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Sc-compReg enables the comparison of gene
regulatory networks between conditions using
single-cell data
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The comparison of gene regulatory networks between diseased versus healthy individuals or
between two different treatments is an important scientific problem. Here, we propose sc-
compReg as a method for the comparative analysis of gene expression regulatory networks
between two conditions using single cell gene expression (scRNA-seq) and single cell
chromatin accessibility data (scATAC-seq). Our software, sc-compReg, can be used as a
stand-alone package that provides joint clustering and embedding of the cells from both
scRNA-seq and scATAC-seq, and the construction of differential regulatory networks across
two conditions. We apply the method to compare the gene regulatory networks of an indi-
vidual with chronic lymphocytic leukemia (CLL) versus a healthy control. The analysis reveals
a tumor-specific B cell subpopulation in the CLL patient and identifies TOX2 as a potential
regulator of this subpopulation.
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ARTICLE

he recent development of genomics technology enables us

to measure genomics features at the single-cell (sc) level;

for example, scRNA sequencing (scRNA-seq)! enables
transcription profiling, scATAC sequencing (scATAC-seq)?
identifies accessible chromatin regions, and sc-bisulfite
sequencing® measures DNA methylation, all at the single-cell
level. The advent of single-cell (sc) genomics has raised many
interesting questions in data analysis. Figure 1A summarizes
some common experimental designs and analysis tasks. For
example, when a scRNA-seq sample! is obtained from a hetero-
geneous cell population, we may want to identify clusters of cells
with distinct expression profiles®® (Fig. 1A(i), upper left). With
two scRNA-seq samples from two different cell populations (say,
corresponding to two treatment conditions), then in addition to
finding cell clusters, we may ask whether a cluster in one of the
samples can be linked to one or more clusters in the other
sample*® (Fig. 1A(ii), lower left). Many methods have been
proposed for the analysis of such scRNA-seq data sets®8.

In addition to gene expression, one may be interested in ana-
lyzing gene regulation, that is, to identify the transcriptional
factors (TFs) that may regulate the expression of a target gene
(TG), and the cis-REs relevant for the regulation. To study gene
regulation in a cell population, a widely used approach is based
on paired single-cell expression and accessibility analysis, where,
scRNA-seq and scATAC-seq? experiments were performed on
two different samples of cells from the same cell population
(Fig. 1A(iii), upper right). Duren et al.” have discussed how to
infer subpopulation-specific gene expression and chromatin
accessibility profiles. For each subpopulation, the availability of
TG expression and RE accessibility, together with TF-motif
matching scores on accessible REs, allowed detailed inference of
subpopulation-specific regulatory relations. Recently, several
other methods like SOMatic!?, scAI'!, and MAESTRO!? are

developed to integrate scRNA-seq with scATAC-seq. Finally, this
paired approach can also be used for the comparative regulatory
analysis of two cell populations (Fig. 1A(iv), lower right), raising
many novel challenges in the data analysis (see below). Our aim
in this work is to address these challenges.

The main methodological question is how to identify differ-
ential regulatory relations based on four single-cell data sets (1
scRNA-seq + 1 scATAC-seq, from each of two populations).
Furthermore, this comparison should be done in a
subpopulation-specific manner. For example, in the Chronic
Lymphocytic Leukemia (CLL) example to be discussed later, the
population of primary bone marrow mononuclear cells (BMMC)
is composed of many distinct subpopulations such as B cells,
T cells, monocytes, NK cells, etc. Comparisons involving different
cell types, say B cells from CLL patient versus NK cells from a
healthy donor, are not of interest because there are already too
many regulatory differences between the two cell types. Instead,
we are mainly interested in detecting differences of regulatory
relations between subpopulations of the same type (linked sub-
populations), such as CLL B cells versus healthy B cells, CLL
T cells versus healthy T cells, etc. Several methods have been
developed to detect the differential network based on bulk RNA-
seq datal3-15. However, detecting the differential regulatory
network by integration and comparison of scRNA-seq and
scATAC-seq is a novel problem and it is challenging because
whether a TF is involved in the differential regulation of a TG
may depend in complex ways on the expression of the TF and the
accessibility of REs that may mediate the activity of the TF on the
TG (see Fig. 2).

In this paper, we present a new statistic for testing differential
regulatory relations across two linked subpopulations. Although
our statistic is derived as a likelihood ratio statistics, the standard
Chi-square distribution is not appropriate as its null distribution.
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Fig. 1 Schematic overview of comparative regulatory analysis. A Summary of four types of single-cell genomic analysis. Left column: expression analysis
by sc-RNA-seq. Right column: regulatory analysis based on paired scRNA-seq and scATAC-seq. Top row: analysis under one condition. Bottom row:
comparative analysis. B Comparative regulatory analysis pipeline for scATAC-seq and scRNA-seq data from two conditions.
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Fig. 2 Concept and validation of sc-compReg. A Concept of TF regulatory potential (TFRP). Here TF indicate TF expression, REy is the accessibility of the
k-th RE, By indicates the TF-motif matching strength in the k-th RE, and I, is an interaction strength for whether the k-th RE is linked to the TG in the

subpopulation-specific regulatory network (constructed in a preceding step in the sc-compReg pipeline. B Two types of differential regulations: differential
TFRP (left) and differential regulatory structure (right). € Comparison of the conditional distribution of TFRP given TG expression by the likelihood ratio, for
detail please see “Statistical test for differential regulatory relations” in the “Methods” section. D ROC curves of differential regulatory detection on three
simple scenarios of simulation data: differential TF expression, differential RE accessibility, and differential regulatory network structure. For simulation

detail please see "Differential regulatory network data simulation” in the “Methods"” section. E ROC curves of differential regulatory detection on simulation
data containing all three types of differential regulation. F Comparison of likelihood ratio distribution with chi-square distribution and Gamma distribution.

G Comparison of estimated FDR with the empirical FDR.
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We will introduce methods for p-value computation and FDR
control, and present simulation results to validate the metho-
dology. This is the key methodological contribution of this paper.
Our second contribution is the development of the software sc-
compReg for single-cell comparative gene REGulatory analysis.
Before one can test for differential regulatory relations across
linked subpopulations, many intermediate analyses must be
performed on the single-cell data sets to identify the linked
subpopulations (Fig. 1B). Thus, in its “Initial Analysis” step, sc-
compREG has incorporated many methods originally developed
for comparative expression analysis or single population reg-
ulatory analysis, as reviewed in Fig. 1A. This allows our software
to be used as a stand-alone package that takes scRNA-seq and
scATAC-seq count data as input and provides a comprehensive
set of results, including consistent cluster labels for cells from
both scRNA-seq and scATAC-seq, the joint embedding of the
two types of data for visualization, subpopulation-specific
expression and accessibility profiles, inference of differential
TE-TG relations, and differential regulatory networks. These
functionalities are provided in sc-compReg without the need for
the user to engage external software for intermediate steps in the
analysis pipeline. The sc-compReg software is freely available
(https://github.com/SUwonglab/sc-compReg). Before we perform
comparative regulatory analysis, we need an important initial
analysis step to obtain the clustering label for each of the single
cells and match the subpopulations across two conditions. To
ensure the robust performance of the initial analysis, we devel-
oped a rigorous validation methodology, which may be of inde-
pendent interest in the evaluation of single-cell analysis methods.
To validate a single-cell analysis method, we apply it to scRNA-
seq and/or scATAC-seq samples from a heterogeneous popula-
tion with constituent subpopulations that are already analyzed by
bulk sample RNA-seq and/or ATAC-seq. We use the bulk sample
profiles to compute surrogate “ground truth” labels to the cells in
our samples. These labels can then be used to validate the clus-
tering, embedding, and subpopulation matching in the initial
analysis step of sc-compReg. Applying this strategy on single-cell
data from a BMMC population, we showed that the initial ana-
lysis step of the sc-compReg pipeline is well-validated. Finally, as
an illustration of our method on real data, we apply it to the
comparative analysis of scRNA-seq and scATAC-seq data from a
CLL donor versus that from a healthy control. Our analysis
reveals a B cell subpopulation specific to the CCL donor, and
identifies TOX2 as a key regulator within that population.

Results
A statistical method for detecting differential regulatory rela-
tions. We propose a statistical method for comparative analysis of
the gene regulatory networks in two linked subpopulations. For
each subpopulation, its gene regulatory network is just the col-
lection of gene pairs (TF, TG) where TF is a transcription factor
that regulates the target gene TG. We call such a (TF, TG) pair a
regulatory relation. To identify differential regulatory relations,
first, we use a t-test to identify TGs that are differentially
expressed between the two conditions. Once the differential TGs
are known, the key challenge is to identify the TFs that are
contributing to the differential expression of these TGs. If only
scRNA-seq data is available, then it is natural to identify such TFs
by searching for TFs whose expression correlation with the dif-
ferential TG is significantly different in the two linked sub-
populations. We refer to this as the baseline method for testing
for TFs that regulate differential TGs.

By incorporating accessibility data on regulatory elements
(RE), we design a new method more sensitive than the baseline
method. To do this, we first construct a numerical index to

represent the regulatory potential of a TF on a TG. This index,
which we call transcription factor regulatory potential (TFRP), is
a cell-specific index defined as the product of the (cell-specific)
expression of the TF and its regulatory potential on the TG,
where the regulatory potential is calculated by integrating
accessibility information from multiple REs that may mediate
the activity of the TF to regulate the TG (Fig. 2A). We note that
the accessibility information needed in the TFRP computation
can be obtained from the subpopulation-specific RE accessibility
profiles, which have already been estimated in the coupled-
clustering step of sc-compREG (Fig. 1b).

Generally, the differential regulation of a TG by a TF may be
due to one or both of the following mechanisms. (1) Changes in
TFRP: the TF regulates the TG in both two conditions, but
TFRP differs greatly between the two conditions. Either change
in TF expression or RE accessibility would induce a differential
TFRP (Fig. 2B, left). (2) Changes in regulatory network structure:
TFRP in two conditions are similar, but the TF regulates the TG
under one condition but the regulation is absent under the other
condition (Fig. 2B, right). From Fig. 2B, it is seen that the
conditional distribution of TFRP given TG will be changed when
there is differential regulation. This suggests that we could detect
differential regulations by testing for changes in this conditional
distribution. To do this, we use simple linear regression to model
the dependency of TFRP on TG. A likelihood ratio statistic (LR)
is computed to test the null hypothesis that the model is the same
across the two conditions (Fig. 2C). Although in theory, the LR
statistics should follow approximately a Chi-square null distribu-
tion, we found that this is not a good approximation in our case.
Instead of the Chi-square, we propose a null distribution based on
fitting a Gamma distribution, to the lower quantiles of the
likelihood ratios (“Methods™).

To validate our method, we simulate scRNA-seq and scATAC-
seq data under two conditions (“Methods”). In our simulation, we
consider four different scenarios: the differential regulations are
caused by (1) differentially expressed TFs only, (2) differentially
accessible REs only, (3) differential TF—TG regulatory structure
only, and (4) all of the above. We compare our method with a
baseline method that only uses scRNA-seq information (i.e. by
replacing the TFRP with TF expression), which is noted as sc-
compReg scRNA. Figure 2D shows the ROC curve of each
method (as the LR statistic varies) under the first three scenarios.
Our method achieves AUC of 0.9802, 0.9972, and 0.8124
respectively under scenarios 1, 2, and 3. As expected, our method
and the baseline method perform similarly in scenarios 1 and 3
where the changes involve only TF expressions or TF—TG
relations. In scenario 2, which involves changes in REs, our
method offers a dramatic improvement over the baseline method.
Finally, in scenario 4 (Fig. 2E) which includes all the three types
of differential regulation, our method also performs much better
than the baseline method (AUC of 0.9157 versus 0.7561). An
alternative way of performing this analysis is inferring the gene
regulatory networks in each condition first and then detect
differential regulation by comparing the two networks. We also
compare our method with any combinations of two gene
regulatory network inference methods and two differential
regulatory detection methods. Based on benchmarking literature
of gene regulatory network inference from single-cell datal® and
differential regulatory network detection!4, we choose GENIE317
and PIDC!8 as methods for network inference, and choose
diffK!® and diffRank2® as methods for network comparison. The
results showed that our method outperforms all those methods
(Fig. 2D, E).

To compute the p-value or control the false discovery rate, we
need the distribution of the likelihood ratio under the null
hypothesis (non-differential TF—TG pairs). Figure 2F shows the
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null distribution of the likelihood ratio statistics. We found that
the standard Chi-square distribution does not fit well, but a
Gamma fitted to the lower quantiles can offer a good
approximation (see “Methods”). If we choose the critical value
by setting the estimated FDR (adjusted by Benjamini—Hochberg
procedure) to be 0.1, the empirical false discovery rates achieved
by the two methods are 0.33 for the Chi-square method and 0.14
for the Gamma method. Thus our method is reasonably
calibrated while the Chi-square method severely underestimates
the FDR (Fig. 2G). Overall, the simulation results show that our
method detects differential regulation with high sensitivity and
also offers good FDR control.

Surrogate ground truths provide validation for methods in the
initial analysis. Before we can conduct comparative regulatory
analysis, we must first conduct many initial analysis steps to
obtain cluster labels of cells in the scRNA-seq and scATAC-seq
samples (Fig. 1B). To ensure that we have implemented high-
performance methods for these initial analysis tasks, we con-
structed surrogate ground truth labels for the cells by using cell-
type-specific signatures from bulk data from pure cell types. The
performance of our methods and competing methods are then
assessed based on these surrogate ground truths. Here, we illus-
trate this strategy on scATAC-seq and scRNA-seq data from
healthy donor BMMC.

First, we construct surrogate ground truth labels (see
Supplementary Fig. S1A for names of the 13 cell types) for single
cells based on cell type-specific signatures from FACS sorted bulk
data (Fig. 3A, B, see “Methods”). The fraction of cells allocated to
different cell types is highly consistent between scRNA-seq and
scATAC-seq (Supplementary Fig. S1A, B). The surrogate ground
truth is also largely consistent with t-SNE plots except for one
group of scATAC-seq cells (Fig. 3A, located in the right upper
corner of the scATAC-seq t-SNE plot) that contain all 13 cell
types. This group of cells also exhibit other unusual features such
as much higher read depth (8.63 fold), a low percentage of reads
in peaks, and abnormal distribution of reads over chromosomes
(details see Supplementary note S1, Supplementary Figs. S1, 2).
These unusual features were exploited by our method to detect
and remove the bad cells (“Methods”). Based on the surrogate
ground truth labels for the scATAC-seq data, we also found that
peaks called by Cell Ranger are superior to peaks called by the
popular peak caller MACS2 (details see Supplementary note S2).
Therefore we use peaks from Cell Ranger in the following
analysis.

Next, we evaluate three approaches for obtaining consistent
pairing of clusters for scRNA-seq and scATAC-seq, (1) clustering
the two types of data separately (i.e. Cell Ranger) and then match
the clusters manually, (2) clustering scRNA-seq first and then
transfer the labels to scATAC-seq (i.e. Seurat V3), and (3) joint
clusterings. To perform a joint clustering analysis of the scRNA-
seq and scATAC-seq data, we added a parameter selection
criterion to our previous CoupledNMF method (originally
designed for Fluidigm data)®, to optimize its performance for
10x Genomics Chromium Single Cell data (“Methods”). To
evaluate clustering performance, we build a one-to-one mapping
between the clusters and the true labels by bipartite graph
maximum weighted matching (“Methods”). Figure 3C shows the
accuracy of these three different clustering methods in scRNA-seq
and scATAC-seq. In scRNA-seq clustering, Seurat and Cou-
pledNMF have good performance but Cell Ranger fails to detect
the CD8 minor population. In scATAC-seq clustering, Cou-
pledNMF and Cell Ranger have good performance but Seurat
suffers a twofold lower accuracy in Ery and NK compared to the
other two methods. Overall, the CoupledNMF has the best

performance in the initial analysis step (details see Supplementary
note S3). Thus we choose it as a default clustering method in the
initial analysis of sc-compReg.

Based on the reduced dimension matrix from CoupledNMF,
we implemented a joint embedding of scRNA-seq and scATAC-
seq on the same t-SNE plot (“Methods”). In a joint embedding, it
is desirable to see cells of the same ground truth label placed near
each other regardless of their data type (scRNA-seq or scATAC-
seq). This is indeed the case in our joint embedding results
(Fig. 3D). Based on the t-SNE coordinates and the surrogate
ground truths, we calculate the silhouette index for each cell to
evaluate how similar the cell is to its own cluster compared to
other clusters. The joint tSNE provides a significantly higher
silhouette index than separate t-SNEs from Cell Ranger (sign rank
test, p=5.7973e—171 for scATAC-seq and p = 5.7588e—08 for
scRNA-seq).

Comparative analysis reveals tumor-specific B cell subpopula-
tions in a chronic lymphocytic leukemia sample. Having vali-
dated the methodology, we next test it in a real application,
namely the comparison of single cells from the BMMC sample of
a CLL donor to that from a healthy donor. The analysis of the
healthy sample has already been discussed above. We apply the
same analyses to the CLL sample and obtain seven clusters
(Fig. 4A). The clustering results are highly consistent with the
surrogate ground truth labels (Supplementary Fig. S8B). Based on
surrogate ground truth labels, subpopulations 1, 2, and 7 are
mapped to the B cells. We refer to them as subpopulations B1, B2,
and B7 respectively. Subpopulations 3 and 6 are mapped to CD4
and Ery respectively. Subpopulation 4 is a mixture of NK and
CD8. Subpopulation 5 is a mixture of Mono and some progenitor
cells.

To systematically compare the two populations, first, we need
to link the subpopulations across donors. Using surrogate ground
truth labels, we can infer the dominant cell type in each
subpopulation. Then, clusters can be linked across the CLL
sample and the healthy sample according to cell type. In
particular, the B, B2, and B7 in the CLL sample are all linked
to the single B cell subpopulation in the healthy donor. To enable
the usage in applications where surrogate ground truth is not
available, our method can also link subpopulations across donors
based on the expression and accessibility profiles under the two
conditions (“Methods”). In fact, for the CLL+healthy data,
Fig. 4B shows that this profile-based linking is completely
consistent with the surrogate ground truth-based linking. This
suggests that our profile-based linking can be used as a general
method to link subpopulations across conditions. From the
expression and accessibility profile comparison, we also find that
the variation between the healthy donor and CLL donor is small
compared to the variation between cell types (Supplementary
Fig. S8C). This underscores the need to link subpopulations
across conditions before performing comparative regulatory
analysis.

From the surrogate ground truth labels, we see a three-fold
increase of the B cell population in the CLL donor compared to
the healthy donor (Fig. 4C). We cluster B cell scRNA-seq data
and scATAC-seq data by applying NMF with K=2-10 and
check the clustering stability (Supplementary Fig. S8A). The
results show that there are three stable clusters in B cells from
CLL donors. On both RNA-seq and ATAC-seq, the most distinct
subpopulation among the three subpopulations in CLL (com-
pared to healthy donor B cell) is B7, which suggests that B7 is a
highly tumor-specific B cell subtype (Supplementary Fig. S9). We
further compare those B cell subpopulations based on immuno-
phenotype. Based on previous studies?!, a well-known surface
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C Comparison of the true label and clustering label for scATAC-seq (up) and scRNA-seq (down). D Joint embedding of scATAC-seq and scRNA-seq by
using t-SNE on low dimension loading matrixes from coupled NMF.

marker of B cell CLL includes CD5, CD23, CD19, CD25, CD69, Specifically, for each of the subpopulations (B1, B2, B7, and
and CD71. In our data, CD23, CD19, and CD69 are expressed in  normal B cells), we first binarize the data as expressed or not
greater than 5% of the cells. Low expression of the other three expressed, and then calculate the distribution of cells among the
markers maybe because of the drop-out of single-cell measure- eight types of expression patterns (i.e. CD23+CDI19+CD69+,
ment. We systematically compare the pattern of markers CD23, CD23+CD19+CD69—, CD23+CD19-CD69—, etc.). The degree
CDI9, and CD69 in the four different B cell subpopulations. of immunophenotype dissimilarity between two subpopulations
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Fig. 4 Comparative analysis of CLL with a healthy donor. A tSNE plots colored with clustering label for scRNA-seq (left) and scATAC-seq (right) on CLL
donor. B Cluster mapping between the healthy donor and the CLL donor. We find nine linked subpopulations based on our profile-based pairing method.
The label in the bracket represents dominant surrogate ground truths. The result from profile-based pairing is completely consistent with the surrogate
ground truths-based mapping. Please see “Linking of subpopulations across conditions” in the “Methods" section. € The fraction of cell types in healthy
donor and CLL donor based on the constructed true labels. D Clustering of B cell subpopulation based on the joint pattern of markers CD19, CD23, and

CD69. The numbers represent the Hellinger distance.

can be quantified by the Hellinger distance between the two
corresponding distributions (Fig. 4D). It is seen that, among the
three B cell subpopulations in CLL, Bl shows the highest
similarity to normal B cells and B7 shows the least similarity to
normal B cells. This is consistent with the global pattern from
scRNA-seq and scATAC-seq (Supplementary Fig. S9). To

confirm this, we also did the copy number analysis based on
copyKAT?2 (“Methods”). Supplementary Fig. S1I0A shows the B2
and B7 are 2.04 and 1.86 fold enriched (odds ratio) in the
predicted aneuploid cells, while the odd ratio of healthy B cells
and B1 are 0.22 and 1.22. We obtained 53, 75, and 66 loci which
have significant copy number differences in Bl, B2, and B7
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compared to healthy B cells (Supplementary Data 1). All the
significant loci in B1 are either overlapped with B2 or B7. B2 has
19 unique significant loci and B7 has 15 significant loci
(Supplementary Fig. S10B). We examine whether those regions
contain the previously identified copy number abnormalities
regions for CLL like del13q, delllq, trisomyl2, and dell7p. We
find all three B cell subpopulation contain dell3q but only B7
contains delllq. The results from copy number analysis support
that B1 is more similar to normal B cell and B7 is different from
normal B cells.

We also compare the expression of the three B cell
subpopulations in CLL donor with the healthy donor and
identified 852, 1,247, and 1,206 CLL-specific genes for B1, B2, and
B7 respectively. Taking the experimental validated TF—TG
pairs?324 as ground truth, we compare our methods with other
alternative methods and the results show our method has better
performance than others (Supplementary Fig. S11). Among these
CLL-specific genes, 351 are shared in all three subpopulations.
The top-ranking subpopulation-specific genes are shown in
Supplementary Fig. S12A (the common genes are removed).
GO enrichment analysis (Supplementary Fig. S12B) identified
several pathways/processes as enriched (Fold > 2, FDR < 0.05).
Lipopolysaccharide-mediated signaling pathways, regulation of
vascular smooth muscle cell proliferation, and regulation of toll-
like receptor signaling pathways are enriched in the 351 common
CLL-specific genes. B2 is enriched in myeloid cell development,
indicating that B2 is in an earlier stage in development. B7 is
enriched in cell cycle genes, which indicates that B7 may be a
proliferative tumor subpopulation.

Sc-compReg identifies TOX2 as a key regulator in a tumor-
specific B cell subpopulation. To explore the regulatory network
difference in cancer versus healthy, we apply our sc-compReg
method to compare each of Bl, B2, and B7 with the healthy
donor B cell and find three differential networks containing 686,
744, and 740 unique nodes and 237 common nodes shared
between all three networks. From the common network, SOX4,
MYB, KLF4, JUNB, and ID2 are identified as key TFs that may
induce most of the differential expression between the healthy
donor and CLL donor. From the three sets of unique nodes, we
can find TFs that are specifically relevant to some subpopulations
in CLL, e.g. ZNF415 is important for B1, FOXO4 is important for
B2, TOX2 is important for B7 (Fig. 5A). Figure 5B shows the
B7 specific network in which TOX2 (detail of TOX2 motif see
Supplementary note S4) is a hub node and playing an important
role.

The tumor-specific B cell subpopulation B7 has 855 specific
genes (the common genes are removed) and the gene with the
highest fold-change is TOX2 (Supplementary Fig. S12A). Fig-
ure 5C shows the expression pattern of TOX2 in healthy and CLL
donors. TOX2 is specifically expressed in the tumor-specific B cell
subpopulation (B7) in CLL donor (44/369), but it is almost not
expressed in the other two B cell subpopulations (5/522 and 0/
535) in CLL donor, nor is it expressed in B cell subpopulation in
the healthy donor (3/469). We examined the cis-elements near the
TOX2 gene in scATAC-seq data and identified four cis-elements
that are specifically open in tumor-specific B cell subpopulations
(Fig. 5D).

Next, we check the accessibility of the REs containing TOX
motif (Supplementary Fig. S13), in B cell subpopulations in both
healthy and CLL donors and find the tumor-specific B cell
subpopulation (B7) has much higher accessibility than the other
B cell subpopulations, which supports the idea that specific
expression of TOX2 induces a wide regulatory change (Fig. 5E).
To examine whether TOX2 is associated with CLL or not, we

check the expression of TOX2 in B cells in two independent case-
control studies?>2°. Both studies show that TOX2 is significantly
highly expressed in the CLL group compared to the healthy
control group (one-tailed two-sample t-test, p-value 0.0013,
Fig. 5F, and Supplementary Fig. S14).

Based on gene expression and chromatin accessibility cluster
profiles, we build a context-specific gene regulatory network for
B7 by our previously developed PECA2 method?’. Network
analysis shows that target genes of TOX2 are remarkably highly
enriched (4.5-fold, p-value 2.83E—09) in tumor-specific genes
(Fig. 5G). GO enrichment analysis shows that TOX2’s target gene
is enriched in B cell activation, immune response, and leukocyte
activation (Fig. 5H). Interestingly, TOX has recently been
identified as a key regulator in exhausted T cells and cancer?%29.
In our study, we did not find any difference in TOX gene
expression between the CLL donor and the healthy donor in any
cell type (Supplementary Fig. S15). Instead, our analysis identified
a paralog of the TOX gene, TOX2, as an important regulator in
one of this CLL patient’s B cell subpopulations.

Discussion

In this paper, we proposed a new test statistic for the comparison
of gene regulation based on single-cell genomics data, developed
the software sc-compReg, and suggested a new bulk data-based
validation strategy for single-cell analysis. We applied our method
to the comparison of CLL versus healthy control and identified
TOX2 as a key regulator of transcriptional changes in a sub-
population of B Cells identified in this CCL patient.

Comparison of gene regulatory networks from patients and
healthy control would help us identify disease genes, dysfunc-
tional regulations, and the underlying molecular mechanism of
diseases. In the past, this type of analysis required bulk sample
genomics data from a large sample. The comparison of patients
and healthy control at the regulatory level has always been
challenging because it is difficult to collect relevant tissues from a
large number of clinical patient samples. The development of
single-cell technologies has made it possible to learn regulatory
relations from a single sample. In this work, we have shown that
based on scRNA-seq and scATAC-seq, our method provides
informative comparative regulatory analysis for one patient
sample versus one healthy control. So we believe sc-compReg
would be a useful tool for clinical sample gene regulatory analysis.
Of course, the differential regulations discovered this way will
need to be replicated by additional patients and controls. Thus an
important next step will be to extend the approach to accom-
modate multiple donors under each of the two conditions to be
compared. We will work on this extension in the near future
when this type of data becomes available. We believe that using
such single-cell analysis, the discovery of disease-associated
changes in regulatory relations should be feasible using much
fewer donors than is possible based on bulk sample data.

Our approach to comparative regulatory analysis can also be
extended to handle more complex experimental designs. For
example, recently it has been shown that the addition of bulk
HiChIP data to sc-RNA-seq and scATAC-seq data can sig-
nificantly enhance subpopulation-specific regulatory analysis®(.
In this situation, our TFRP-based test statistics can still be used to
infer differential regulatory relations, as long as the computation
of linked subpopulations in the initial analysis has considered the
HiChIP data. We will extend our sc-compReg software to enable
this type of analysis.

Methods

Single-cell ATAC. Cryopreserved BMMCs from two donors were obtained from
AlICells. One donor was a 93-year-old non-Hispanic white male with newly
diagnosed chronic lymphocytic leukemia, and the other individual was healthy but
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otherwise unknown. Cells were isolated and lysed following the Nuclei Isolation for ~ Single-cell RNA. BMMCs from the healthy donor and CLL patient were obtained
Single Cell ATAC Sequencing Demonstrated Protocol (10x Genomics: CG000169)  from AllCells as described in the previous section. Cells were isolated following the
following guidance for primary cells. Sequencing libraries were generated following  Sample Preparation Demonstrated Protocol: Fresh Frozen Human Peripheral

the Chromium Single Cell ATAC Reagent Kits User Guide (10x Genomics:
CG000168). Briefly, nuclei were tagmented in bulk. Single nuclei were encapsulated ~ CG00039). Sequencing libraries were generated following the Single Cell 3’ Reagent
in GEMs containing a gel bead with a unique cell barcode, and genomic material ~ Kits v2 User Guide (10x Genomics: CG00052). Briefly, cells were encapsulated in
was amplified in a linear amplification reaction. GEMs were broken, and genomic =~ GEMs containing a gel bead with a unique cell barcode, and mRNA was reverse
material was amplified via PCR appending a sample index and Illumina sequencing  transcribed. GEMs were broken, and cDNA was amplified and fragmented. Ends
handles (P5/P7). Libraries were sequenced on the Illumina NovaSeq 6000 System  were blunted, A-tailed, and adapter oligos were ligated. Samples were amplified via

according to the manufacturer’s protocols.

Blood Mononuclear Cells for Single Cell RNA Sequencing (10x Genomics:

PCR appending a sample index and Illumina sequencing handles (P5/P7). Libraries
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Fig. 5 Identification of TOX2 as a tumor-specific regulator. A Out-degree of TFs in differential networks. Common network consistent of edges that are
differential in all the three networks. B Visualization of B7 specific differential network. The orange node represents TF, and the blue node represents non-
TFs. The size of the node reflects the out-degree of the node. € t-SNE plot shows the expression of TOX2 in the healthy donor (left) and CLL donor (right).
Red dots represent TOX2 expressed cells. D Track plot show cluster-specific peaks near TOX2. E Comparison of TOX motif binding REs' accessibility on
different B cell subpopulations by Metagene plot. The central line represents the mean of accessibility, and the ribbon represents the minimum and

maximum of average accessibility from 1000 times bootstrap analysis. F Comparison of TOX2 expression in B cell in independent CLL and healthy control
study. The central mark indicates the median, the bottom and top edges of the box indicate lower and upper quartiles, the whiskers extend to the most
extreme data points not considered outliers, and the outliers are plotted individually using the ‘+' symbol. We use a one-tailed two-sample t-test and the p-
value without multiple testing adjustment is 0.0013. G Fisher's exact test shows TOX2 target genes are enriched in B7 specific genes (compared to healthy

control). H GO enrichment analysis for TOX2 target genes.

were sequenced on the Illumina NovaSeq 6000 System according to the manu-
facturer’s protocols.

Statistical test for differential regulatory relations. To test if the regulation of i-
th TF to j-th TG is differential in two conditions, we propose the following method.
This method takes the cell-level expression of TF and TG and subpopulation-level
accessibility profile of RE from two conditions as input, and calculates a likelihood
ratio and p-value for each pair of TF and TG in each subpopulation. Note that we
only consider the TF—TG regulation edges in which TG is differentially expressed.
Let TFRP be the regulatory potential of TF on TG, which is defined as follows

TFRP;, = TF, (% B,-kREk[ij>

Where ¢ is the index of a single cell, TFRP;;, represents the regulatory potential of i-
th TF on j-th TG in t-th cell; TF represents the expression of i-th TF in #-th cell; B;,
represents the motif binding strength of the i-th TF on the k-th RE; RE, represent
the subpopulation-level accessibility of k-th RE on the subpopulation matched to
the subpopulation of #-th cell in sScRNA-seq; I;; represents the interaction strength
between k-th RE and j-th TG, which is learned from the PECA model based on
diverse cellular contexts3!.

To identify differential edge for a differential expressed gene, we need to be able
to detect both of the following two situations:

1. The TFRP is also differential in two conditions.
2. The association of TF and TG is differential in two conditions, e.g., strongly
correlated in one condition and weakly correlated in the other condition.

As suggested in Fig. 2B, both of these can be detected by testing whether the
conditional distributions P(TFRP|TG) are different in two conditions (note that
testing P(TG|TFRP) is not informative because the distribution of TG is already
shifted). We use a linear model for this conditional distribution:

TERPy;, = B, + B, TG, + & € ~ N(0,0%)

where TG, represents the expression of j-th TG in t-th cell. We consider the
likelihood ratio test for the null hypothesis HO against the alternative H1 defined as
follows. Let (B, f,,,0,) be the parameters in c-th condition (c = 1 or 2), and
(Bys B o) be the parameters learned by pooling all the cells from two conditions.
Then the HO and H1 are:

HO:(ﬁm,ﬁ“,ol) = (ﬁzmﬁzn”z)

HL:(B1g, 11 01) # (B oy 02)

The likelihood under HO is sharing the same parameter and (B,,,, ¢) for both
two conditions and the likelihood under H1 is using different parameters
(B1o:B11,01) and (Byg, Pay,0,) for conditions 1 and 2 respectively. The likelihood
under these two models are (here f represents the probability density of the normal
distribution):

(MO)Ly(By, By, 0) = [ [ F(TERP(Y 18, + B, TG, o) ] [ F(TERPY|B, + B, TG, o)

(M) L, (Byg: By 15 Bags Bor 02) =] [ F(TERPY 1B,
+ B, TGy, oD [ F(TERP B, + B, TG, 03)

The likelihood ratio statistics for i-th TF and j-th TG pair is:
max L o
(o) o(Bo: B, 0)
max Ly (Bigs Bir+ 1+ Baos Bt 02)
(Bro-Pr1-01 B B -02)
In theory, under standard conditions, the likelihood ratio should have a chi-

square distribution (with df = 3) as its null distribution. Figure 2F shows that the
chi-square is no longer an adequate approximation for the null distribution.

LR(TF;, TG)) = —2In ~ I'(k, 0)

Instead, the null distribution is well fitted by a two-parameters Gamma
distribution. The question, then, is how to infer the gamma parameters in a real
application when we do not know the null (i.e. non-differential) TF—TG relations.
Here we assume that most of the TF—TG pairs are non-differential so that the
lower quantiles of the empirical distribution of the LR statistics should be
approximately the same as those in the true null distribution. Accordingly, we infer
the parameter of the Gamma by fitting the lower quantiles of the empirical
distribution. Specifically, let q(i; &, ) be the i*(0.05)-th quantile of the Gamma(a,
B) distribution, and #(i) be the corresponding quantile of the empirical distribution
of LR statistics. We infer a and p by minimizing

Gla, p) = X212, (q(is a, ) — 1(i))’

Coupled clustering. Here we introduce a modification of our previous Coupled
Clustering model®. Given scATAC-seq data count matrix O (p, regions by n; cells
matrix) and scRNA-seq transcripts per kilobase million (TPM) data matrix E (p,
genes by n, cells matrix), we do coupled clustering based on the CoupledNMF
optimization model. We do quantile normalization and log transformation (log2
on expression and logl0 on accessibility) on two data matrices. A “soft” clustering
of scATAC-seq can be obtained from a nonnegative matrix factorization O =
W;H,; as follows: the ith column of W, gives the mean vector for the ith cluster of
cells, while the jth column of H; gives the assignment weights of the jth cell to the
different clusters. Similarly, the clustering of the scRNA-seq can be obtained from
the factorization E = W,H,. To simplify the original CoupledNMF model, we move
one term from the objective function to constrains so that the number of tuning
parameters is decreased from 3 to 2. Here is the modified constrained optimization
version of the CoupledNMF model:

) 1
min v w, i, 5 [10— W, H,|2 +%|\E — WLH, |2 — Ltr(WIAw)) (1)

i=p, [ 1)? .
st (wij) =1,j=12,.K
Z":Pz P g
() =Li=12.K

W,,H,, W, ,H,>0;

There are two tuning parameters: 1;and A,. Where A is the predefined coupling
matrix by considering peak to target gene distance and correlation of peak
accessibility and target gene expression across diverse cellular contexts’.

Ay =Rfxeilh
Where R; represents the correlation of i-th gene expression and j-th peak
accessibility across diverse cellular contexts (negative values are set to zeros); d;;
represents the distance between RE and TG; the base parameter d,, reflects the scale
over which the coupling coefficient decreases with distance (default value is 40 kb).

Algorithm of CoupledNMF. We design an algorithm for the constrained opti-
mization version of the CoupledNMF model. Update of variables are as follows:

ij

o (OH + L,A™W, + W, diag(W] (W,H,HT)))

! ﬁ(W1H1H1T+Wldiag(wlT(OH{+’12ATW2)))5

ij
(WZHZH’{ + wzdiag(w’{ (EH’{ + %Awl)))

(BHE + 32 AW, + Wdiag(W] (W,H,H])))

2 2
Wi < wj

u

.
hy < hy (W70),

TWIW,H,),
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Here diag(X) represents a diagonal matrix that has the same main diagonal with
matrix X. We show that the update algorithm correctly solves this optimization
problem. To simplify this, we just talk about the update of the variable W,. We
introduce the Lagrangian multipliers v(a diagonal matrix with element
[¥1,¥2, ... v]). The Lagrangian multiplier v; corresponds to the constraint

i 2
i (W,lj) = 1. We minimize the Lagrangian function

1 . i= .
L(W,) = 3110 = W H, [ = tr(W,TAW,) = v (z}j.:‘;;’(wi]l)z - 1)
The gradient is:

oL
Pt W,H,H' — OHT - 1,ATW, — 2w v.
1
The KKT condition for the nonnegativity of w}j gives
(W\H,H] — OH] = L,ATW, —2Wv),wj; =0 (2)

_ 2
By combining this equation with the constrains >4’ (w}]) =1, we get

2v = diag(WT (W, H,HT — OHT — 1,ATW,)). (3)
By combining Egs. (2) and (3), we get
(W,H,H{ — OH| — L,A"W, — W, diag(W{(W,H H| — OH| — )LZATWZ)))VWL =0 (4)

The update rule of W, satisfies this Eq. (4).

Parameters selection of coupled clustering. Local minima of standard NMF
should satisfy OH! ~ W H,H', and EH! ~ W,H,H. We hope the solution of
our optimization problem in Eq. (1) is close to one of the local minima of the
standard NMF. We introduce two interpretable parameters « and f3

mean (%AT Wzo)
Wpfp=——7--=
p mean (OH{,)
A,
mean (ﬁAwm)
al—p)=——

mean (EH 2To )

where Wy, Hyy, Wy, H,, are the solution of standard NMF; parameter « is non-
negative and reflects the ratio of coupling term and factorization term; parameter
ranges from 0 to 1 and balances the weight of scATAC-seq and scRNA-seq. The
default value of parameter « is 0.1%, which means in each iteration, the effect of the
coupling term on matrix factorization is about 0.1%. The default value of parameter
B is 0.5, which means we think scATAC-seq and scRNA-seq are equally important.

To stabilize the results, we suggest the following strategy. We start with a random
initial W, H,, W,, H, and a bigger « parameter to get the initial solutions. Then we
decrease the « parameter gradually and take the former step solution as the initial. We
suggest the o parameter series is [10000, 1000, 100, 10, 1, 0.1, 0.01, 0.001].

Construction of surrogate ground truth. We use publicly available RNA-seq and
ATAC-seq data on 13 distinct cellular populations from the human hematopoietic
hierarchy isolated via FACS to construct ground truth labels for the single-cell data32.

RNA-seq: We define a specific gene set for each of the cell types by choosing the
top 1000 specifically expressed genes (expression/median expression across 13 cell
types). For a given single cell and a cell type, we count the number of expressed
(read count > 0) specific genes in the single-cell data. We assign the single cell to
the cell type which has the maximum number of specific genes expressed.

ATAC-seq: For each of the cell types’ ATAC-seq data, we get a peak set from
MACS2. For the i-th single cell and j-th cell type, we count the number of open
(read count > 0) peaks of the cell type in the single-cell data (noted as c;). This
count matrix C is biased because the number of peaks in different cell types is
different. To remove the bias, we do quantile normalization to matrix C to make
the different cell types comparable. We label the i-th single cell to the cell type
which has the maximum normalized c;; value.

Because the number of progenitor cells is too small and difficult to be identified,
we merge all the progenitor cells into one label. So we get seven labels in total (B
cell, CD4 T cell, CD8 T cell, Erythroid, Monocyte, natural killer, and progenitors).

Evaluation of clustering performance. To evaluate the clustering performance,
we link the clusters to the seven true labels by bipartite graph maximum weighted
matching. Given i-th cluster and j-th true label, we count the number of over-
lapping cells (noted as S;) in the i-th cluster and cells have the j-th true label. Based
on the S matrix, we use the Hungarian algorithm to do a one-to-one matching
between the clusters and the true labels. This matching will maximize the accuracy

which is defined as the fraction of correctly predicted cells.

accuracy, = ———

Where i is the best matching cluster for the j-th true label. This accuracy metric is
sensitive to minor population detection. If one minor population is merged into a
major population, it will have very low accuracy. Except for this accuracy-based
evaluation, we also use normalized mutual information to evaluate the clustering.

Joint embedding of scRNA-seq and scATAC-seq. Coupled clustering model will
do linear transformations for scATAC-seq and scRNA-seq to get H,and
H,matrices, which are in a common K dimensions space and comparable to each
other. Based on the normalized (column square sum to one) H,and H, matrices, we
use tSNE to reduce them from K dimensions to two dimensions.

Cluster specific features. To get the cluster-specific peaks, we treat the data as
binary and use the Fisher exact test to calculate the p-values and fold changes. For
scRNA-seq data, we use a one-tailed two-sample t-test to calculate the p-value and
fold changes for genes. To calculate fold change, we add a pseudocount 0.01 on the
denominator. We combine the p-values and fold changes to define a cluster spe-
cificity score by —log,, (pvalue) x FoldChange.

Linking of subpopulations across conditions. To perform comparative regulatory
analysis, the subpopulations across two populations are required to be linked.
Considering the batch effect between different populations, we use a two-step
strategy of clustering and linking instead of joint clustering across two populations
using two types of single-cell data, which is a more challenging task. To map the
subpopulations across two donors, we define a mapping score to evaluate the
similarity of two subpopulations from two donors based on expression and
accessibility profile. The mapping score consists of two parts, sScRNA-seq based
mapping score and scATAC-seq based mapping score. The scRNA-seq based
mapping score of i-th cluster from population 1 and j-th cluster from population 2

is defined as follows
7))

1 Zi Zj r’gjna
rna

ij" represent the Pearson correlation coefficient (PCC) of the two cluster-
specific expression profiles. Intuitively, the mapping score presents the observed
PCC minus the expected PCC. Similarly, we define the mapping score for scATAC-
seq data. We map i-th cluster from population 1 to j-th cluster from population 2 if
both Mapping score; and Mapping score?j‘"‘C have positive values. The confidence
of the cluster mapping is reflected by the mapping score, which is defined as the

H rna H atac
sum of Mapping score; and Mapping score};*.

. rna __
Mapping score;™ =

Here 7!

Differential regulatory network data simulation. We simulate a K TF (k-th TF),
N gene (j-th TG), and M RE (i-th RE) network on H cells (h-th cell) from two
conditions (c-th condition). We simulate the target gene expression by the for-
mulation provided by the PECA model3!. The expression of j-th TG on the h-th
cell is simulated as

TGy, = v+ Xy (z BikﬁljRE,r)TFkh +e5e~ N(0,0.5)?)

Where the v; is the baseline expression of j-th TG which is generated from a
Gamma distribution (details see Supplementary Fig. $16). To simulate TG
expression by PECA formulation, we require TF expression, RE accessibility, TF
—RE binding affinity, RE-TG association, and TF—TG regulatory structure. We
use a normal distribution to generate the TF expression and RE accessibility for
different cells, where the mean of TF expression and RE accessibility is generated
from a gamma distribution. After generating the “real” expression, we simulate the
drop-out and observe the gene expression. We randomly select some TF and RE,
and add some value to them to simulate the differential TF and RE. TF—RE motif
binding affinity and RE-TG connections are generated from a Bernoulli dis-
tribution. TF—TG connection should be very sparse so it is simulated as a mixture
of a normal distribution with zero mean and a point mass at zero. To simulate
differential regulatory structure, we randomly select some non-zero TF—TG con-
nections and set their values to zeros. Note that the model used to generate the
simulation data and the model to be evaluated (sc-compReg) are totally different.
The formulation of simulated data is based on the PECA model, and the expression
of target genes is determined by the combined effect of multiple TFs. But the model
in sc-compReg just focused on the pairwise relations not considering the joint
effect of multiple TFs. Thus, this simulation provides a fair comparison of sc-
compReg with other alternative methods. See the detailed formulation as follows:
Simulation of TF expression:

TF mean expression ¢ ~ gamma(2, 2)

TF expression TF, ~ N(y,, 4i2)

Differential TF TFy;, = TFyy,+rps g ~ U(0.1,1)
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Simulation of RE openness profile:

RE means openness v ~ gamma(l, 2)

RE openness RE; ~ N(v;, (0.011/[)2)

Differential RE RE;. = RE; + r;.v;; 1, ~ U(0.1,1)
Simulation of the regulatory network:

TF motif binding B, ~ Bernoulli(10/K)

RE-TG connection B; ~ Bernoulli (10/M)

TF—TG network structure y,; ~ 0.1N(0, 1) + 0.95,

Differential network structure yg) = wg)ykj; wfc;) ~ Bernoulli(0.01)

Simulation of target gene expression:
TG mean expression v ~ gamma(2, 2)
TG expression TGy, = v; + 2y, By B;RE;)TFy, + & & ~ N(0, (0.51/].)2)
k i

Simulation of drop-out:

For both TF and TG, their probability of drop-out is [ =igex; Where E
represents the expression level, we choose parameters « as 0.1 and the X as 0.5. For
each expression, we generate a random variable from the standard uniform
distribution U(0,1). The expression level will be dropped to zero if this generated
number is less than A gene with a lower expression level is more likely to

be dropped out.

1
Tte HogB X

Copy number analysis. We use R package CopyKAT to infer the genomic copy
number from the scRNA-seq data of B1, B2, B7, and healthy B cells. Based on the
inferred copy number, the CopyKAT classifies cells into two groups named aneuploid
and diploid. We do Fisher’s exact test between aneuploid/diploid groups and cell
clusters of B1, B2, and B7 respectively (Supplementary Fig. S10A). For each window
from CopyKAT, we compare the copy number distribution of B1, B2, and B7 with the
healthy B cell copy number distribution by a two-sample t-test. We adjust the p-values
by Bonferroni correction and treat the FDR less than 0.05 is significant.

TOX motif. We download both wild type and TOX knock-out ATAC-seq data on
CD8 T cell from ref. 2° and infer TOX-dependent open regions (higher openness in
wild type) by differential openness analysis (one-tailed two-sample t-test, p-value <
0.05 and Fold > 1.5). On the 9,597 TOX-dependent regions, we do de novo motif
enrichment analysis and find the TOX motif (Supplementary Fig. S13). The new
identified TOX motif has been included in the database of PECA software https://
github.com/SUwonglab/PECA.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The healthy and CLL donors’ scRNA-seq and scATAC-seq data generated in this study
have been submitted to the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.
nlm.nih.gov/geo/) under accession number GSE159417. The FACS sorted bulk data is
downloaded from the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.
gov/geo/) under accession number GSE75384.

Code availability

R version of the sc-compReg software33 is available at https://github.com/SUwonglab/sc-
compReg. A Matlab version of the sc-compReg and processed data are also available in
https://github.com/durenzn/sc-compReg_matlab.
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