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A B S T R A C T   

Reprogrammed glucose-responsive, insulin + cells (“β-like”) exhibit the potential to bypass the hurdles of 
exogenous insulin delivery in treating diabetes mellitus. Current cell-based therapies-transcription factor regu-
lation, biomolecule-mediated enteric signaling, and transgenics - have demonstrated the promise of reprog-
ramming either mature or progenitor gut cells into surrogate “β-like” cells. However, there are predominant 
challenges impeding the use of gut “β-like” cells as clinical replacements for insulin therapy. Reprogrammed 
“β-like” gut cells, even those of enteroendocrine origin, mostly do not exhibit glucose – potentiated insulin 
secretion. Despite the exceptionally low conversion rate of gut cells into surrogate “β-like” cells, the therapeutic 
quantity of gut “β-like” cells needed for normoglycemia has not even been established. There is also a lingering 
uncertainty regarding the functionality and bioavailability of gut derived insulin. Herein, we review the stra-
tegies, challenges, and opportunities in the generation of functional, reprogrammed “β-like” cells.   

1. Introduction 

Recent innovations in minimally invasive, transdermal delivery 
techniques makes insulin delivery painless and relatively accurate, 
leading to better compliance and saving diabetics from catastrophic 
macro and microvascular dysglycemic complications.1–5 However, the 
large molecular weight of insulin limits the efficiency of these in-
novations by restricting transdermal permeation, bioavailability, and 
sustained release.2,6,7 Furthermore, these novel technologies are 
expensive, less user-friendly, and come with technical difficulties.4,8–10 

More aggressive treatments, like islet transplantation, possess the po-
tential to restore euglycemia in both Type 1 and advanced Type 2 dia-
betic patients.11,12 However, durable donor islets are rare and strongly 
immunoreactive, rendering patients to a long-term dependency on im-
munosuppressants to prevent donor islet rejection.13,14 Recently, Pom-
poselli et al. suggested that transplanting islets as conglomerated units of 
pre-vascularized, islet-kidney grafts limits islet apoptosis and provides a 
physical barrier against host immune responses.15 Yet, continuous graft 
loss still renders transplanted islets to eventual host immune assualt.15 

Thus, endogenously engineering host cells into glucose-responsive 
"β-like" cells exemplifies a more permissive approach in overcoming 
the limitations of exogenous insulin delivery, potentially curing 

diabetes. 
The gastrointestinal (GI) tract serves as a reservoir for accessible 

enteroendocrine and stem cells that can be coaxed, through transcrip-
tional control and enteric signaling, into self-renewable "β-like" cells to 
produce endogenous insulin in a reliable, nutrient-responsive man-
ner.16–19 Gut stem cells can preserve genomic alterations to allow for 
therapies to be tailored to patient needs with time, establishing endur-
ance of the desired gene therapy outcome.20–24 GI tract stem cells exhibit 
high levels of indefinite turnover and regeneration which counter cell 
population decline.16,25–27 In the case of type 1 diabetes, this high 
turnover could allow for their continued replenishment despite a 
possible autoimmune attack.28 Collectively, these properties make the 
gut an attractive option for creating populations of glucose-responsive 
insulin-producing cells. 

Proof-of-principle studies have shown significant potential in 
attaining functional, reprogrammed "β-like" intestinal tract cells. How-
ever, there are distinct challenges and unanswered questions regarding 
the employment of these cells as clinical interventions for insulin 
replacement therapy. Since pancreatic insulin secretion encompasses 
complex molecular and cellular processes in addition to insulin gene 
expression, reprogrammed “β-like" cells should not only be able to make 
insulin, but also have workable receptors for ambient glucose detection, 
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cell stimulation, and insulin release from docked secretory gran-
ules.29–32 Yet, attained reprogrammed "β-like" cells do not always 
temporally release insulin in response to varying glucose concentrations. 
Considering that the typical length of an adult gastrointestinal (GI) tract 
stretches into an enormous surface area of ~250–400 m2 with ~1014 

cells, it becomes realistic to suppose that a fraction of these gut cells can 
be reprogrammed into a comprehensive source of insulin to treat dia-
betes without interfering with normal gut function.33–36 Regrettably, 
regardless of the approach adopted, the conversion rate of "β-like" in-
testinal cells tends to be very low.36,37 Moreover, the sufficient, thera-
peutic number of "β-like" intestinal cells needed to reverse diabetes and 
escape consequent immune responses has not been established.38–41 

Only few studies have discussed or shown that reprogrammed gut 
"β-like" cells, exhibit the necessary genes for the proteases (Prohormone 
convertases - PC1/3, PC2, and carboxypeptidase E/H), or at least induce 
an enteric microenvironment with conditions, necessary for bioactive 
maturation of secreted insulin. This paper evaluates the various strategic 
pathways of attaining functional insulin from host gut cells by high-
lighting the challenges, uncertainties, and possible innovative routes for 
achieving functional gut “β-like” cell. 

2. Modification of expression patterns of endocrine 
transcription factors sufficiently establishes morphogenesis of 
reprogrammed "β-like" gut cells 

Over the last twenty years, most studies have focused on subsets of 
transcription factors associated with insulin transcription and release 
via the ectopic expression of either one, or some combination of the 
PMN factors (PDX1, MAFA and NGN3), the consistently proven tran-
scription factor triad critical to insulin transcription and the develop-
ment, maturation, and function of pancreatic β-cells42–44 (see (a) in 
Figure). Even though PMN-mediated experiments have successfully 
demonstrated the induction and secretion of insulin from gut cells in 
vivo, the ability of these reprogrammed cells to alter the magnitude of 
insulin secretion in correspondence with glucose concentrations remains 
a challenge in the field. It seems the ectopic expression of pancreatic 
transcription factors is not potent enough to establish abundant pop-
ulations of robust β-like gut cells due to transient delivery inefficiencies, 
tissue damage from inappropriate dosages of reprogramming hormones 
or constructs, and native immune attack.45–47 

Immature rat intestinal cells (IEC-6)expressed insulin when made to 
overexpress PDX1 along with Insulin Gene Enhancer Protein (ISL1) or 
when exposed to betacellulin, an epithelial growth factor known to 
induce ISL1 expression and pancreatic β-cell differentiation.48–50 How-
ever, after transplantation in mice, PDX-1+ IEC-6 cells failed to secrete 
insulin in response to increasing glucose and secretagogue concentra-
tions.48,49 Koizumi et al. showed insulin expression in Streptozotocin 
(STZ)-induced diabetic mice by injecting into the mice ileum a recom-
binant, replication-deficient adenovirus carrying the PDX1 gene.51 The 
group did not determine the temporal glucose responsivity of converted 
cells.51 STZ-induced diabetic mice, after being fed with engineered re-
combinant adenovirus expressing MAFA under control of the muscu-
loaponeurotic fibrosarcoma oncogene homolog A gene (Ad-MAFA), 
produced sufficient ileal insulin to ameliorate hyperglycemia.52 How-
ever, insulin levels did not increase after an oral glucose tolerance test in 
the Ad-MAFA-treated STZ – induced diabetic rats, stipulating that 
Ad-MAFA-dependent insulin secretion was not regulated or amplified by 
glucose.52 The group showed that intestinal epithelial cells, positive for 
insulin, expressed both PC1 and PC3, but the group did not assess the 
levels of mature insulin produced.52 Matsuoka et al. showed that insulin 
was expressed in mouse IEC-6 cells only when MAFA was co-transduced 

with PDX1 and BETA2.53 Unfortunately, the group did not assess insulin 
secretion in response to glucose.53 

Chen et al., through the collective expression of all three PMN 
transcription factors, acquired clusters of crypt-residing, insulin + in-
testinal cells in mice treated with doxycycline, but insulin secretion was 
only observed in response to high (15 mM), but not low (3 mM) con-
centrations of glucose.54 Lee et al. successfully reprogrammed murine 
intestinal cells to produce insulin through adenoviral delivery of PMN 
transcription factors but did not discuss how sensitive and responsive 
these cells were to glucose.46 Two groups, utilizing the overexpression of 
PMN factors, efficiently harnessed mice NGN3-marked gut cells, notably 
at different locations along the GI tract, into glucose-responsive "β-like" 
cells at seemingly high frequencies. The intestinal "neo-islets’ ’obtained 
by Chen et al. were observed to be converted at a remarkable rate of 
50%, but these unstable cells disappeared after the deinduction of PMN 
factors.54 Ariyachet et al. reported that about 42% of highly regenera-
tive, monohormonal antral stomach NKX 6.1 and PC2+ cells in mice 
were positive for insulin and could reverse hyperglycemia in a 
glucose-responsive manner.55 The group suggested the harvesting and 
coalescing of these cells into transplantable “mini-organs’’ for the 
treatment of diabetes - an interesting alternative to attaining numerous 
gut “β-like” cells.55 The Stanger group showed that their crypt-residing 
"neo-islet" in doxycycline-treated mice, similarly to pancreatic 
beta-cells, possess ultra-structural components with the ability to pro-
cess preproinsulin, with the release of C-peptide in its mature form, but 
the group did not discuss the expression of proteases responsible for 
insulin maturation.54 

Elegant studies focusing on the inhibition of the nuclear Forkhead 
boxO1 (FOXO1) transcription factor have shown some success in 
achieving glucose-regulated/amplified insulin secretion from reprog-
rammed gut β-cells (see (b) in figure). During nutrient overload, 
pancreatic FOXO1 counters PDX1 to hinder β-cell proliferation and in-
sulin secretion, while preserving pancreatic β-cells against acute 
oxidative stress.56–59 Under lower nutritive states, FOXO1 promotes 
β-cell proliferation by inducing Cyclin D and evoking antioxidant 
mechanisms to prevent β-cell failure, thus sustaining β-cell 
function.56–59 A subset of FOXO+ and NGN3+ gut cells have also been 
shown to determine gastric cell distribution.60,61 Talchai et al. were able 
to attain insulin-positive gut cells through somatic Foxo1 ablation in 
Ngn3-expressing enteroendocrine progenitor cells of adult mice.62 In an 
STZ-induced diabetic mouse, the group obtained reprogrammed gut 
cells that expressed mature pancreatic β-cell markers and secreted 
bioactive insulin in response to varying glucose and sulfonylurea con-
centrations.62 The same group showed that Foxo1 removal from 
human-derived iPS gut organoids promoted the generation of 
insulin-positive cells, releasing C-peptide in a dose-dependent manner to 
concentrations of secretagogues.63 This group identified a new popula-
tion of Foxo-expressing cells in the stomach epithelium, of which Foxo1 
deletion resulted in a substantial increase in insulin and c-peptide 
expressing cells with "β-like" gene expression.64 Unfortunately, only 
about 4% of the intestinal Ngn3+ cells and about 0.05% of cells 
human-derived iPS gut organoids, a number that decreased over time, 
were positive for insulin.62–64 Recently, three studies from the Accili 
group showed that the blockade of either a single FoxO1 agent or a triad 
of Notch-Tgfβ-FoxO1 transcription factors yields immunoreactive 
“β-like” insulin + gut cells and reverses hyperglycemia in 
streptozotocin-diabetic insulin-deficient akita mice and cultured human 
enteroids.65–67 The synergistic effect of the dual inhibition of FOXO1 
and notch signaling increased the number of progenitor enteroendocrine 
cells by 30%, signifying the possibility of higher conversion frequency.65 

Unfortunately, FOXO1 ablation in gut cells, despite being an efficient 
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route for achieving glucose-responsive "β-like" cells, is not without risk. 
FOXO factors play critical roles in tumor suppression and FOXO1 is 
mostly deleted, inactivated, or downregulated in some human can-
cers.68–71 Thus, any therapeutic approach relying on down-regulating 
FOXO1 from a patient’s gut would have to consider side-effects seri-
ously. Also, FOXO factors have been shown to integrate cues for deter-
mining the developmental timing, pool size, and functional features of 
endocrine progenitor cells, so complete ablation of FOXO1 might un-
knowingly hinder the functionality and proliferation of host enter-
oendocrine stem cells.62,72 Although these setbacks question the safe 
utilization of FOXO1 ablation, the Accili group has persistently 
demonstrated that the inhibition of FOXO1 is sufficient to transform gut 
cells into insulin-producing, glucose-responsive cells. 

2.1. Transgenesis shows promise in reprogramming enteroendocrine cells 
(EECs) into gut “β-like” cells 

Enteroendocrine cells, especially that of G -, K-, and L-cells, have 
sophisticated nutrient/glucose sensing systems and share similar NGN3- 
precursor differentiation pathway with pancreatic β-cells, hence tightly 
secrete incretins (gastrin, GIP, and GLP-1) in response to ingested meals 
with similar kinetics to pancreatic β-cells.47,73–82Recently, Egozi et al. 
made a single-cell atlas of human fetal and neonatal small intestinal cells 
and found subsets of fetal insulin expressing K and L cells.83 Unfortu-
nately, compared to the number of adult pancreatic beta cells, the 
number of fetal K/L INS + cells (9 INS + cells out of 37 fetal K/L cells) 
were four orders lower in magnitude and ceased with insulin expression 
with time.83 The similarity in insulin secretion and incretin secretion 
kinetics and differentiation pathways between EECs and pancreatic 
β-cells suggests enteroendocrine cells to be suitable candidates for 
achieving glucose-regulated insulin secretion. However, 
glucose-regulated insulin secretion in EECs has seen modest success, and 
there are compounding uncertainties regarding the most suitable choice 
of EEC for robust conversion. 

Gastric G cells in transgenic mice with a chimeric gene consisting of a 
gastrin promoter fused to the human insulin gene produced insulin, but 
the kinetics of insulin secretion was not discussed.84 Aiming to decipher 
the kinetics of insulin secretion, Lu et al. achieved functional insulin 
production in G-cells by creating transgenic rats that had the human 
insulin coding sequence knocked into the mouse gastrin gene.85 Though 
the insulin produced was able to ameliorate hyperglycemia in STZ - 
induced diabetic rats, the group found that gastric G-cells could only 
secrete insulin when stimulated by peptone, not glucose85 Given that 
G-cells are mainly responsive to proteins, researchers speculate that 
transforming these cells into surrogate β-cells might not lead to glucose 
–potentiated insulin release.47,86,87 K- cells, derived from the 
STC-1intestinal cell line and induced to produce NGN3 and NKX6.1, 
upregulated insulin gene expression but could not secrete insulin to 
lower glucose after transplantation in diabetic mice.88 Likewise, 
GIP-enriched K-cells, GTC-1 cells, were transcriptionally controlled to 
produce insulin via a dose and time-dependent introduction of mife-
pristone, not glucose.89 After transplantation of these 
mifepristone-treated cells in STZ-induced diabetic mice, the mice were 
surprisingly observed to be hypoglycemic, and the group attributed this 
result to the fact the reprogrammed mice K-cells lacked the precise 
glucose sensitivity of the native human K-cell, releasing insulin even 
under low glucose conditions for normal physiological functions in 
humans.89 Also, these cells lost glucose sensitivity and insulin secretion 
capacity over time: indicating that the transplanted cells lacked the 
requisite interactions characteristic of human K-cells.89 

Dose-dependent, acute insulin and endogenous GLP-1 secretion was 

observed in human NCI–H716 intestinal cell lines (an enteroendocrine 
L-cell replica) transduced with a recombinant adeno-associated virus 
(rAAV) vector carrying the human insulin gene. Insulin was induced 
only upon stimulation by meat hydrolysate.90 The same group achieved 
in vitro insulin secretion after transfecting murine GLUTag L-cell line 
with a plasmid co-expressing human insulin and neomycin resistance.91 

Nevertheless, insulin secretion was induced at a sub physiological 
glucose concentration level with no significant insulin secretion changes 
from cells exposed to escalated glucose concentrations (5 mM vs 20 
mM), showing that the secreted insulin was rendered, but not regulated 
by glucose.91 Murine GLUTag-INS L-cells also expressed both PC1/3 and 
PC2; however, it was not demonstrated that the insulin produced was 
bioactive and mature91 

After employing western blotting on intestinal lysates to evaluate the 
immunoreactivity of murine K-cell-derived insulin, Mojibian et al. found 
that most of the secreted insulin was proinsulin and not mature92 The 
scientists speculated this sub-optimal processing of insulin was because 
the murine K-cell expresses PC1 and PC3, but not PC2.92 The same group 
recently further challenged the long-standing theory of insulin pro-
cessing by showing that PC2 is not required for proinsulin processing 
into mature insulin in humans.93 It is reasonable to assert that an im-
mune attack against gut-derived beta-like cells could cause a low 
observed reprogramming rate. However, the gut has been evidenced to 
have "immune privilege," denoting that reprogrammed gut, insulin +
cells, which do not express β-cell autoantigens, could evade an immune 
attack.94,95 In NOD mice, K- cells, upon overexpression of preproinsulin, 
produced insulin and showed high levels of immunoreactivity and 
secreted very few inflammatory cytokines, escaping immune attack.92 In 
view of this immune advantage, researchers may not need to address 
immune attack on β-like gut cells; however, more studies are needed to 
determine if gut-originated insulin + cells can resist immune attack in 
animal models over time. 

During embryonic development, the Paired box 4 (PAX4) factor es-
tablishes the endocrine lineage of pancreatic β-cells and EECs, while 
selectively promoting mature β-cell expansion and resistive survival 
against apoptosis by oxidative metabolic stress.96–102 PAX4 has also 
been evidenced to promote β-cell differentiation of human embryonic 
stem cells.103–108 Relying on both their previous results of PAX4 mis-
expression converting somatostatin-producing δ-cells into "β-like" cells 
and the high frequency of somatostatin + gut cells, the Collombat group 
found that misexpressing PAX4 in somatostatin + gut cells was sufficient 
to produce robust gut "β-like" cells28,109,110 (see (c) in Figure). The 
group, from lineage tracing, determined that the somatostatin + gut 
cells were D-cells.28 Interestingly, the group attained a high frequency of 
65% beta-like cells co-expressing insulin and somatostatin and approx. 
25% expressing insulin only.28 Moreover, the group also saw PC1/3, an 
enzyme involved in insulin maturation, signifying that the insulin pro-
duced was mature.28 So far, PAX4 misexpression in gut somatostatin D 
cells have been shown to overcome almost all hurdles of functional in-
sulin secretion of gut beta-like cells and deserves careful attention going 
forward. 

2.2. Incretins possesses the ability to rewire the gut to make glucose- 
regulated insulin-producing cells through enteric signaling 

Incretin hormones potentiate pancreatic insulin release in response 
to elevated glucose concentrations in the fed state.31,111–115 Auspi-
ciously, this pancreatic, glucose-dependent insulinotropic effect has 
been meaningfully exploited to demonstrate insulin secretion through 
direct interactions between intestinal cells and GLP-1, an incretin that 
stimulates pancreatic β-cell proliferation and inhibits glucagon 
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secretion116–118 (see (d) in Figure). The molecular mechanism respon-
sible for this physiological phenomenon was unclear until recently when 
studies indicated that GLP-1 analogs and receptor agonists promoted 
intestinal enteroendocrine cell proliferation – a similar effect on 
pancreatic beta cells - by allowing for self-adaptation to metabolic stress, 
hence leading to increased incretin expression against metabolic syn-
dromes, particularly obesity and type 2 diabetes.119–122 

Suzuki et al. first showed that intraperitoneal delivery of the full 
form of GLP-1(1-37), by controlling the expression of ngn3 and HNF-6, 
directly converts both adult and embryonic rat intestinal epithelial 
cells into glucose-regulated, insulin-secreting cells.123 Two studies from 
the March lab have shown that by populating the intestinal villous 
compartment with engineered bacteria that secrete GLP-1(1-37) intestinal 
epithelial cells could be differentiated into glucose-responsive, insu-
lin-producing cells. Human intestinal carcinomas (Caco-2 cells) trans-
formed into insulin-secreting cells, secreting up to 1 ngml− 1 of insulin 
when co-cultured with GLP-1(1-37)-secreting Escherichia coli Nissle 1917, 
under the control of the fliC promoter.124 The bacteria exhibited high 
survival and persistence, augmenting serum insulin to levels needed for 
steady glycemic control in healthy adults.124 In the subsequent study, 
this approach proved successful in vivo, where a 50-day oral adminis-
tration of GLP-1(1–37)-secreting Lactobacillus gasseri reduced but did not 
fully ameliorate hyperglycemia in STZ-induced diabetic rats.45 The 
bacterially-treated rats, relative to wild-type STZ-induced diabetic rats, 
showed a two-fold increase in serum insulin levels in correspondence 
with ingested glucose concentrations. In vitro experiments in IEC-6 cells 
linked this response to HNF-6 expression.45 

Suzuki et al. stated that their achieved GLP-1 (1-37) -stimulated, 
glucose-regulated insulin + intestinal cells were in very low frequency in 
adult rats (Suzuki et al., 2003). The March Lab made a similar 

observation when only about 0.06% of rat intestinal epithelial cells were 
able to produce insulin upon daily administration of GLP-1(1-37) – 
secreting bacteria (F. F. Duan et al., 2015b). Reasons for this outcome 
are unknown: however even for the experiments focused on GLP-1 as a 
reprogramming agent, we speculate that the low reprogramming rates of 
gut cells are mostly due to the inherent lumenal instability of bio-
molecules, the ambiguities regarding sufficient, safe biomolecule con-
centrations adequate to induce reprogramming, and the inadequacies in 
the biomolecule delivery method.45 The non-bioactive, non-functional 
form of GLP-1 molecule, GLP-1(1-37), has an inherent short half-life due 
to rapid degradation by the protease DPP-IV thus may not have even 
reached the crypts to drive intestinal conversion45,125–131 In all, these 
promising studies have opened the possibility of exploring incretins as 
powerful insulin-inducing biomolecules. Future studies should focus on 
establishing optimal, safe, and precise dosing of incretins for effective 
attainment of robust gut beta-like cells. 

2.3. Graphical summary 

Figure. Evidenced strategies for gut cell reprograming into gut ’beta- 
like’ cells. 

Descriptive text: Gut cells made to express either one, or some 
combination of PDX1, MAFA, and NGN3 (PMN factors) have been 
shown to produce insulin (a).43,48–51,53–55,132 Gut ablation of FOXO1 has 
consistently been shown to yield gut “β-like” cells (b).36,61–67,72 

Recently, PAX4 misexpression has been shown to also yield robust gut 
“β-like” cells in high numbers (c).28 Incretin delivery (e.g.GLP-1) have 
also been presented to illicit insulin gut-derived insulin secretion 
(d).45,123,124  
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3. Conclusion 

Reprogramming gut cells into producing endogenous insulin remains 
a potentially attractive means of managing, and ultimately curing dia-
betes. Given the evidenced insulinotropic potential of the gut, it is not 
surprising to witness the several innovative approaches employed to 
fully manifest this insulinotropic effect. Several studies have succeeded 
in harnessing gut cells to produce viable insulin, but in very small cell 
numbers, and at times without robust glucose homeostatic ability. To 
achieve sturdy insulin + cells through any therapeutic method, we 
suggest focusing on gaining a complete understanding of all processes, 
candidate genes, and transcription factors responsible for not only 
enteric insulin expression and granule secretion, but also for protection 
of reprogrammed gut “β-like” cells from immune and physiological as-
sault. In-vitro studies should aim at establishing optimal, safe, and 
precise dosing of gut insulin-inducing biomolecules to ensure maximal 
conversion. Advanced efforts, including but not limited to encapsulated 
cell transplantation, for both the delivery and silencing of genes and 
transcription factors are currently underway. However, alluding to the 
aforesaid challenges associated with transplantations and humoral 
protein delivery, formulating a safe oral pill that delivers accurate, yet 
systemically specific biomolecules and decoys, appears to be an 
outstanding method for patient ease and compliance. With the high, 
escalating prevalence of insulin-dependent diabetes, reprogramming gut 
cells into insulin producing cells remains an innovative, attention 
worthy approach to meet the exponentially growing demand for safe 
insulin. 
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