
0 −1 6
1 −1 7

chain code are used to describe the concavity and convexity of the
boundary to find the defect position of the template. Firstly, the starting
position of the chain code needs to be determined and marked. For
each point on the boundary there is a chain code 𝐴(𝑖) that directs from
the preset point to that point, and the chain code 𝐴(𝑖1) directs to the
point next to the current point. In this paper, an edge repair algorithm
based on the combination of the eight-direction Freeman chain code
and the difference of triple chain code is proposed. This method has a
good repair effect on the loss of lung parenchyma edges, especially the
vascular depression, and it is not easily affected by noise. The Freeman
chain code is divided into eight-direction connection chain code and
four-direction connection chain code, as shown in Fig. 8.

The corresponding relationship between the chain code value and
the boundary coordinates (𝑥, 𝑦) when the eight-connection chain code
describes the boundary is shown in Table 1.

Rotating clockwise from the preset point to traverse the edges in
the image. The value of the chain code increases by 1 for every 45◦

rotation, and the difference 𝐷𝑖𝑓𝑓 (𝑖) of the chain code is calculated
by each point on the boundary. The threshold is set according to the
different characteristics of chain code. When 𝐷𝑖𝑓𝑓 (𝑖) < −1, the point
is convex. When 𝐷𝑖𝑓𝑓 (𝑖) > 2, the point is concave, and then the
concave boundary of the lung parenchyma is repaired according to
the convex and concave points. Ayerbe et al. [51] proposed Bresen-
ham straight line algorithm to repair the defects of lung parenchyma.
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Table 2
Comparison of TDRMFA with different methods for CT image
of early COVID-19.

Segmented method Dice Sensitivity IOU

PDEE 0.7732 0.7898 0.8113
PTEM 0.8214 0.8342 0.8643
SFTM 0.8543 0.8623 0.8932
TDRMFA 0.9221 0.9353 0.9632

Table 3
Comparison of TDRMFA with different methods for CT image
of early asymptomatic COVID-19.

Segmented method Dice Sensitivity IOU

PDEE 0.8037 0.8145 0.8544
PTEM 0.8465 0.8530 0.8865
SFTM 0.8748 0.8865 0.9134
TDRMFA 0.9346 0.9484 0.9783

Table 4
Comparison of TDRMFA with different methods for CT image
of resolution COVID-19.

Segmented method Dice Sensitivity IOU

PDEE 0.7992 0.8067 0.8488
PTEM 0.8591 0.8662 0.8974
SFTM 0.8856 0.8982 0.9274
TDRMFA 0.9284 0.9334 0.9675

Table 5
Comparison of TDRMFA with different methods for CT image
of adenovirus pneumonia.

Segmented method Dice Sensitivity IOU

PDEE 0.7994 0.8038 0.8453
PTEM 0.8365 0.8430 0.8865
SFTM 0.8784 0.8885 0.9164
TDRMFA 0.9374 0.9474 0.9765

Table 6
Comparison of TDRMFA with different methods for CT image
of staphylococcal pneumonia.

Segmented method Dice Sensitivity IOU

PDEE 0.7738 0.7819 0.8259
PTEM 0.8183 0.8274 0.8679
SFTM 0.8547 0.8683 0.8982
TDRMFA 0.9193 0.9243 0.9584

The repair effect is better for defects with small fissures in the lung
parenchyma, while the outline of the lung parenchyma is generally
curvilinear, which is not ideal for repairing large-area edge lesions. In
this paper, a connection method based on the quadratic Bezier curve
fitting interpolation is proposed. The primary Bezier curve is a line
segment connecting the beginning and the end points, such as the line
segment 𝑃0𝑃2 in Fig. 9, and its expression is:

𝐵(𝑡) = (1 − 𝑡)𝑃0 + 𝑡𝑃2, 𝑡 ∈ [0, 1] (33)

The quadratic Bezier curve is a curve segment drawn by three
points, and its expression is:

𝐵(𝑡) = (1 − 𝑡)2𝑃0 + 2𝑡(1 − 𝑡)𝑃1 + 𝑡2𝑃2, 𝑡 ∈ [0, 1] (34)

Among them, an interpolation curve is required between point 𝑃0
and point 𝑃2. 𝑃1 is the directional control point at a certain distance
from the midpoint of the line segment on the vertical bisector of the line
𝑃0𝑃2. The distance is the optimal fixed value selected through testing,
which can minimize the fitting interpolation error as much as possible.
Through these three points, the curve interpolated to the position of
the lung parenchyma will be drawn to complete the repair of lung
parenchyma. Bezier curve patching is shown in Fig. 9.
10
Fig. 9. Bezier curve interpolation defect .

The lung parenchyma template is repaired by Freeman chain code
combined with quadratic Bezier curve can make up for the under-
segmentation problem when repairing large-area defects with straight
lines. At the same time, it has flexible adjustment to better meet the
characteristics of lung parenchyma edge, which can achieve a good
repair effect. Taking early COVID-19 as an example, the edge repair
template of the lung parenchyma is shown in Fig. 11(e). Finally, the
template is multiplied with the lung CT image, which can preserve a
good effect of the preset ideal segmentation. It ensures the integrity of
the lung parenchyma and do a good work for the subsequent detection
of lung disease.

5. Analysis of experimental results

Aiming at the different kinds of COVID-19 CT images including
early COVID-19, early asymptomatic COVID-19, resolution COVID-19,
adenovirus pneumonia (suspected cases of COVID-19), staphylococcal
pneumonia (suspected cases of COVID-19) are tested by the Intel
E8200 CPU 2.5 GHz, RAM 8G, Matlab 2016a. The size of the image is
512 × 512, and the tested images and the golden standard segmented
images of the lung parenchyma by doctors are shown in Fig. 10.
The COVID-19 CT images tested in this paper are from COVID-19
CT segmentation dataset (https://medicalsegmentation.com/covid19/)
and LIDC-IDRI (https://paperswithcode.com/dataset/lidc-idri). Two-
dimensional entropy exhaustive segmentation(TDEE) [20], PSO two-
dimensional entropy multi-threshold segmentation(PTEM) [52], stan-
dard firefly two-dimensional entropy multi-threshold segmentation
(SFTM) [53], two-dimensional reciprocal cross entropy multi-threshold
combined with improved firefly algorithm(TDRMFA, paper method)
are used for simulation comparison tests.

The experimental results show that the fixed threshold and the
histogram threshold are easy to skip some areas adhered to the lung
wall, and the segmentation effect is not ideal. If the threshold is not
selected properly, it is easy to ignore the marginal nodules, and the
gray contrast is not obvious, so it is impossible to observe the lesions
comprehensively. The optimal threshold method proposed in this paper
can perform the initial segmentation of the lungs more accurately.
When the extracted lung parenchyma is repaired for defects, the convex
hull algorithm cannot achieve the expected ideal effect when repairing
the lung parenchyma template of large-area lesions. The rolling ball
method cannot accurately determine the size of the defect when re-
pairing the edge of the lung parenchyma template, and it is difficult
to accurately set the radius of the sphere. If the radius is not selected
properly, it is easy to have the problem of under segmentation or over
segmentation. This paper improves this problem by calculating the
Dice similarity coefficient (𝐷𝑆𝐶) and 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 of image segmentation
effect to verify the effectiveness of the experimental methods. The
Dice similarity coefficient can be obtained by measuring the overlap

https://medicalsegmentation.com/covid19/
https://paperswithcode.com/dataset/lidc-idri
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Fig. 10. Original COVID-19 CT images: (a)early COVID-19; (b)early asymptomatic COVID-19; (c)resolution COVID-19; (d)adenovirus pneumonia; (e)staphylococcal pneumonia;
Golden standard segmented images of the lung parenchyma by doctors: (a1)early COVID-19; (b1)early asymptomatic COVID-19; (c1)resolution COVID-19; (d1)adenovirus pneumonia;
(e1)staphylococcal pneumonia.
between the segmentation results of the paper method and the manual
segmentation results of experts, namely:

𝐷𝑆𝐶 =
2 × |𝑢 ∩ 𝑣|
|𝑢| + |𝑣|

(35)

Where, 𝑢 represents the segmentation result of this article, and 𝑣
represents the golden standard segmentation result by doctor.

The 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 is obtained by measuring the ratio of the segmenta-
tion results of the paper method and the expert manual segmentation
results to correctly segment the lung parenchyma area, namely:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
|𝑢 ∩ 𝑣|
|𝑢|

(36)

Where, 𝑢 represents the segmentation result of this article, and
𝑣 represents the golden standard segmentation result by doctor. The
improved segmentation method in this paper has better indicators for
the 𝐷𝑆𝐶 and the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦. The segmented lung parenchyma image
can fully and clearly show the lesions, which is helpful to improve the
accuracy and sensitivity of nodules detection. The extraction of lung
parenchyma for different kinds of COVID-19 CT images are shown in
Figs. 11–15.

This paper compares with the comparative methods and uses the
accuracy 𝐼𝑂𝑈 index to objectively evaluate the experimental results:

𝐼𝑂𝑈 =
𝑁11 +𝑁10

𝑁11 +𝑁10 +𝑁01 +𝑁00
(37)

Where, 𝑁11 represents the correctly segmented lung parenchyma
region. 𝑁10 represents the correctly segmented background region. 𝑁01
represents the incorrectly segmented lung parenchyma region and 𝑁00
represents the incorrectly segmented background region. The greater
the accuracy 𝐼𝑂𝑈 , the more accurate the image segmentation is and the
closer to the standard segmentation. The calculation results are shown
in Tables 2–6.

Aiming at the different kinds of COVID-19 CT images, diversity-
enhanced hybrid firefly algorithm (DeHFA) [54], uniform orthogonal
firefly algorithm (UOFA) [55], chaos optimization firefly algorithm
(COFA) [44], firefly algorithm based on the random mechanism and
exponentially decreasing inertia weight (FARMEDI, paper method) are
used for simulation comparison tests of segmentation parameters op-
timization. Moreover, aiming at the early COVID-19 CT image, we
use the meta-heuristic algorithms to optimize image segmentation,
including grasshopper optimization algorithm (GOA) [56], equilibrium
11
Table 7
Comparison of algorithm optimization performance.

CT image Algorithm Average Std Time
processing

Early COVID-19

DeHFA 0.2853 0.0203 3.33
UOFA 0.4135 0.0582 3.47
COFA 0.5309 0.0947 4.71
FARMEDI 0.0901 0.0056 2.74

Early asymptomatic COVID-19

DeHFA 0.3898 0.0106 3.56
UOFA 0.5435 0.0508 3.82
COFA 0.6140 0.0614 4.46
FARMEDI 0.0640 0.0043 2.69

Resolution COVID-19

DeHFA 0.3731 0.0421 3.34
UOFA 0.6945 0.0458 3.76
COFA 0.8018 0.0751 4.48
FARMEDI 0.0517 0.0089 2.76

Adenovirus pneumonia

DeHFA 0.2455 0.0116 3.46
UOFA 0.2508 0.0614 3.54
COFA 0.4335 0.0853 4.78
FARMEDI 0.0656 0.0034 2.82

Staphylococcal pneumonia

DeHFA 0.3889 0.0391 3.35
UOFA 0.5345 0.0407 3.43
COFA 0.7018 0.0818 4.65
FARMEDI 0.0642 0.0047 2.89

Early COVID-19

MPA 0.2738 0.0018 3.27
EOA 0.3949 0.0052 3.39
GOA 0.5543 0.0086 4.82
TFA 0.8632 0.0083 5.29
FARMEDI 0.0901 0.0056 2.74

Table 8
Comparison of TDRMFA with segmented SOTA methods for CT
image of early COVID-19.

Segmented method Dice Sensitivity IOU

Inf-Net 0.8494 0.8549 0.9254
Chain code-SVM 0.8519 0.8673 0.9372
CNN-Clustering 0.8626 0.8713 0.9443
MLT 0.8632 0.8784 0.9464
U-Net++ 0.8753 0.8814 0.9532
GAN-Unet 0.8786 0.8843 0.9536
TDRMFA 0.8872 0.9871 0.9667
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Fig. 11. CT image of early COVID-19 segmented by TDRMFA: (a)binarized segmentation; (b)removal of trachea and bronchus; (c)removal of bed board and elimination of holes;
(d)separation of the left and right lungs; (e)edge repair; (f)lung parenchyma segmentation. CT image of early COVID-19 segmented by SFTM: (a1)binarized segmentation; (b1)removal
of trachea and bronchus; (c1) removal of bed board and elimination of holes; (d1)separation of the left and right lungs; (e1)edge repair; (f1)lung parenchyma segmentation. CT
image of early COVID-19 segmented by PTEM: (a2) binarized segmentation; (b2)removal of trachea and bronchus; (c2)removal of bed board and elimination of holes; (d2)separation
of the left and right lungs; (e2)edge repair; (f1)lung parenchyma segmentation. CT image of early COVID-19 segmented by PDEE: (a3)binarized segmentation; (b3) removal of
trachea and bronchus; (c3)removal of bed board and elimination of holes; (d3)separation of the left and right lungs; (e3)edge repair; (f3)lung parenchyma segmentation.
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Fig. 12. CT image of early asymptomatic COVID-19 segmented by TDRMFA: (a)binarized segmentation; (b)removal of trachea and bronchus; (c)removal of bed board and
elimination of holes; (d)separation of the left and right lungs; (e)edge repair; (f)lung parenchyma segmentation. CT image of early asymptomatic COVID-19 segmented by SFTM:
(a1)binarized segmentation; (b1)removal of trachea and bronchus; (c1) removal of bed board and elimination of holes; (d1)separation of the left and right lungs; (e1)edge repair;
(f1)lung parenchyma segmentation. CT image of early asymptomatic COVID-19 segmented by PTEM: (a2)binarized segmentation; (b2)removal of trachea and bronchus; (c2)removal
of bed board and elimination of holes; (d2)separation of the left and right lungs; (e2)edge repair; (f1)lung parenchyma segmentation. CT image of early asymptomatic COVID-19
segmented by PDEE: (a3)binarized segmentation; (b3) removal of trachea and bronchus; (c3)removal of bed board and elimination of holes; (d3)separation of the left and right
lungs; (e3)edge repair; (f3)lung parenchyma segmentation.
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Fig. 13. CT image of resolution COVID-19 segmented by TDRMFA: (a)binarized segmentation; (b)removal of trachea and bronchus; (c)removal of bed board and elimination of holes;
(d)separation of the left and right lungs; (e)edge repair; (f)lung parenchyma segmentation. CT image of resolution COVID-19 segmented by SFTM: (a1)binarized segmentation;
(b1)removal of trachea and bronchus; (c1) removal of bed board and elimination of holes; (d1)separation of the left and right lungs; (e1)edge repair; (f1)lung parenchyma
segmentation. CT image of resolution COVID-19 segmented by PTEM: (a2)binarized segmentation; (b2)removal of trachea and bronchus; (c2)removal of bed board and elimination
of holes; (d2)separation of the left and right lungs; (e2)edge repair; (f1)lung parenchyma segmentation. CT image of resolution COVID-19 segmented by PDEE: (a3)binarized
segmentation; (b3) removal of trachea and bronchus; (c3)removal of bed board and elimination of holes; (d3)separation of the left and right lungs; (e3)edge repair; (f3)lung
parenchyma segmentation.
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Fig. 14. CT image of adenovirus pneumonia segmented by TDRMFA: (a)binarized segmentation; (b)removal of trachea and bronchus; (c)removal of bed board and elimination
of holes; (d)separation of the left and right lungs; (e)edge repair; (f)lung parenchyma segmentation. CT image of adenovirus pneumonia segmented by SFTM: (a1)binarized
segmentation; (b1)removal of trachea and bronchus; (c1) removal of bed board and elimination of holes; (d1)separation of the left and right lungs; (e1)edge repair; (f1)lung
parenchyma segmentation. CT image of adenovirus pneumonia segmented by PTEM: (a2)binarized segmentation; (b2)removal of trachea and bronchus; (c2)removal of bed board
and elimination of holes; (d2)separation of the left and right lungs; (e2)edge repair; (f1)lung parenchyma segmentation. CT image of adenovirus pneumonia segmented by PDEE:
(a3)binarized segmentation; (b3) removal of trachea and bronchus; (c3)removal of bed board and elimination of holes; (d3)separation of the left and right lungs; (e3)edge repair;
(f3)lung parenchyma segmentation.



Biomedical Signal Processing and Control 78 (2022) 103933

16

G. Wang et al.

Fig. 15. CT image of staphylococcal pneumonia segmented by TDRMFA: (a)binarized segmentation; (b)removal of trachea and bronchus; (c)removal of bed board and elimination
of holes; (d)separation of the left and right lungs; (e)edge repair; (f)lung parenchyma segmentation. CT image of staphylococcal pneumonia segmented by SFTM: (a1)binarized
segmentation; (b1)removal of trachea and bronchus; (c1) removal of bed board and elimination of holes; (d1)separation of the left and right lungs; (e1)edge repair; (f1)lung
parenchyma segmentation. CT image of staphylococcal pneumonia segmented by PTEM: (a2)binarized segmentation; (b2)removal of trachea and bronchus; (c2)removal of bed
board and elimination of holes; (d2)separation of the left and right lungs; (e2)edge repair; (f1)lung parenchyma segmentation. CT image of staphylococcal pneumonia segmented by
PDEE: (a3)binarized segmentation; (b3) removal of trachea and bronchus; (c3)removal of bed board and elimination of holes; (d3)separation of the left and right lungs; (e3)edge
repair; (f3)lung parenchyma segmentation.
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Fig. 16. Fitness evolution curve of segmented parameters optimization for different CT images: (a)Early COVID-19;(b)Early asymptomatic COVID-19;(c)Resolution
COVID-19;(d)Adenovirus pneumonia;(e)staphylococcal pneumonia;(f)Early COVID-19.
optimization algorithm (EOA) [57,58], marine predators algorithm
(MPA) [59,60] and traditional firefly algorithm (TFA). The fitness
evolution curve for different COVID-19 CT images are shown in Fig. 16.
The evaluation index of the optimization performance under different
methods are shown in Table 7.

It can be seen from Fig. 16 and Table 7 that with the increase
of the number of iterations, the standard deviation of the objective
function value is gradually reduced and the processing time is gradually
increased under different parameters optimization methods. Compared
with the different comparison methods, the value of average and stan-
dard deviation for ‘‘FARMEDI’’ is still the smallest, and the processing
time of ‘‘FARMEDI’’ is still the fastest. In conclusion, the paper method
(FARMEDI) significantly improves the segmentation effect for different
kinds of COVID-19 CT images of parameters optimization.

We compared the TDRMFA with 6 state-of-the-art approaches in-
cluding Inf-Net [61], Chain code-SVM [62], CNN-Clustering [63],
MLT [64], GAN-Unet [41], U-Net++ [65] to do segmentation simu-
lations on the CT image of early COVID-19, and further comparing and
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analyzing the Dice, Sensitivity and 𝐼𝑂𝑈 under different segmentation
methods. The comparative CT image segmentation simulations of early
COVID-19 are shown in Fig. 17. The evaluation index values are shown
in Table 8.

From the change trend of the data in Table 8, compared with the
comparative segmentation methods, TDRMFA has increased the value
of 𝐷𝑖𝑐𝑒 by about 0.0086, the value of 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 has been increased
by about 0.1028, the value of 𝐼𝑂𝑈 has been increased by about
0.0131. It can be seen that the segmentation effect for the CT image
of early COVID-19 under TDRMFA is the best. The early COVID-19 is
characterized by the small number of lesion and the density is low.
The TDRMFA method improves the segmentation accuracy for the CT
image of early COVID-19 and reduces the missed diagnosis for the early
lesions.
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Fig. 17. CT image of early COVID-19 (a)original CT image; (b)golden standard segmented image; (c)segmented by TDRMFA; (d)segmented by GAN-Unet; (e)segmented by U-Net++;
(g)segmented by MLT; (h)segmented by CNN-Clustering; (i)segmented by Chain code-SVM; (j)segmented by Inf-Net.
6. Conclusion

In view of the large computational and time-consuming problem
for lung parenchymal segmentation of COVID-19, two-dimensional re-
ciprocal cross entropy multi-threshold combined with improved firefly
algorithm is proposed. The reciprocal cross entropy proposed in this
paper solves the problem of the undefined and zero value of the
logarithmic function. A weighted fuzzy threshold segmentation based
on the spatial neighborhood information comprehensively considers the
gray value and the spatial neighborhood information of image pixels,
which improves the effect of image segmentation. In the process of
calculating the optimal multi-threshold, the improved firefly algorithm
is used to further improve the computational efficiency. The repair of
lung parenchyma defects by Freeman chain code and Bezier curve is
ideal, which can improve the accuracy of lung parenchyma segmenta-
tion and solve the problem of missed lesions. The experimental results
for different kinds of COVID-19 CT images show that compared with
the comparison methods, the performance of the paper method is the
best. It not only segments COVID-19 lung parenchyma more accurately
but also requires less running time. Thus, the time for doctors to
sketch COVID-19 lesions is reduced, and it realizes the purpose of fully
automatic segmentation of the COVID-19 lung parenchyma. However,
there is a certain degree of difference in the structural characteristics
18
of each person’s chest, so each lung parenchyma segmentation method
has a limitation of robustness. In the segmentation results of the paper
method, there is also a difference in segmentation accuracy for different
CT images, which is the direction that needs to be researched in the
future.
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