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Simple Summary: Early detection of oral cancer is important to increase the survival rate and reduce
morbidity. For the past few years, the early detection of oral cancer using artificial intelligence
(AI) technology based on autofluorescence imaging, photographic imaging, and optical coherence
tomography imaging has been an important research area. In this study, diagnostic values including
sensitivity and specificity data were comprehensively confirmed in various studies that performed AI
analysis of images. The diagnostic sensitivity of AI-assisted screening was 0.92. In subgroup analysis,
there was no statistically significant difference in the diagnostic rate according to each image tool. AI
shows good diagnostic performance with high sensitivity for oral cancer. Image analysis using AI
is expected to be used as a clinical tool for early detection and evaluation of treatment efficacy for
oral cancer.

Abstract: The accuracy of artificial intelligence (AI)-assisted discrimination of oral cancerous lesions
from normal mucosa based on mucosal images was evaluated. Two authors independently reviewed
the database until June 2022. Oral mucosal disorder, as recorded by photographic images, autoflu-
orescence, and optical coherence tomography (OCT), was compared with the reference results by
histology findings. True-positive, true-negative, false-positive, and false-negative data were extracted.
Seven studies were included for discriminating oral cancerous lesions from normal mucosa. The
diagnostic odds ratio (DOR) of AI-assisted screening was 121.66 (95% confidence interval [CI], 29.60;
500.05). Twelve studies were included for discriminating all oral precancerous lesions from normal
mucosa. The DOR of screening was 63.02 (95% CI, 40.32; 98.49). Subgroup analysis showed that
OCT was more diagnostically accurate (324.33 vs. 66.81 and 27.63) and more negatively predictive
(0.94 vs. 0.93 and 0.84) than photographic images and autofluorescence on the screening for all oral
precancerous lesions from normal mucosa. Automated detection of oral cancerous lesions by AI
would be a rapid, non-invasive diagnostic tool that could provide immediate results on the diagnostic
work-up of oral cancer. This method has the potential to be used as a clinical tool for the early
diagnosis of pathological lesions.

Keywords: mouth neoplasms; imaging; optical image; precancerous conditions; artificial intelligence;
screening

1. Introduction

Oral cancer accounts for 4% of all malignancies and is the most common type of head
and neck cancer [1]. The diagnosis of oral cancer is often delayed, resulting in a poor
prognosis. It has been reported that early diagnosis increases the 5-year survival rate to
83%, but if a diagnosis is delayed and metastasis occurs, the survival rate drops to less than
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30% [2]. Therefore, there is an urgent need for early and accurate detection of oral lesions
and for distinguishing precancerous and cancerous tissues from normal tissues.

The conventional screening method for oral cancer is visual examination and palpation
of the oral cavity. However, the accuracy of this method is highly dependent on the
subjective judgment of the clinician. Diagnostic methods such as toluidine blue staining,
autofluorescence, optical coherence tomography (OCT), and photographic imaging were
useful as adjunctive methods for oral cancer screening [3–6].

Over the past decade, studies have increasingly showed that artificial intelligence (AI)
technology is consistent with or even superior to human experts in identifying abnormal
lesions in additional images of various organs [7–11]. These results give us hope for the
potential of AI in the screening of oral cancer. However, large-scale statistical approaches
to diagnostic power for using oral imaging with AI are lacking. Therefore, in this study, the
sensitivity and specificity were analyzed through meta-analysis to evaluate the accuracy
of detecting oral precancerous and cancerous lesions in AI-assisted oral mucosa images.
We also performed subgroup analysis to determine whether accuracy differs between
imaging tools.

2. Materials and Methods
2.1. Literature Search

Searches were performed in six databases: PubMed, Embase, Web of Science, SCOPUS,
Cochrane Central Register of Controlled Trials, and Google Scholar. The search terms
were: “artificial intelligence”, “photo”, “optical image”, “dysplasia”, “oral precancer”,
“oral cancer”, and “oral carcinoma”. The search period was set to June 2022, and data
written in English were reviewed. Two independent reviewers reviewed all abstracts and
titles of candidate studies. Among studies diagnosing oral cancer using images, studies
that did not deal with AI were excluded.

2.2. Selection Criteria

The inclusion criteria were: (1) use of AI; (2) prospective or retrospective study proto-
col; (3) comparison of AI-assisted screening of oral mucosal lesions with the reference test
(histology); and (4) sensitivity and specificity analyses. The exclusion criteria were: (1) case
report format; (2) review article format; (3) diagnosis of other tumors (laryngeal cancer or
nasal cavity tumors); and (4) lack of diagnostic AI data. The search strategy is summarized
in Figure 1.

2.3. Data Extraction and Risk of Bias Assessment

All data were collected using standardized forms. As diagnostic accuracy, diagnostic
odds ratio (DOR), areas under the curve (AUC), and summary receiver operating character-
istic (SROC) were identified. The diagnostic performance was compared with histological
examination results.

A random-effect model was used in this study. DOR represents the effectiveness of a
diagnostic test. DOR is mathematically defined as (true positive/false positive)/(false nega-
tive/true negative). When DOR is greater than 1, higher values indicate better performance
of the diagnostic method. A value of 1 means that the presence or absence of a disease
cannot be determined and that the method cannot provide diagnostic information. To
obtain an approximately normal distribution, we calculated the logarithm of each DOR and
then calculated 95% confidence intervals [12]. SROC is a statistical technique used when
performing a meta-analysis of studies that report both sensitivity and specificity. As the
diagnostic ability of the test increases, the SROC curve shifts towards the upper-left corner
of the ROC space, where both sensitivity and specificity are 1. AUC ranges from 0 to 1, with
higher values indicating better diagnostic performance. We collected data on the number
of patients, true-positive, true-negative, false-positive, and false-negative values in all
included studies, and calculated AUCs and DORs from these values. The methodological
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quality of the included studies was evaluated using the Quality Assessment of Diagnostic
Accuracy Study (QUADAS-2) tool.
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Figure 1. Summary of the search strategy.

2.4. Statistical Analysis and Outcome Measurements

R statistical software (R Foundation for Statistical Computing, Vienna, Austria) was
used to conduct a meta-analysis of the studies. Homogeneity analyses were then performed
using the Q statistic. Forest plots were drawn for the sensitivity, specificity, and negative
predictive values, and for the SROC curves. A meta-regression analysis was performed to
determine the potential influence of imaging tools on AI-based diagnostic accuracy for all
premalignant lesions.

3. Results

This analysis included 14 studies [6,13–25]. Table 1 presents the assessment of bias.
The characteristics of the studies are attached in Table S1.

3.1. Diagnostic Accuracy of AI-Assisted Screening of Oral Mucosal Cancerous Lesions

Seven prospective and retrospective studies were included for discriminating oral can-
cerous lesions from normal mucosa. The diagnostic odds ratio (DOR) of AI-assisted screen-
ing was 121.6609 (95% confidence interval [CI], 29.5996; 500.0534, I2 = 93.5%) (Figure 2A).
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Table 1. Methodological quality of all included studies.

Reference
Risk of Bias Concerns about Application

Patient
Selection Index Test Reference

Standard
Flow and
Timing

Patient
Selection Index Test Reference

Standard

Nayak 2006 [13] Unclear Low Unclear Unclear Low Low Low
Heidari 2018 [14] Low Low Low Low Low Low Low
Song 2018 [15] Low Low Low Low Low Low Low
Fu 2020 [6] high Low Low Low Low Low Low
Duran-Sierra 2021 [16] Unclear Low Unclear Unclear Low Low Low
James 2021 [17] Low Low Unclear Low Low Low Low
Jubair 2021 [18] Unclear Low Low Low Low Low Low
Lin 2021 [19] Unclear Low Unclear Low Low Low Low
Song 2021 [20] Low Low Low Low Low Low Low
Tanriver 2021 [21] Low Low Low Low Low Low Low
Warin 2021 [22] Low Low Low Low Low Low Low
Yang 2021 [23] Low Low Low Low Low Low Low
Warin 2022 [24] Low Low Low Unclear Low Low Low
Yuan 2022 [25] Low Low Low Low Low Low Low
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Figure 2. Forest plot of the diagnostic odds ratios for (A) screening only oral cancerous lesions [13,16,
17,21–23,25] and (B) screening all premalignant mucosal lesions [13–21,23,24].

The area under the summary receiver operating characteristic curve was 0.948, sug-
gesting excellent diagnostic accuracy (Figure 3A).

The correlation between the sensitivity and the false-positive rate was 0.437, indicating
the absence of heterogeneity. AI-assisted screening exhibited good sensitivity (0.9232
[0.8686; 0.9562]; I2 = 81.9%), specificity (0.9494 [0.7850; 0.9897], I2 = 98.3%), and negative
predictive value (0.9405 [0.8947; 0.9671]. I2 = 83.6%) (Figure 4). The Begg’s funnel plot
(Supplementary Figure S1) shows that a source of bias was not evident in the included
studies. The Egger’s test result (p > 0.05) also shows that the possibility of publication bias
is low.
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Figure 3. Area under the summary receiver operating characteristic for (A) screening only the oral
cancerous lesions and (B) screening all premalignant mucosal lesions. SROC; summary receiver
operating characteristic, CI; confidence interval.

Subgroup analyses were performed to determine which image tool assisted by AI had
higher discriminating power between oral cancer lesions and normal mucosa. This analysis
showed that that there were no significant differences between the photographic image,
autofluorescence, and OCT in AI based on the screening for oral cancer lesion (Table 2).

Table 2. Subgroup analysis regarding image tool in discriminating oral cancerous lesions from normal
mucosa.

Subgroup Study (n) DOR [95% CIs] Sensitivity [95% CIs] Specificity [95% CIs] NPV [95% CIs] AUC

7 121.6609 [29.5996;
500.0534]; I2 = 93.5%

0.9232 [0.8686; 0.9562];
I2 = 81.9%

0.9494 [0.7850; 0.9897];
I2 = 98.3%

0.9405 [0.8947;
0.9671]; I2 = 83.6% 0.948

Image tool

Autofluorescence 2 25.9083 [ 6.3059;
106.4464]; I2 = 68.0%

0.8972 [0.8262; 0.9413];
I2 = 63.5%

0.8213 [0.4430; 0.9637];
94.0%

0.9041 [0.8263;
0.9492]; 23.9%

Optical coherense
tomography 3 261.9981 [14.7102;

4666.3521]; I2 = 96.3%
0.9419 [0.8544; 0.9781];

I2 = 84.4%
0.9461 [0.7931; 0.9877];

94.6%
0.9625 [0.9106;
0.9848]; 81.9%

Photographic
image 2 431.6524 [ 4.0037;

46537.4743]; I2 = 93.0%
0.9149 [0.7475; 0.9750];

I2 = 87.4%
0.9983 [0.2906; 1.0000];

94.9%
0.9381 [0.8109;
0.9816]; 87.5%

0.2332 0.5910 0.2907 0.2291

DOR; diagnostic odds ratio, AUC; area under the curve, NPV; negative predictive value.

3.2. Diagnostic Accuracy of AI-Assisted Screening of Oral Mucosal Precancerous and
Cancerous Lesions

Twelve prospective and retrospective studies were included for discriminating oral
precancerous and cancerous lesions from normal mucosa. The diagnostic odds ratio
(DOR) of AI-assisted screening was 63.0193 (95% confidence interval [CI], 40.3234; 98.4896,
I2 = 88.2%) (Figure 2B). The area under the summary receiver operating characteristic curve
was 0.943, suggesting excellent diagnostic accuracy (Figure 3B). The correlation between the
sensitivity and the false-positive rate was 0.337, indicating the absence of heterogeneity. AI-
assisted screening exhibited good sensitivity (0.9094 [0.8725; 0.9364]; I2 = 92.3%), specificity
(0.8848 [0.8400; 0.9183], I2 = 93.8%), and negative predictive value (0.9169 [0.8815; 0.9424],
I2 = 92.8%) (Figure 5).
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Figure 4. Forest plots of (A) sensitivity, (B) specificity, and (C) negative predictive values for screening
oral cancerous lesions [13,16,17,21–23,25].

The Egger’s test results of sensitivity (p = 0.02025) and negative predictive value
(p < 0.001) also show that the possibility of publication bias is high. To compensate for the
publication bias using statistical methods, trim-and-fill methods (trimfill) were applied to
the outcomes. After implementation of trimfill, sensitivity dropped from 0.9094 [0.8725;
0.9364] to 0.8504 [0.7889; 0.8963] and NPV also dropped from 0.9169 [0.8815; 0.9424] to
0.7815 [0.6577; 0.8694]. These results could mean that the diagnostic power of AI-assisted
screening of precancerous and cancerous lesions would be overestimated and clinicians
would need to be careful when interpreting these outcomes.

Subgroup analyses were performed to determine which image tool assisted by AI had
higher discriminating power of oral mucosal cancerous lesions including precancerous
lesions. Subgroup analysis showed that OCT was more diagnostically accurate (324.3335
vs. 66.8107 and 27.6313) and more negatively predictive (0.9399 vs. 0.9311 and 0.8405)
than photographic images and autofluorescence in AI based on the screening for oral
precancerous and cancerous lesions from normal mucosa (Table 3). Meta-regression of AI
diagnostic accuracy for oral precancerous and cancerous lesions on the basis of imaging
tool revealed the significant correlations (p = 0.0050).
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Table 3. Subgroup analysis regarding image tool in discriminating oral precancerous and cancerous
lesions from normal mucosa.

Subgroup Study (n) DOR [95% CIs] Sensitivity [95% CIs] Specificity [95% CIs] NPV [95% CIs] AUC

12 63.0193 [40.3234;
98.4896]; I2 = 88.2%

0.9094 [0.8725; 0.9364];
I2 = 92.3%

0.8848 [0.8400; 0.9183];
I2 = 93.8%

0.9169 [0.8815;
0.9424]; I2 = 92.8% 0.943

Image tool

Autofluorescence 4 27.6313 [17.2272;
44.3186]; I2 = 69.3%

0.8562 [0.8002; 0.8985];
I2 = 69.6%

0.8356 [0.7591; 0.8913];
86.8%

0.8405 [0.7487;
0.9031]; 91.1%

Optical coherense
tomography 3 324.3335 [10.2511;

10261.6006]; I2 = 95.6%
0.9424 [0.8000; 0.9853];

I2 = 88.3%
0.9653 [0.8737; 0.9911];

79.8%
0.9399 [0.8565;
0.9762]; 75.7%

Photographic
image 5 66.8107 [38.0216;

117.3983]; I2 = 81.7%
0.9123 [0.8683; 0.9426];

I2 = 79.5%
0.8779 [0.8322; 0.9125];

87.4%
0.9311 [0.9196;
0.9410]; 0.0%

0.0312 0.1120 0.0659 0.0073

DOR; diagnostic odds ratio, AUC; area under the curve, NPV; negative predictive value.

4. Discussion

Oral cancer is a malignant disease with high disease-related morbidity and mortality
due to its advanced loco-regional status at diagnosis. Early detection of oral cancer is the
most effective means to increase the survival rate and reduce morbidity, but a significant
number of patients experience delays between noticing the first symptoms and receiving a
diagnosis from a clinician [26]. In clinical practice, a conventional visual examination is not a
strong predictor of oral cancer diagnosis, and a quantitatively validated diagnostic method
is needed [27]. Radiographic imaging, such as magnetic resonance imaging and computed
tomography, can help determine the size and extent of oral cancer before treatment, but
these techniques are not sensitive enough to distinguish precancerous lesions. Accordingly,
various adjunct clinical imaging techniques such as autofluorescence and OCT have been
used [28].

AI has been introduced in various industries, including healthcare, to increase effi-
ciency and reduce costs, and the performance of AI models is improving day by day [29].
For the past few years, the early detection of oral cancer using AI technology based on
autofluorescence imaging, photographic imaging, and OCT imaging has been an important
research area. In this study, diagnostic values including sensitivity and specificity data were
comprehensively confirmed in various studies that performed AI analysis of images. The
diagnostic sensitivity of oral cancer analyzed by AI was as high as 0.92, and the analysis
including precancerous lesions was slightly lower than the diagnostic sensitivity for cancer,
but this also exceeded 90%. In subgroup analysis, there was no statistically significant
difference in the diagnostic rate according to each image tool. In particular, the sensitivity
of OCT to all precancerous lesions was found to be very high at 0.94.

Autofluorescence images are created using the characteristic that autofluorescence
naturally occurring from collagen, elastin, and other endogenous fluorophores such as
nicotinamide adenine dinucleotide in mucosal tissues by blue light or ultraviolet light is
expressed differently in cancerous lesions [30,31]. Although it has been used widely in the
dental field for the purpose of screening abnormal lesions in the oral cavity, it has been
reported that the accuracy is low, with a sensitivity of only 30–50% [32,33]. It has been noted
that autofluorescence images have a low diagnostic rate when used in oral cancer screening.
Most of the previous clinical studies on autofluorescence-obtained images used differences
in spectral fluorescence signals between normal and diseased tissues. Recently, time-
resolved autofluorescence measurements using the characteristics of different fluorescence
lifetimes of endogenous fluorophores have been used to solve the problem of broadly
overlapping spectra of fluorophores, improving image accuracy [34]. Using various AI
algorithms for advanced autofluorescence images, the diagnostic sensitivity of precancerous
and cancerous lesions was reported to be as high as 94% [15]. As confirmed in our study,
AI diagnosis sensitivity using autofluorescence images was confirmed to be 85% in all
precancerous lesions. It showed relatively low diagnostic accuracy when compared to other
imaging tools in this study. However, autofluorescence imaging is of sufficient value as
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an adjunct diagnostic tool. Efforts are also being made to improve the diagnostic accuracy
for oral cancer by using AI to analyze images obtained using other tools along with the
autofluorescence image [19].

The photographic image is a fast and convenient method with high accessibility com-
pared to other adjunct methods. However, there is a disadvantage in that the image quality
varies greatly depending on the camera, lighting, and resolution used while obtaining the
image. Unlike external skin lesions, the oral cavity is surrounded by a complex, three-
dimensional structure including the lips, teeth, and buccal mucosa, which may decrease
the image accuracy [6]. In a recent study introducing a smartphone-based device, it was
reported that the problem of the image itself was solved through a probe that can easily
access the inside of the mouth and increasing images pixel [35]. Image diagnosis using a
smartphone is very accessible in the current era of billions of phone subscribers worldwide,
and in particular, it is expected that accurate and efficient screening will be possible by
diagnosing a vast number of these images with AI. According to our analysis, AI-aided
diagnosis from photographic images was confirmed to have a diagnostic sensitivity of over
91% for precancerous and cancerous lesions.

OCT is a medical technology that images tissues using the difference in physical prop-
erties between the reference light path and the sample light path reflected after interaction
in the tissue [13]. OCT is non-invasive and uses infrared light, unlike other radiology tests
that use X-rays. It is also a good diagnostic method that allows real-time image verification.
Since its introduction in 1991 [36], OCT has been developed to provide high-resolution
images at a faster speed and has played an important role in the biomedical field. In an AI
analysis study of OCT images published by Yang et al., it was reported that the sensitivity
and specificity of oral cancer diagnosis was 98% or more [22]. In our study, OCT images
were found to be the most accurate diagnostic test, with sensitivity of 94% in AI diagnosis
compared to other image tools (sensitivity of autofluorescence and photographic images of
89% and 91%, respectively). Therefore, AI diagnosis using OCT images is considered to be
of sufficient value as a screening method for oral lesions. Each image tool included in our
study has its own pros and cons to be considered when using it in actual clinical practice.
In addition, accessibility of equipment or systems that can be performed on patients in
actual outpatient treatment will be an important factor.

Based on our results, AI analysis of images in cancer diagnosis is thought to be helpful
in making fast decisions regarding further examination and treatment. The accuracy of
discriminating between precancerous lesions and normal tissues showed a high sensitivity
of over 90%, showing good accuracy as a screening method. Although the question of
whether AI can replace experts still exists, it is expected that oral cancer diagnosis using
AI will sufficiently improve mortality and morbidity due to disease in low- and middle-
income countries with poor health care systems. Acquisition of large-scale image datasets
to improve AI analysis accuracy will be a clinically important key.

Our study has several limitations. First, our results include data from multiple imaging
tools analyzed at once. This created heterogeneity in the results. Therefore, the sensitivity
of each imaging tool was checked separately. The study is meaningful as it is the first
meta-analysis to judge the accuracy of AI-based image analysis. Second, even with the same
imaging tool, differences in the quality of the devices used in each study and differences
between techniques may affect the accuracy of diagnosis. The images used to train the AI
algorithm may not fully represent the diversity of oral lesions. Third, there is a limit to
the interpretation of the results due to the absolute lack of prospective studies between
the conventional examination and AI imaging diagnosis. It is our task to study this in
various clinical fields in order to prepare for a future in which AI-assisted healthcare will
be successful

5. Conclusions

AI shows good diagnostic performance with high sensitivity for oral cancer. Through
the development of image acquisition devices and the grafting of various AI algorithms,
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the diagnostic accuracy is expected to increase. As new studies in this field are published
frequently, a comprehensive review of the clinical implications of AI in oral cancer will be
necessary again in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
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