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While established methods for determining physiologic exercise thresholds and intensity
distribution such as gas exchange or lactate testing are appropriate for the laboratory
setting, they are not easily obtainable for most participants. Data over the past two years
has indicated that the short-term scaling exponent alpha1 of Detrended Fluctuation
Analysis (DFA a1), a heart rate variability (HRV) index representing the degree of fractal
correlation properties of the cardiac beat sequence, shows promise as an alternative for
exercise load assessment. Unlike conventional HRV indexes, it possesses a dynamic
range throughout all intensity zones and does not require prior calibration with an
incremental exercise test. A DFA a1 value of 0.75, reflecting values midway between
well correlated fractal patterns and uncorrelated behavior, has been shown to be
associated with the aerobic threshold in elite, recreational and cardiac disease
populations and termed the heart rate variability threshold (HRVT). Further loss of
fractal correlation properties indicative of random beat patterns, signifying an
autonomic state of unsustainability (DFA a1 of 0.5), may be associated with that of the
anaerobic threshold. There is minimal bias in DFA a1 induced by common artifact
correction methods at levels below 3% and negligible change in HRVT even at levels
of 6%. DFA a1 has also shown value for exercise load management in situations where
standard intensity targets can be skewed such as eccentric cycling. Currently, several web
sites and smartphone apps have been developed to track DFA a1 in retrospect or in real-
time, making field assessment of physiologic exercise thresholds and internal load
assessment practical. Although of value when viewed in isolation, DFA a1 tracking in
combination with non-autonomic markers such as power/pace, open intriguing
possibilities regarding athlete durability, identification of endurance exercise fatigue and
optimization of daily training guidance.
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INTRODUCTION

In an attempt to determine physiologic thresholds for exercise
intensity distribution, various methods have been employed such
as gas exchange transitions, blood lactate and heart rate (HR)
variability (HRV) kinetics (Meyer et al., 2005; Michael et al., 2017;
Jamnick et al., 2020; Poole et al., 2021). The first boundary
transition has been described as the aerobic threshold (AeT)
represented by the first ventilatory (VT1) or blood lactate (LT1)
thresholds (Meyer et al., 2005; Faude, 2009). The second
boundary has been referred to as an anaerobic threshold
(AnT) represented by the second ventilatory (VT2) or blood
lactate (LT2) thresholds (Meyer et al., 2005; Keir et al., 2015).
Threshold detection derived from HRV has been extensively
investigated over the past 25 years since HR monitoring is a
relatively straightforward, non-invasive, low cost option available
to the general public (Michael et al., 2017). However, despite early
enthusiasm, conventional HRV indexes have not been widely
embraced for threshold or intensity assessment by either
researchers, athletic monitoring device vendors, coaches or
athletes. Part of this reluctance stems from two key issues.
Traditional HRV indexes such as time domain parameters like
standard deviation of corrected RR intervals (SDNN) or the
standard deviation 1 from Poincaré plot analysis (SD1) do
change during dynamic exercise but approach a nadir at
around the AeT (Gronwald et al., 2020). Therefore, to
determine the AeT, a formal incremental exercise test to near
exhaustion is needed to demonstrate that nadir. Perhaps the more
troublesome issue concerning a comprehensive intensity
classification framework based on HRV is one of index
dynamic range during endurance exercise. Since a nadir
occurs at the AeT, there is no further information to be
gained from observation past this region, making them poorly
suited for spanning the full intensity range of exercise.
Conversely, a dimensionless index of HRV based on fractal
correlation properties (short-term scaling exponent alpha1 of
Detrended Fluctuation Analysis: DFA a1) has been shown to have
a wide dynamic range encompassing the low, moderate and high
exercise intensity domains (Gronwald et al., 2020; Gronwald and
Hoos 2020). Given these properties, a proposal was made to
utilize this index as a biomarker for exercise intensity distribution
including discrete numerical values that correspond to
physiologic threshold boundaries (Gronwald et al., 2020).
Since that hypothesis was made, some key findings have been
published both supporting and expanding on this promising
concept. This update will summarize progress to date and
explore areas that still need further investigation.

WHAT ARE FRACTAL CORRELATION
PROPERTIES OF HRV?

Fractals are considered complex structures that possess self-
similarity at various degrees of magnification. Natural spatial
examples of fractal structures include coastlines, snowflakes or
tree branchings. No matter the scale or magnification, the
essential underlying pattern is similar (Eke et al., 2002).

Fractal behavior of the cardiac beat series is characterized as
degrees of self-similarity of the beat sequence over different time
scales (Goldberger et al., 2002). DFA a1 is based on these fractal
cardiac beat arrangements which can also be embodied as
“correlation properties” of the pattern over short time spans.
To better understand the concept of correlation properties,
analogies to a random walk have been used (Hardstone et al.,
2012). For example, during a random walk, at each next step, the
walker can choose to go either right or left. If the choice the walker
makes is not random but based on the previous sequence (series
of right or left decisions), the pattern is described as being well
“correlated” (DFA a1 near 1.0), since the future pattern is based
on the past history. Values above 1.0 denote progressively higher
degrees of correlation. But, if each new step is taken with equal,
random chances of right or left, an “uncorrelated” pattern exists
(DFA a1 of 0.5). During exercise it has been observed that at low
intensity, DFA a1 values are usually in a correlated range near or
above 1.0 (Gronwald et al., 2020; Gronwald and Hoos, 2020). As
intensity rises, DFA a1 declines, passing 0.75 at moderate loads,
continuing to drop further past the 0.5 range with increasing
exercise intensity (uncorrelated random behavior of interbeat
pattern), finally to drop below 0.5 (representing an anticorrelated
range) at the very highest work rates. Anticorrelated behavior
refers to a pattern that tends to bring the walker back to midline
and can be viewed as an immediate self-correction mechanism
associated with the potential failure of homeodynamic regulation
and can only be tolerated for short time spans (Karasik et al.,
2002). These correlation patterns are felt to be due to changes in
sinoatrial pacemaker function under control by the balance
between the reciprocal branches of the autonomic nervous
system (ANS) (Michael et al., 2017). During exercise there is
both a withdrawal of parasympathetic and enhancement of
sympathetic activity resulting in a change of HRV including
DFA a1 (White and Raven, 2014). Therefore, alterations in
DFA a1 provide a view of autonomic balance from rest to
severe intensity domains. This autonomic based index of
systemic internal load contrasts with established markers of
intensity that depend on physiologic subsystems such as
cardiorespiratory variables (VO2, VCO2), chemical moieties
(lactate) and measures of external load (speed/power).

DO SPECIFIC VALUES OF DFA A1
CORRESPOND TO CONVENTIONAL
PHYSIOLOGIC EXERCISE THRESHOLDS?
Previous studies exploring DFA a1 behavior through progressive
increases in exercise intensity have shown that at workloads near
the AeT, index values fall midway between well correlated (1.0)
and uncorrelated states (0.5) (Gronwald et al., 2020).
Explanations for the association of physiologic breakpoints
with correlation properties of HRV can revolve around
practical observations (empirically derived from observing
DFA a1 vs. VT1/LT1 during exercise ramp or stage studies)
but can also be understood from a network physiology standpoint
as an integrated concept of ANS regulation during endurance
exercise (Balagué et al., 2020; Gronwald et al., 2020). Network
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physiology encompasses multiple neuromuscular, biochemical,
peripheral and central nervous system inputs leading to an overall
concept of “organismic demand” that is reflected in correlation
properties of HRV and consequently in the response of DFA a1.
Therefore, it was conjectured that a specific value of DFA a1 may
correspond to the AeT, which would be helpful in sports and
exercise science given the importance of this training boundary
for intensity distribution models in many fields of application
(Gronwald et al., 2020). Whether the desired program is
polarized, pyramidal or threshold in type, identification of the
low intensity boundary would be necessary (Seiler and Kjerland,
2006; Esteve-Lanao et al., 2007; Stöggl and Sperlich, 2015, 2019;
Bourgois et al., 2019). With this objective in mind, the question of
whether a value of DFA a1 between correlated and uncorrelated
corresponds to the VT1 was evaluated in a group of male
recreational runners (Rogers et al., 2021a). Results indicated
that reaching a DFA a1 of 0.75 during an incremental
treadmill test was associated with the VT1 and termed the
heart rate variability threshold (HRVT). While this finding
was encouraging, widespread application as an AeT boundary
requires support in many demographic groups. Therefore, a very
different class of participant, comprising male cardiac disease
patients (congestive heart failure, stable coronary disease) was
studied using an incremental cycling ramp protocol (Rogers et al.,
2021f). During the cycling test the HR and VO2 attained at the
VT1 was strongly associated with the HR and VO2 at the HRVT.
Finally, in a contrasting population, the HR and cycling power at
the HRVT was associated with the HR and cycling power derived
from the LT1 in a group of elite triathletes (7 male, 2 female)
performing an incremental cycling stage protocol (Rogers et al.,
2022a). Although female data on DFA a1 behavior is sparse, the 2
female participants in this group had typical DFA a1 responses to
incremental cycling exercise. In addition, it was also hypothesized
that another physiologic breakpoint, the AnT, could occur at a
DFA a1 of 0.5 (Rogers et al., 2021c). This value is associated with
the transition from an uncorrelated to an anticorrelated pattern
in HR time series. Since the anticorrelated state is felt to be an
autonomic response indicating organismic destabilization (Seely
and Macklem, 2004), it could correspond to a parallel
phenomenon represented by a loss of cardiorespiratory
sustainability. In support of this belief, study results from a
recreational runner cohort showed that reaching a DFA a1 of
0.5 was associated with that of the VT2 and termed as the second
heart rate variability threshold (HRVT2) (Rogers et al., 2021c).
Most recently, a study done byMateo-March et al. (2022) showed
good agreement and correlation with both the HRVT and
HRVT2 with lactate derived first and second thresholds in a
large group of male professional cycling participants. Although
the LT2 to HRVT2 correlation was high (r = 0.93 for cycling
power, r = 0.71 for HR) there was a statistical difference in mean
values (bias of 8 W or 4 bpm). As in Rogers et al. (2021c), the
limits of agreement for the HRVT2 were relatively wide. Further
studies should examine this more closely and attempts made to
improve individual variations.

Although prior studies indicated that DFA a1 declines as
external exercise load rises, none had previously attempted to
establish a distinct value corresponding to the AeT or AnT. Part

of this difficulty relates to the method of DFA a1 plotting used
during incremental testing. In previous work, DFA a1 behavior
was routinely assessed by using non-overlapping measurement
windows (of 1–5 min) often at the end of each intensity stage or
condition of exercise (Gronwald andHoos, 2020). Therefore, if an
incremental exercise test consisted of 9 stages of 30W per stage
(10 w/min rise), only 9 DFA a1 data points would be available. To
better detect a more precise pattern in DFA a1 behavior, a
different method of DFA a1 plotting was utilized. This
technique used fixed measuring windows of 2 min but did a
rolling, ongoing recalculation every 5 s of activity (Kubios HRV
Premium software “time varying” option: windowwidth of 2 min,
grid interval of 5 s). The 2-min time windowing was chosen based
on the calculations by Chen et al. (2002) to achieve a sufficient
number of RR data points to achieve DFA a1 validity. By using
this method, a nearly straight-lined drop of DFA a1 from values
of approximately 1.0 to 0.5 became apparent (Rogers et al.,
2021a), providing an opportunity for simple linear
interpolation of the corresponding HR or time plotted against
DFA a1 of 0.75 (see Figure 1). Although not extensively studied,
it also appears that constant power cycling intervals with 2-min
measurement windows may also be used for HRVT
determination (Gronwald et al., 2021). Another group looking
at DFA a1 behavior in recreational runners using a 5-min
measurement window showed similar correspondence to
physiologic exercise threshold results during treadmill intervals
with DFA a1 values of 0.68 ± 0.28 for the VT1 and 0.48 ± 0.11 for
the VT2 (Naranjo-Orellana et al., 2021). Thus, DFA a1 values of
0.75 and 0.5 may represent a comprehensive solution to accepted
physiologic exercise boundaries across a wide spectrum of
individuals. In terms of individual participant agreement
between HRV and gas exchange/blood lactate derived
thresholds, they appear to be of similar magnitude to that of
other comparisons of threshold approaches such as blood lactate
versus ventilatory parameters (Pallarés et al., 2016), assessment of
gas exchange techniques for VT1 determination (Gaskill et al.,
2001), comparison of the maximal lactate steady state (MLSS)
and functional threshold power (FTP) (Klitzke Borszcz et al.,
2019) as well as the muscle oxygen desaturation breakpoint
association to the MLSS (Bellotti et al., 2013). Despite the
validation with established threshold concepts, it should be
kept in mind that the present systemic approach is based on
ANS regulation that does not necessarily match perfectly with
other concepts based on subsystem parameters.

DFA A1 INTERNAL LOAD ASSESSMENT
BEYOND PHYSIOLOGIC EXERCISE
THRESHOLD TESTING
Although exercise threshold awareness is of great importance,
status of ANS regulation over time may provide key information
about the level of internal load especially when the HR vs. VO2 or
HR vs. power relationship is skewed. This is best exemplified by
the process of eccentric cycling (Barreto et al., 2021). This activity
is based on actively resisting motorized bicycle pedal motion
moving in a reverse direction, thereby applying muscular force in
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an eccentric fashion. During eccentric cycling at the sameVO2, an
individual is usually able to pedal at 3x the power as conventional
cycling. Therefore, at equivalent metabolic cost, eccentric cycling
can be performed at much higher power levels, resulting in
enhancement of muscular size, strength, and oxidative
properties (LaStayo et al., 2000). This is particularly

advantageous in groups with low cardiovascular fitness who
would benefit from improved functional muscle mass such as
those with heart failure or pulmonary disease (Gremeaux et al.,
2010). Although there appears to be distinct benefits to eccentric
training, assessing intensity distribution is problematic. This is
due to both the power and HR discrepancy measured from

FIGURE 1 | (A) DFA a1 vs. HR of a 26-year-old male runner with a VO2MAX of 72 ml/kg/min, HR at VT1 of 183 bpm and HR of 192 bpm at VT2 performing an
incremental treadmill ramp test, including a qualitative description of the signal pattern; data recorded with an ECG (MP36; Biopac Systems Ltd., Essen, Germany) (data
from Rogers et al., 2021a; Rogers et al., 2021c). Data processed in Kubios HRV Premium software (Version 3.5) using automatic correction method (artifact percentage:
< 5%). Shading indicates a 3 zone exercise intensity model defined by DFA a1 thresholds. (B) DFA a1 vs. HR of three participants during incremental exercise
ramps (data from Rogers et al., 2021f; Rogers et al., 2022a; Rogers et al., 2021a respectively). Data processed in Kubios HRV Premium software (Version 3.5) using
automatic correction method (artifact percentage: < 5%). Red circle: 59-year-old male with stable coronary artery disease (CAD), beta blocker usage and a VO2MAX of
25 ml/kg/min, HR at VT1 of 83 bpm and HR at VT2 of 109 bpmperforming an incremental cycling ramp test; data recordedwith an ECG (VISTAHolter NOVACOR, Rueil,
Malmaison, France). Blue circle: 23-year-old female triathlete with a VO2MAX of 60 ml/kg/min, HR at LT1 of 154 bpm and HR at LT2 of 165 bpm performing an
incremental cycling stage test; data recorded with Polar H10 chest strap (Polar Electro Oy, Kempele, Finland). Green circle: 19-year-old male runner with a VO2MAX of
58 ml/kg/min, HR at VT1 of 167 bpm and HR at VT2 of 179 bpm performing an incremental treadmill ramp test; data recorded with an ECG (MP36; Biopac Systems
Ltd., Essen, Germany).
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conventional physiologic exercise thresholds compared to those
determined by concentric cycle testing (Barreto et al., 2021). HR
is usually higher at equivalent VO2 in eccentric compared to
concentric cycling possibly associated with a reduction in cardiac
stroke volume (Ritter et al., 2019). Additionally, many of the ideal
candidates for eccentric training have cardiac disease and may be
on beta adrenergic blocking medication, further complicating
conventional HR targets. An initial exploration of DFA a1
behavior during prolonged low intensity unaccustomed
eccentric cycling indicated that some participants had major
suppression of DFA a1 into the anticorrelated range associated
with substantial autonomic perturbation (Rogers et al., 2021d).
Therefore, in exercise types that do not conform to standard
exercise intensity models, DFA a1 could provide a measure of
internal load and safety in “at risk” populations.

CAN DFA A1 BE USED AS AN INDEX OF
FATIGUE, DAILY TRAINING GUIDANCE OR
DURABILITY?

DFA a1 as an Index of Endurance Exercise
Fatigue and Daily Directed Training
Though recognized measures of endurance exercise induced fatigue
have been explored, none are of practical value while in the midst of
an exercise session or race. There are also questions regarding the
validity of heart rate drift as a sign of fatigue during exercise
(Maunder et al., 2021). HR drift appears to be a complex
phenomenon (Souissi et al., 2021) that can normalize or even
reverse with very long endurance efforts (Mattsson et al., 2011).
Established performance indices or biomarkers such as counter
movement jump (CMJ) height, running economy, muscle
enzyme elevation like creatine phosphokinase (CPK), salivary
hormones, markers of substrate availability, blood lactate
concentration and cortical activity (Jastrzębski et al., 2015;
Knechtle and Nikolaidis, 2018; Martínez-Navarro et al., 2019; Wu
et al., 2019) aremainly used after the activity, during interval sessions
or as monitoring tools at periodic times during standardized rest
conditions. While regular HRV monitoring at rest has been
proposed as a means to prevent functional overreaching and
assess baseline autonomic balance (Stanley et al., 2013), no HRV
index has been shown to have the ability to demonstrate fatigue
while performing exercise. Since DFA a1 possesses dynamic range
through all exercise intensity zones, a divergence between an
indicator of autonomic status (e.g., DFA a1) and measures of
external load (e.g., power/pace) could potentially be used as an
indication of fatigue while still performing the activity. For instance,
if the DFA a1 is usually 0.75 at a pace representing the AeT in a well-
rested individual, would it be different after lengthy endurance
exercise? To help answer this question an examination of
running economy, HR, CMJ and DFA a1 in a group of
experienced ultramarathon participants was explored before and
after a 6-h trail based run (Rogers et al., 2021e). Seven athletes
performed a 5-min treadmill test (at or below VT1 intensity) before
and after the 6-h session. Results showed a significant DFA a1
decline from baseline after running for 6 h but withoutmajor change
in HR or running economy. Additionally, mean DFA a1 in the post

run group was 0.32, signifying an anticorrelated value seen with the
highest intensity exercise domains despite a pace below the AeT. The
fatigued state was confirmed by showing a significant impairment in
CMJ height after the 6-h run. Interestingly, noHR change was noted
in this study, similar to findings of Mattsson et al. (2011). Therefore,
observation of inappropriately suppressed DFA a1 at an exercise
intensity previously shown to be associated with well correlated
values, can be potentially viewed as an autonomic indicator of
fatigue.

In a monitoring purpose the usage of DFA a1 may help inform
an athlete about their recovery from previous training sessions. It
has become commonplace for individuals to monitor and track
resting HRV as a method to direct daily exercise intensity and
volume (Granero-Gallegos et al., 2020; Düking et al., 2021).
Unfortunately, resting HRV requires a regular day-to-day
monitoring routine including standardization (e.g., time of
day, nutrition; Bellenger et al., 2016) and logistically may not
fit into an irregular schedule. As resting HRV is a reflection of
autonomic balance post exercise (Seiler et al., 2007), the
observation of DFA a1 early in the upcoming exercise session
could also provide similar clues. In other words, DFA a1 relative
to power/pace could provide insight into current systemic
recovery status while still in a low intensity warm-up stage. If
relative suppression of DFA a1 is seen at a low exercise intensity
previously associated with well correlated fractal patterns, it can
be interpreted as signifying inappropriate autonomic balance.
With this in mind, it is also important to realize that DFA a1
based physiologic exercise threshold testing performed in a
fatigued, overreached or ill individual may not be similar to
testing when healthy and well rested.

Durability Assessment Using DFA a1 With
Measures of External Exercise Load
Extrapolation of the observation above could also lead to usage of
DFA a1 as amarker of both “exercise durability” and as amethod for
daily decisions about “training readiness”. In a recent publication,
athlete “durability” was described as “the time of onset and
magnitude of deterioration in physiological-profiling
characteristics over time during prolonged exercise” (Maunder
et al., 2021). In other words, durability is an assessment of fatigue
related reduction in performance, as opposed to standard measures
of athletic fitness such as VO2MAX ormaximal lactate steady state. To
assess durability, quantifying the starting point and degree of
performance decline due to fatigue is needed. Leveraging DFA a1
as an index of overall “organismic demand” in conjunction with
simultaneous measures of external exercise load could help assess
this performance decline from an ANS perspective. In this context,
DFA a1 would reflect changes/deterioration in autonomic balance
seen at a particular pace/power during exercise. Since DFA a1 values
span the spectrum of exercise intensity, the assessment of autonomic
imbalance can be made whether the internal load condition is high
or low. An example of this is shown in Figure 2A where DFA a1 is
markedly suppressed at a pace well below the VT1 after the
aforementioned 6-h run without changes in HR. In a second
example (Figure 2B), there was no major change in DFA a1
behavior during incremental cycling exercise before and after a 2-
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h session performed at 65% of the LT1 power in a former Olympic
triathlete (adapted from Gronwald et al., 2021). In the last example
(Figure 2C), DFA a1 shows downward drift at an intensity just
below the VT1 during a 15 km cycling session with stable HR in a
recreational athlete. These three cases demonstrate the potential of
DFA a1 to serve as an independent and systemic marker of fatigue
and durability. The former Olympic triathlete showed no sign of
DFA a1 “deterioration” after 2 h cycling at a low intensity, however

the recreational athlete had decliningDFA a1 at a stable power below
the AeT, illustrating the potential interactions of inherent fitness
level and external load over time.

In future studies looking at DFA a1 behavior at low to moderate
intensities over longer time spans, incorporation of multipoint
(rolling) averaging or longer measuring windows may lead to
better comparative insights. Additionally, it will be important to
examine the day-to-day variation and reproducibility of the DFA a1

FIGURE 2 | (A) Analysis of DFA a1 and HR of a 22-year-old male participant with a VO2MAX of 74 ml/kg/min during a 5-min treadmill test at 65% of VT1 (VO2) before
and immediately following a 6-h continuous trail run (data adapted from Rogers et al., 2021e). (B) Analysis of DFA a1, power and HR of a 41-year-old former Olympic
male triathlete with a VO2MAX of 65 ml/kg/min performing 6-min progressive cycling intervals of 100, 130, 160, 190, 220 W before and immediately after 2 h of
continuous cycling exercise at 65% LT1 power (adapted from Gronwald et al., 2021). (C) Analysis of DFA a1 and HR of a 48-year-old male participant with a
VO2MAX of 46 ml/kg/min during 15 km cycling exercise at 90% of VT1 (VO2) (unpublished data). All data recorded with a Polar H10 chest belt (Polar Electro Oy, Kempele,
Finland) and analyzed with Kubios HRV Premium software Version 3.5 (“time varying” option: window width of 2 min, grid interval of 5 s); lines represent 4 points moving
average.
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versus external load relationship to determine what degree of
precision can be expected for athletic assessments involving
fatigue and durability.

LIMITATIONS AND PITFALLS

Effects of Artifact Correction
Although the state of research related to DFA a1 and endurance
exercise is encouraging, there are still potential limitations for this
approach. Both the common occurrence of missed beat artifact
and possible RR recording device bias could lead to erroneous
DFA a1 values. Previous studies looking at missed beat artifact
correction bias indicated variable effects on DFA a1 and none
examined how HRV based exercise thresholds could be changed
with increasing artifact presence (Stapelberg et al., 2018). In
addition, the popular software Kubios HRV has two distinct
varieties of artifact correction methodology (automatic and
threshold artifact correction; Lipponen and Tarvainen, 2019),
whose potential influence with respect to DFA a1 calculation or
HRVT determination should be evaluated. To better understand
these issues, we examined the effect of introducing progressive
amounts of dropped signal artifact (by randomly deleting QRS
complexes) to induce levels of 1, 3 and 6% artifact in otherwise
ideal ECG tracings (Rogers et al., 2021b). Both Kubios automatic
and medium threshold artifact correction methods were
evaluated for bias. A negligible amount of bias was produced
by 1 and 3% artifact correction with both methods. A larger
amount of proportional bias (positive bias at low DFA a1,
negative bias at high DFA a1) was seen with the threshold
correction method at the 6% artifact level, rising to a
maximum of 19% bias at very low, anticorrelated values of
DFA a1. Fortunately, despite the varying degrees of bias seen,
the HR at the HRVT did not differ between control (no artifacts)
and any of the artifact groups or correction methods by more
than 1 bpm. This is certainly reassuring regarding practical usage
of HRV based exercise threshold determination and other fields
of application.

Recording Device Bias
Another aspect of the mentioned study about artefact correction
(Rogers et al., 2021b) addressed whether the HRVT calculated
from ECG was equivalent to the HRVT obtained by a chest belt
(Polar H7) worn simultaneously. There was a small degree of bias
at HRVT seen with the Polar H7, 4 bpm lower than that of the
ECG. Several possibilities exist as to why there may be differences
between devices. DFA a1 is a measure of RR related fractal
correlation properties and therefore, specific patterns in the
HR time series (Gronwald et al., 2020). Hence, a loss of RR
resolution may lead to a failure to discern these patterns, leading
to mistaken measures of fractal correlation properties. In support
of this, a reduction in R peak detection precision has been shown
to affect DFA a1 determination (Cassirame et al., 2019).
According to Polar documentation, the R peak detection
precision was enhanced in a next generation device, the Polar
H10, implying that there was room for improvement in this
property (Polar, 2019).

ECG and Chest Belt Sensor Placement
In addition to a purely device based lack of precision, RR
measurement may also depend on which particular ECG lead
is chosen for analysis. In an intriguing study, significant
variation in both RR measurement and conventional HRV
indexes was seen depending on ECG lead selection (Jeyhani
et al., 2019). After searching for standards regarding device
validation studies for RR interval detection, there appears to be
a lack of consensus on ECG lead selection as to what
constitutes the “gold standard” (Task Force, 1996; Sassi
et al., 2015; Dobbs et al., 2019). Chest belt recordings are
most similar to ECG lead 2 (Jeyhani et al., 2019), but certainly
are not identical. Although this has not been examined for
DFA a1, an example may shed light on this issue (see Figure 3).
Depending on the particular ECG lead analyzed, slightly
different DFA a1 values but only minimal differences in
HRVT determination can be seen (based on DFA a1
crossing 0.75). It is also possible that even with equivalent
monitoring precision and R peak detection, changing sensor
pad placement can alter DFA a1 measurement to a variable
degree. This is apparent in Figure 3B where there is some
divergence in data points between ECG lead 2 and V3 and both
chest strap devices. This dissimilarity may stem from person to
person variation in the cardiac axis, leading to slight ECG
waveform changes depending on the signal sampling location
(Jeyhani et al., 2019). Further study into this subject may help
optimize DFA a1 measurement.

Other Factors Affecting DFA a1 Behavior
From a network physiology standpoint, we must also keep in
mind that DFA a1 is a reflection of net ANS activity and
“organismic demand” of the systemic internal load. Therefore,
changes in ambient temperature, fraction of inspired oxygen,
intentional change of breathing frequency, hydration,
nutritional status, and systemic illness can all play a role in
modulating DFA a1 behavior. Lastly, though ANS balance
appears to be the major determinant of DFA a1 behavior (Silva
et al., 2015), locomotor-respiratory and cardiac coupling
mechanisms and other non-neural mechanisms may also
play a part (Persson, 1996; Qu et al., 2014). Finally, a major
requisite of using pre-defined values of DFA a1 as a marker of
exercise intensity is the need for uniform HRV software
methodology in its calculation. One should also not expect
exact similarity of results if different preprocessing methods
from Kubios HRV are used for calculations (Voss et al., 2015).

NEW APPLICATIONS FOR DFA A1
COMPUTATION AND REAL-TIME DISPLAY

While DFA a1 is an appealing physiologic biomarker, important
factors such as accurate, low cost calculation and simplified data
display are needed for widespread consumer usage. Over the past
year, several web and smartphone applications have been developed
to display DFA a1 independently of analysis software such as Kubios
HRV. Websites such as “Runalyze.com” and “AIEndurance.com”
utilize similar preprocessing (smoothness priors detrending), artifact
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correction (threshold approach) and time varying DFA a1
calculation methodology as Kubios HRV Premium for
retrospective session analysis of DFA a1. Standard Garmin.fit files
can be uploaded for analysis with estimation of HRVT based on
linear regression using time varying computation of power/HR and
DFA a1. The AIEndurance platform also tracks previous warm-up
session DFA a1 to power relationships to estimate “readiness to
train” as well as overall session deterioration in DFA a1 per unit
power for measures of “durability”. Also of note is the availability of
low cost smartphone apps that can process heart ratemonitor data in
real-time, providing a live view of DFA a1 status during exercise
activities. A previous report described the use of the smartphone app
“HRV Logger” (Android and iOS available) in both threshold

determination and implementation of a polarized session
program in a former Olympic triathlete (Gronwald et al., 2021).
This particular application displays DFA a1 every 2 min sequentially
without rolling window recomputation. A newer app called
“Fatmaxxer” (Android available, https://github.com/IanPeake/
FatMaxxer) enhances DFA a1 measurement capabilities even
further. It includes features present in Kubios HRV Premium
such as similar preprocessing (smoothness prior detrending),
threshold correction and recalculation of DFA a1 e.g., every 5 s
using 2-min rolling windows (time varying analysis: window width
of 2 min, grid interval of 5 s). Lastly, “alphaHRV” aDFA a1 data field
for Garmin devices (watches and cycling head units) is available in
beta testing. It reports DFA a1 along with artifact percentage every

FIGURE 3 | Plot of DFA a1 over time during the course of an incremental cycling ramp test until voluntary exhaustion, including 3 min of warm-up at 50W and 5 min
cool-down of unloaded pedalling (dashed lines mark the start of the incremental test and voluntary exhaustion), with two participants wearing a 12 channel ECG
CardioPart 12 Blue (AMEDTEC Medizintechnik Aue GmbH, Aue, Germany; sampling rate: 500 Hz), Polar H10 chest belt (Polar Electro Oy, Kempele, Finland; sampling
rate: 1,000 Hz) and Movesense Medical sensor single channel ECG chest belt (Movesense, Vantaa, Finland; sampling rate: 512 Hz). (A) Participant 1 with similar
DFA a1 seen in both chest belt devices and lead 2 and V3 of the 12 channel ECG. (B) Participant 2 with discrepancy between DFA a1 in both chest belt devices
compared to lead 2 and V3 of the 12 channel ECG. All data analyzed with Kubios HRV Premium software Version 3.5 (“time varying” option: window width of 2 min, grid
interval of 5 s) (data and plot adapted from Rogers et al., 2022b).
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second in real-time based on the prior 200 beats, bringing thismetric
to potentially millions of Garmin units. Having the ability to display
accurate DFA a1 in real-time during an exercise session opens up a
myriad of potential options, from on the spot threshold
determination to assessment of fatigue status at the start (for
daily directed training) as well as during a long exercise session
(durability assessment and/or training interventions).

FUTURE DIRECTIONS

A question that has eluded study thus far is whether DFA a1
behavior in male versus female participants is the same. Scant
data exists at present showing HRVT similarity to the AeT in
females as opposed to males. In addition, no information exists
comparing DFA a1 response during exercise in pre- vs. post-
menopausal women and along different phases of the menstrual
cycle. From a theoretical standpoint, differences in DFA a1 response
during exercise are possible in hormonally active women as several
studies show altered HRV between the sexes (Abhishekh et al., 2013;
Kappus et al., 2015).More specifically, autonomic balance appears to
change over the course of the menstrual cycle (Brar et al., 2015) as
opposed to a lack of change in cardiorespiratory parameters (Rael
et al., 2021). An additional area of interest is HRVT validity in other
sport-specific settings, especially regarding the influence of upper
body activity on signal quality and differences in DFA a1 calculation
(e.g., skiing, swimming, rowing), and over diverse age groups which
would be helpful for widespread usage. In addition, consequences of
intermittent positional bounce such as seen with running could be
examined since they do have the potential to alter the cardiac axis,
thereby affecting ECG waveform morphology (Astrom et al., 2003).
Another question is whether the improvement of DFA a1 per unit of
power or pace after a training intervention can indicate enhanced
fitness, particularly in threshold boundaries. Preliminary data is
suggestive (Rogers et at., 2021f), but additional research is needed.
Prospective training intervention studies of participants who utilize
knowledge of DFA a1 behavior during the early stage of routine
exercise sessions for training guidance (as shown in monitoring with
time domain HRV values during rest conditions (Düking et al.,
2021)) would be of great interest as a tool to determine daily
“readiness to train”.

CONCLUSION

Studies of fractal correlation properties of heart rate variability
during exercise have produced important findings over the past
two years. DFA a1 behavior is a reflection of ANS regulation and
is a component of network physiology which encompasses
multiple neuromuscular, biochemical, peripheral and central
nervous system inputs leading to an overall index of
“organismic demand”. A distinct DFA a1 value of 0.75 has
been shown to correspond to the aerobic threshold in
recreational runners, elite triathletes and patients with cardiac
disease. Further DFA a1 decline to the 0.5 range, signifying an
uncorrelated random beat pattern, was associated with the
anaerobic threshold, with both concepts representing limits of
sustainable workloads. DFA a1 threshold determination can be
affected by artifact correction and recording device bias but under
most circumstances has enough resiliency to be of practical value
with consumer grade heart rate monitors used for RR interval
detection. Exercise modalities associated with difficulty in
assessing intensity such as eccentric cycling may benefit from
further investigation of DFA a1 as a marker of systemic internal
load. Both web based and real-time smartphone tracking apps
have been developed for DFA a1 monitoring and physiologic
exercise threshold determination. Many of the current
applications use similar computational methodology as the
industry analysis standard of Kubios HRV software. Finally,
while of value when even viewed in isolation, DFA a1 tracking
in combination with external load markers such as power or pace
open intriguing possibilities regarding athlete durability,
identification of endurance exercise fatigue and optimization
of daily training guidance.
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