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Abstract

Purpose Patient-reported outcome measures (PROMs) are

frequently used in heterogeneous patient populations.

PROM scores may lead to biased inferences when sources

of heterogeneity (e.g., gender, ethnicity, and social factors)

are ignored. Latent variable mixture models (LVMMs) can

be used to examine measurement invariance (MI) when

sources of heterogeneity in the population are not known a

priori. The goal of this article is to discuss the use of

LVMMs to identify invariant items within the context of

test construction.

Methods The Draper-Lindely-de Finetti (DLD) framework

for the measurement of latent variables provides a theo-

retical context for the use of LVMMs to identify the most

invariant items in test construction. In an expository anal-

ysis using 39 items measuring daily activities, LVMMs

were conducted to compare 1- and 2-class item response

theory models (IRT). If the 2-class model had better fit,

item-level logistic regression differential item functioning

(DIF) analyses were conducted to identify items that were

not invariant. These items were removed and LVMMs and

DIF testing repeated until all remaining items showed MI.

Results The 39 items had an essentially unidimensional

measurement structure. However, a 1-class IRT model

resulted in many statistically significant bivariate residuals,

indicating suboptimal fit due to remaining local depen-

dence. A 2-class LVMM had better fit. Through subsequent

rounds of LVMMs and DIF testing, nine items were

identified as being most invariant.

Conclusions The DLD framework and the use of LVMMs

have significant potential for advancing theoretical devel-

opments and research on item selection and the develop-

ment of PROMs for heterogeneous populations.

Keywords Measurement invariance � Latent variable
mixture models � Test construction � Differential item
functioning

Introduction

Factor analysis and item response theory (IRT) methods

are established methods for item selection in test con-

struction for quality of life and patient-reported outcomes

measures (PROMs) [1]. These methods focus on the

dimensionality of a set of candidate items, where the goal

is to identify those items that conform to a hypothesized

and theoretically defensible dimensional structure. Mea-

surement invariance is another important psychometric

criterion that pertains to the equivalence of measurement

model parameters across different subgroups of people in
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the population. This is particularly important when

instruments are to be used in potentially heterogeneous

populations of people who may differ in how they interpret

and respond to questions about their health and quality of

life. If the differences are caused by factors that are unre-

lated to the construct of interest, a test (i.e., measurement

instrument) may produce biased scores. For example, if

some respondents provide lower ratings for a general

health item because they have difficulty in reading and

understanding the item, their scores will be influenced by

literacy, whereas the scores of others who have no diffi-

culty in reading and understanding the item will not. This

may in turn lead to incorrect inferences about the meaning

of the scores, which are assumed to reflect only the con-

struct of interest.

Several authors have argued for the importance of

examining measurement invariance in test construction

[2–5]. However, a particular challenge during test con-

struction is that it is often not known a priori what char-

acteristics of a population result in a lack of measurement

invariance. In those situations, conventional approaches for

examining measurement invariance with respect to selected

manifest variables [6] will be of limited use. Latent vari-

able mixture models (LVMMs) have been proposed to

address this challenge; they can be used to examine mea-

surement invariance with respect to two or more latent (i.e.,

unobserved) classes [7–9].

In this paper, we propose and describe the use of

LVMMs to guide the identification of invariant items in

test construction. We first introduce the Draper-Lindley-de

Finetti (DLD) framework of latent variable measurement

as a useful theoretical context [10, 11]. We then discuss

how LVMMs could be used to assess measurement

invariance. The methodological approach for using

LVMMs in the context of test construction is discussed

next. This is followed by a brief expository analysis

demonstrating the approach using an existing item bank for

the measurement of daily activities.

Theoretical context

The DLD framework relates the measurement of latent

variables to two necessary conditions pertaining to the

exchangeability of both measurement items and sampling

units (i.e., people or groups of people) [10, 11]. The first

condition is that the items must be exchangeable such that

they covary in a manner that is congruent with the mea-

surement structure. Here, exchangeability refers to the

notion that the items of a test are assumed to be drawn from

a hypothetical pool of all possible representative items

measuring the construct of interest (i.e., their dependencies

are due only to the construct). The second condition is that

the sampling units in the target population must be

exchangeable such that the measurement model parameters

are equivalently applicable to all individuals. These con-

ditions reflect the fundamental assumption of local inde-

pendence [12, 13], which requires that (a) dimensionality

among the items is accurately represented in the mea-

surement structure, and (b) item responses provided by

individuals, or groups of individuals, are independent from

those provided by other individuals in the target popula-

tion. In other words, violations of local independence may

be due to heterogeneity among the items or heterogeneity

within the sample [14].

The DLD framework further relates the conditions of

exchangeability of items and sampling units to the types of

inferences that can be made based on test (e.g., PROM)

scores [11]. In so doing, it provides an important basis for

measurement validation, where the focus is on the validity

of inferences (including actions and decisions) that are

made on test scores [15]. The particular inferences of

interest here pertain to the extent to which a pool of items

consistently reflects a latent variable in a potentially

heterogeneous population. Exchangeability of items is

necessary to warrant inferences about the test scores irre-

spective of the combination of items that are administered.

In the DLD framework, this is referred to as ‘‘specific

domain inference’’ [11], which is particularly important

when there are different versions of a measurement

instrument (e.g., short forms) or when people are exposed

to different measurement items (e.g., in computerized

adaptive testing). Exchangeability of sampling units refers

to the homogeneity of the population. This condition is

necessary to warrant ‘‘specific sampling inference’’ [11]

based on a measurement structure and estimated parame-

ters that are equivalently applicable (i.e., invariant) across

different subgroups in the population.

A variety of statistical methods are available for

examining each condition. The first condition, exchange-

ability of items, relates to the dimensional structure of a set

of measurement items. Unidimensionality implies that the

items are exchangeable with respect to a single latent

variable; that is, their covariances are fully accounted for

by the latent variable. Factor analysis and item response

theory (IRT) methods are widely used to evaluate this

condition during the process of test construction [1, 16].

Items that conform to a hypothesized and theoretically

defensible dimensional structure are retained, while those

that do not (e.g., do exhibit small factor loadings or dis-

crimination parameters, cross-loadings on other dimen-

sions, poor internal consistency reliability, etc.) may be

removed or revised, unless there are other reasons for

retention.

The second condition, exchangeability of sampling

units, relates to the degree to which residual covariances
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among items are explained by differences among individ-

uals within the sample. Differential item functioning (DIF)

methods are used to examine this condition by determining

the invariance of item parameters with respect to various

observed groups in the target population, such as those

characterized by differences in demographic variables

(gender, age, ethnicity) or various health-related variables

(e.g., having one or more medical conditions). Examples of

DIF techniques include multigroup confirmatory factor

analysis [17, 18], the Mantel–Haenszel procedure [19],

logistic regression models [20–22], multidimensionality-

based procedures [23] such as the simultaneous item bias

test (SIBTEST) [24], and IRT DIF analysis techniques

[25–28]. In summary, the DLD framework provides a

useful theoretical context for test construction by drawing

our attention to statistical conditions focusing on

exchangeability of both items and sampling units. A pre-

dominant focus in test construction has been on the

exchangeability of items by examining dependencies

among items to inform item selection. The DLD frame-

work provides the rationale for also focusing on the

exchangeability of sampling units by considering the extent

to which the measurement model parameters of individual

items are equivalent, or invariant, across population sub-

groups. If the goal is to construct a measure that is broadly

applicable in a general population, it is important to iden-

tify those items for which the parameters are most invari-

ant. However, a limitation of conventional DIF techniques

for the assessment of measurement invariance is that the

relevant sources of DIF in the target population must be

known a priori [14, 29–31]. As a result, DIF analyses will

only be as good as the selection of observed variables that

represent sources of DIF, which are unlikely to fully cap-

ture population heterogeneity [29, 30]. This limitation is of

particular concern when measurement instruments are used

in large and potentially heterogeneous populations where

the measurement model parameters are assumed to be

invariant irrespective of any differences, known and

unknown, in the target population. LVMMs are increas-

ingly recommended to address this limitation by examining

measurement invariance with respect to subgroups that are

not specified a priori [7, 11, 14, 31–33].

LVMMs for examining measurement invariance

LVMMs allow for the simultaneous modeling of continu-

ous latent variables that represent dependencies among

measurement items (exchangeability of items), and latent

classes that accommodate dependencies among individuals

(exchangeability of sampling units). The latent classes

represent subgroups of people who, relative to the overall

population, are more homogeneous with respect to a

specified statistical model (e.g., a measurement model).

LVMMs have been used for a number of purposes,

including, for example, to identify groups of individuals

who exhibit certain response behaviors (e.g., socially

desirable responding [e.g., 34], test taking behaviors [e.g.,

35]). They have also been used to identify groups of

individuals with different symptom patterns and charac-

teristics related to psychological conditions, such as anxi-

ety sensitivity, panic disorder, and conduct disorder [e.g.,

36–39], and have been proposed as a tool in the develop-

ment of diagnostic classifications [e.g., 40]. In the context

of test development, our interest lies in the use of LVMMs

for the assessment of measurement invariance. Here, the

focus is on measurement structures that include a contin-

uous latent variable representing the construct of interest

and latent classes (subgroups of individuals) that are

defined by differences in the parameter estimates of the

latent variable. If these differences occur between classes

of individuals who are matched on the construct of interest,

there is evidence that the measure lacks invariance.

Various LVMMs have been proposed for examining

measurement invariance, including factor mixture models,

Rasch and IRT mixture models, and extensions thereof.

Factor mixture models combine factor analysis with latent

class analysis by ‘‘nesting’’ the latent factor model within

two or more latent classes [41–43]. In factor analysis, the

measurement structure is assumed to hold across the pop-

ulation of interest. The addition of latent classes relaxes

this assumption by allowing measurement model parame-

ters (factor loadings, items thresholds or intercepts, and

item residual variances) to vary across the classes. Simi-

larly, in Rasch and IRT mixture models, the assumption of

parameter invariance can be relaxed and population

heterogeneity accommodated by allowing difficulty and

discrimination parameters to differ across latent classes

[29, 30, 44]. Based on these foundations, LVMMs can be

used for the identification of invariant items in the context

of test construction.

LVMM approach for item selection

The assessment of measurement invariance in the context

of test construction comprises the following five sequential

steps of identifying and removing noninvariant items while

comparing the fit of resulting 1- and 2-latent class models

(see Fig. 1). The approach can be described as follows

(methodological details are presented in the expository

analysis):

Step 1: The first step pertains to the exchangeability of

items, where the objective is to establish a theoretically

defensible measurement structure of a candidate pool of
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items through the application of factor analysis methods

in the full sample.

Step 2: The next step is to determine whether a sample is

homogeneous or heterogeneous relative to the measure-

ment structure. This is accomplished by fitting the model

from Step 1 to the data in both 1- and 2-class LVMMs

and comparing the fit of the models. If the fit of the

1-class model is superior, there is no evidence of sample

heterogeneity with respect to the measurement structure,

and the measurement invariance analyses can be

stopped. If the 2-class model produces better fit, the

next step is to identify the items that contribute to this

heterogeneity (i.e., the items that are least invariant).1

Step 3: DIF methods are applied to identify those items

that lack measurement invariance across the latent

classes. These items are then removed from the test or

item set (unless there are other reasons for retaining

them).

Step 4: The reduced test or item set is once again fit to

the data in both 1- and 2-class LVMMs, and the fit of the

models is compared. If the 1-class model produces better

fit, the analyses come to an end. If the 2-class model

produces better fit, an iterative process begins.

Step 5: Steps 3 and 4 are repeated until the most

invariant items are identified and the 1-class model

produces superior fit compared with the 2-class model

(i.e., the sample is no longer heterogeneous with respect

to the measurement model).

Step 2
Objective: Determine whether the 
sample is homogeneous or 
heterogeneous with respect to the 
specified measurement structure.

Method: Compare the fit of a 1-class 
model (assuming homogeneity) and a 2-
class model (allowing heterogeneity).

Assess 
model 

fit

Stop
(no evidence of DIF 
due to population 

heterogeneity)

Step 3
Objective: Identify items that are 
not invariant in the sample.

Method: Use DIF analysis 
methods to identify the least 
invariant items.

Step 4
Objective: Determine whether the sample is 
homogeneous or heterogeneous with respect 
to the specified measurement structure 
excluding those items identified in Step 3 as 
lacking invariance.

Method: Compare the fit of a 1-class model 
(assuming homogeneity) and a 2-class model 
(allowing heterogeneity).

Stop
(no evidence of DIF 
due to population 

heterogeneity)

Step 5
Repeat Steps 3-4 until there is no more 
evidence of heterogeneity with respect 
to the remaining items (i.e., all items are 
invariant)

Step 1
Objective: Establish measurement 
structure

1-class 
model has 

best fit

2-class 
model has 

best fit

1-class 
model has 

best fit

2-class 
model has 

best fit

Assess 
model 

fit

Fig. 1 Analytic Approach for Using LVMMs in Test Construction.

This figure is illustrative of comparing 1- and 2-class models. If

considering more than 2 latent classes, Step 2 is expanded to

sequentially decide on the number of latent classes, k, where k is

greater than 2. Once the k classes are decided upon, the remaining

steps are adapted to accommodate the k-class solution

1 It is possible to fit models with additional latent classes in an

incremental stepwise fashion, and this may in fact better capture any

existing heterogeneity in the sample. However, it should be noted that

the introduction of additional classes can significantly increase the

complexity of the DIF analyses, as many more parameters and models

Footnote 1 continued

need to be compared. For this reason, we have limited our expository

analysis to the comparison of 1- and 2-class LVMMs.
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It is important to note that the above steps focus on the

identification of items for which the measurement model

parameters are most likely to be invariant. In the context of

test construction, this information supplements other psy-

chometric and substantive considerations to guide item

selection.

Demonstration of LVMMs in test construction

The following expository analysis is provided as an

example of how LVMMs can be used to identify items that

are invariant in the population. The five-step approach was

applied to an existing item bank (39 items) measuring daily

activities (see Table 1), which is one of the item banks of

the CAT-5D-QOL [45, 46]. The items address overall

ability to perform usual activities, difficulty or limitations

in specific aspects of daily living (e.g., grooming, working,

and socializing) and the need for assistance in daily living.

Five-point response scales were used for 37 items, while a

4-point and a 3-point response scale were used for one item

each. The data are from a sample of 1666 adults living in

the province of British Columbia, Canada. Approximately

20% were patients at a rheumatology clinic, 20% were

drawn from a waiting list for knee or hip replacement

surgery, and the remainder comprised a random stratified

community sample. Further information about this sample

is published elsewhere [8].

Statistical methods

The statistical methods of relevance to this expository

analysis include those pertaining to factor analysis, IRT,

LVMMs (using the MPLUS v7.4 software [47]), and DIF

analysis (using SPSS v24 [48]).

For step 1, confirmatory and exploratory factor analyses

were conducted using mean and variance weighted least

squares estimation (WLSMV) to determine if the items

could be treated as unidimensional. Dimensionality was

assessed by evaluating the ratio of the first and second

eigen values. Although the eigen value greater than 1 rule-

of-thumb is widely used, it is important to note that it tends

to result in overestimation of the number of latent factors

[49, 50]. Based on a simulation study of conventional

guidelines, Slocum-Gori and Zumbo recommend that a

ratio of the first and second eigen values greater than 3 is

indicative of a unidimensional structure when samples are

relatively large (of 800 or more) and communality rela-

tively high (the simulation was based on a communality of

0.90) [51]. Fit of the measurement model was assessed

using the Comparative Fit Index (CFI) and Root Mean

Square Error of Approximation (RMSEA). Values above

0.90 for the CFI and below 0.08 for the RMSEA indicate

acceptable fit [52]. Next, a 2-parameter graded response

IRT model using full information maximum likelihood was

applied [53].

For step 2, LVMMs of the graded response IRT model

from step 1 were applied specifying 1 and 2 latent classes,

following model specifications described by Sawatzky

et al. [7]. Relative fit of the 1- and 2-class LVMMs was

assessed based on the Bayesian Information Criterion

(BIC). Lower BIC values indicate better fit [54]. In addi-

tion, the percentage of statistically significant bivariate

residuals (based on a v2 test of each item pair adjusted for

multiple comparisons) was considered, as was the entropy

for the 2-class model. Statistically significant bivariate

residuals indicate violations of the assumption of local

(item) independence [12, 13], while entropy measures

certainty in class membership (values above 0.8 are con-

sidered indicative of high confidence in assignment) [55].

The assumed standard normal distributions of the latent

factors were examined by describing the distributions of

the predicted latent factor scores. Multinomial logistic

regression based on pseudo-class draws [56, 57] was used

to determine the extent to which latent classes differed with

respect to sex, age, having a medical condition (yes/no),

using two or more medications (yes/no), hospitalization

during the previous year (yes/no), and self-reported health

status (ranging from 1 = excellent to 5 = very poor).

For step 3, any of the aforementioned DIF methods

could be used to examine measurement invariance of item

parameters across the latent classes. For this expository

analysis, the ordinal logistical regression (OLR) approach

was used [22, 58]. This was accomplished by comparing

two nested models where each item was regressed on

(i) the latent factor score (based on the LVMM) and (ii) the

factor score plus the latent class membership (to test for

uniform DIF) and the latent class by latent factor interac-

tion (to test for nonuniform DIF). The magnitude of DIF

was evaluated based on the difference in the Nagelkerke R2

(i.e., DR2), comparing models (i) to (ii), for each item. A

DR2 below .035 is indicative of ‘‘negligible’’ DIF, a DR2

between .035 and .070 indicates ‘‘moderate’’ DIF, and a

DR2 above .070 indicates ‘‘large’’ DIF [59]. Based on these

criteria, the least invariant items were identified as those

that had a DR2 greater than .035.

For step 4, the 2-parameter graded response IRT model

from Step 1, minus the least invariant items from Step 3,

was refit to the data in both 1- and 2-class LVMMs. Model

fit was assessed as in Step 2. In step 5, steps 3 and 4 were

repeated several times, each time removing the items that

exceeded the DR2 cut-off.
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Results

Information about the fit of the LVMMs is reported in

Table 2. The following is a summary of the results per-

taining to each step of the LVMM approach.

Step 1: The EFA results produced a ratio of the first and

second eigen values of 16.6, with the first four eigen

values being 31.09, 1.87, 0.99, and 0.65, thereby

providing support for unidimensionality. The single-

factor structure resulted in acceptable overall model fit

Table 1 DIF analysis results for models based on 39 and 9 items

Item Item content (# response options) DR2a

39 items 9 items

100 Difficulty preparing one’s own meals (5) Invariant Invariant

105 Difficulty grooming oneself (5) Invariant Invariant

109 Difficulty using the toilet (5) Invariant Invariant

112 Difficulty performing light household chores (5) Invariant Invariant

123 Difficulty bathing oneself without help (5) Invariant Invariant

124 Difficulty dressing and undressing oneself (5) Invariant Invariant

128 Need for help with using the toilet (5) Invariant Invariant

130 Need for help with getting around the house (5) Invariant Invariant

137 Ability to take care of oneself (3) Invariant Invariant

111 Difficulty socializing with family and friends outside the home (5) Invariant 0.207

114 Difficulty participating fully in social or family life (5) Invariant 0.182

119 Difficulty socializing with family and friends inside the home (5) Invariant 0.144

98 Limitations in usual social activities with family or friends (5) Invariant 0.136

127 Need for help with getting dressed and undressed (5) Invariant 0.056

115 Difficulty participating in nonphysical leisure activities (5) Invariant 0.041

125 Need for help with bathing (5) Invariant 0.039

110 Difficulty participating with enjoyment in strenuous leisure activities (5) 0.326

104 Limitations in participation in strenuous leisure activities (5) 0.250

116 Limitations in participation in physical leisure activities (5) 0.177

118 Limitations in ability to perform heavy household chores (5) 0.161

108 Difficulty participating in physical leisure activities (5) 0.160

131 Difficulty performing heavy household chores (5) 0.159

117 Difficulty accomplishing more than usual in work, school or other activities (5) 0.115

120 Difficulty accomplishing as much as usual in work, school or other activities (5) 0.090

99 Difficulty going shopping for groceries (5) 0.089

102 Limitations in accomplishing more than usual in work, school or other activities (5) 0.087

107 Difficulty performing normal work or other daily activities (5) 0.086

122 Limitations in doing work as carefully and accurately as usual (5) 0.086

103 Difficulty doing work as carefully and accurately as usual (5) 0.080

97 Difficulty doing daily work (5) 0.077

132 Difficulty getting in and out of a car (5) 0.075

126 Difficulty washing face and hands (5) 0.073

133 Difficulty traveling around the neighborhood without help (5) 0.070

95 Problems with daily activities (general) (4) 0.070

96 Overall ability to perform usual daily activities (e.g., work, leisure, self-care) (5) 0.052

113 Difficulty getting around the house (5) 0.050

129 Need for help with eating meals (5) 0.048

101 Difficulty feeding oneself (5) 0.045

106 Limitations in social activities with family or friends (5) 0.036

a DR2 is the difference in the Nagelkerke R2 of model (i), with each item regressed on the factor score, and model (ii), where each item is

regressed on the factor score, latent class membership, and their interaction. Invariant items are those that have a DR2\ 0.035
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(RMSEA = .082; CFI = .986) and large standardized

factor loadings, ranging from 0.76 to 0.96, with a median

of .90 and an interquartile range from .88 to .94.

However, 8.5% of the residual polychoric correlations

are greater than 0.1 (the largest residual correlation is

1.78), which indicates areas of remaining local depen-

dence. Having the compelling evidence of a unidimen-

sional structure, we proceeded with examining

heterogeneity in the population as an alternative expla-

nation for the remaining local dependence.

Step 2: The 2-class LVMM provided a better fit to the

data compared with a 1-class graded response IRT

model. The BIC for the 2-class LVMM was lower, and

there was a notable reduction in the percentage of

statistically significant bivariate residuals (see Table 2).

The entropy for the 2-class LVMM was 0.84. The

predicted latent factor scores of both models approxi-

mated the normal distribution (see Table 2). People in

class 1 were more likely to be older, female, and have

more health challenges (see Table 3). Because these

results are suggestive of heterogeneity in the sample

with respect to the measurement model, the next step

was the identification of DIF items.

Step 3: OLR revealed that of the 39 items, 23 items had

DR2 values exceeding the recommended cut-off (see

Table 1). These were removed from the model, and the

resulting 16-item model was retested in Step 4.

Step 4: A comparison of the 1- and 2-class LVMMs of

the 16 items indicated that the 2-class model once again

had better fit (see Table 2). The two classes differed with

respect to several demographic- and health-related

variables (see Table 3).

Step 5: OLR (next iteration of step 3) was subsequently

reapplied to the remaining 16 items based on the LVMM

results from step 4. Five items had DR2 values above the

recommended cut-off and were removed. The BIC of the

1-class LVMM of the remaining nine items was lower

than that of the 2-class LVMM (next iteration of step 4).

In addition, the 1-class LVMM of the remaining nine

items resulted in substantially improved fit relative to the

1-class LVMMs of 16 and 39 items. These results

suggest that the sample is relatively more homogeneous

with respect to the unidimensional measurement struc-

ture of the nine items. Therefore, no further DIF analyses

were conducted.

A factor analysis of the final selection of nine items

provided compelling support for a unidimensional mea-

surement structure (the two largest eigenvalues were 7.5

and 0.4) and similar overall model fit (RMSEA = 0.087;

CFI = 0.99), and substantially improved local indepen-

dence, with only one residual correlation above 0.1

(r = 0.11). The parameter estimates of the corresponding

unidimensional graded response model are reported in

Table 4. Finally, the predicted factors scores are strongly

correlated with the factor scores (r = 0.83) based on a

graded response model of the original 39 items.

Discussion

Factor analysis methods are widely used to guide item

selection in test construction. The DLD framework pro-

vides a theoretical basis for examining measurement

invariance as an additionally important consideration.

Table 2 Model fit and latent-class estimation for latent variable mixture models

Estimated model

39 items 16 items 9 items

1-class model 2-class model 1-class model 2-class model 1-class model 2-class model

BIC 77000 75287 27268 26781 13862 13942

Latent factor distribution

Mean 0.00 0.01 0.00 0.00 0.00 0.00

Standard deviation 0.97 0.95 0.92 0.87 0.85 0.76

Skewness -0.04 0.18 0.40 0.75 0.88 0.88

Kurtosis -0.80 -0.75 -0.92 -0.48 -0.37 -0.37

Test of bivariate residuals

# of item pairs 741 741 120 120 36 36

%\0.05a 45.2 9.5 30.0 5.0 8.3 0.0

Entropy – 0.85 – 0.71 – 0.66

Class proportions

Class 1 – 0.64 – 0.74 – 0.75

Class 2 – 0.36 – 0.26 – 0.25

a Adjusted for multiple comparisons using Bonferroni correction (corresponding with the number of item pairs being tested)
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However, the characteristics of individuals that may affect

measurement invariance are often not known a priori. For

example, DIF analyses could have been conducted based

on the subsamples in the data used for our expository

analysis (rheumatology patients, hip and knee patients, and

a community sample). While this approach might also lead

to the detection of DIF items, and would be appropriate if

the goal were to establish lack of DIF relative to these

groups specifically, such a manifest groups approach would

fail to detect DIF with respect to the more complex set of

characteristics that describe the latent classes found in our

data (Table 3). Although others have advocated for con-

sideration of measurement invariance in test construction,

this is the first study to describe and demonstrate how

LVMMs can be used to identify invariant items to inform

item selection in the development of PROMs.

In our expository analysis, we used LVMMs to identify

a subset of items that were most invariant within the

Table 3 Describing latent classes

Variables Full

sample

Model with 39-items Model with 16 items

Class 1 Class 2 OR (95% CI)a Class 1 Class 2 OR (95% CI)a

Sex (% female vs. male) 60.7 66.0 58.5 1.38 (1.09–1.74) 59.2 64.7 1.26 (0.97–1.65)

Age (mean (SD) in years) 56.7 (15.9) 61.9 (15.6) 54.6 (16.1) 1.03 (1.02–1.04) 56.5 (17.0) 56.7 (16.9) 1.00 (0.99–1.01)

Taking medications

% None (referent) 22.3 5.4 28.9 12.7 25.8

% 1 medication 23.5 13.7 27.3 2.66 (1.59–4.49) 20.5 24.6 1.70 (1.08–2.67)

% 2 medications 54.2 80.9 43.8 9.83 (6.19–15.6) 66.8 49.6 2.75 (1.87–4.06)

Hospitalized during past year (%

yes)b
27.6 32.9 15.7 2.63 (2.02–3.41) 26.3 18.5 1.58 (1.18–2.10)

Treatment for rheumatoid arthritis (%

yes)b
28.3 50.5 19.2 4.29 (3.38–5.45) 32.5 26.4 1.34 (1.03–1.76)

Treatment for osteo-arthritis (% yes)b 38.2 56.7 28.8 3.23 (2.56–4.07) 47.2 32.8 1.83 (1.42–2.36)

Has another health condition (%

yes)b, c
74.0 86.9 73.6 2.39 (1.75–3.26) 84.7 71.2 2.25 (1.38–3.68)

Self-reported health during past

4 weeks (% ‘‘fair or poor’’)d
24.0 41.5 17.2 3.43 (2.67–4.40) 38.6 18.8 2.72 (2.07–3.56)

a OR unadjusted odds ratios based on binary logistic regressions with pseudo-class draws (referent = class 2), CI 95% confidence intervals
b Referent = no
c Reports having one or more of the following conditions: heart disease, high blood pressure, lung disease, diabetes, ulcer or stomach disease,

kidney disease, liver disease, anemia or blood disease, cancer, depression, back pain, other medical problem
d Referent = good, very good, or excellent

Table 4 Parameter estimates of

the 9-item graded response

modela

Item k (SE) s1 (SE) s2 (SE) s3 (SE) s4 (SE)

Q100 4.49 (0.48) 3.92 (0.45) 5.55 (0.54) 7.56 (0.67) 9.76 (0.88)

Q105 4.68 (0.62) 5.45 (0.66) 7.57 (0.75) 9.99 (1.01) 14.85 (1.77)

Q109 3.77 (0.64) 5.34 (0.92) 7.04 (0.88) 8.98 (1.06) 10.62 (1.11)

Q112 5.31 (0.66) 4.90 (0.60) 7.40 (0.77) 9.13 (0.90) 11.97 (1.24)

Q123 4.65 (0.80) 6.10 (1.08) 7.55 (1.07) 8.87 (1.20) 9.75 (1.25)

Q124 6.96 (1.30) 9.51 (2.00) 12.13 (2.13) 14.70 (2.64) 16.37 (2.52)

Q128 4.10 (0.94) 9.23 (1.70) 10.02 (1.78) 10.76 (1.92) 11.70 (2.01)

Q130 2.90 (0.37) 5.46 (0.50) 6.48 (0.54) 7.56 (0.64) 8.15 (0.72)

Q137 5.58 (1.19) 9.10 (1.78) 13.39 (2.55)

a The parameters are of a mixture graded response model as specified in the MPlus [47] software where the

cumulative probability Qij of an item i response at or above category j is expressed as follows:

Pij Y � jjhð Þ ¼ expð�sijþkihÞ
1þexpð�sijþkihÞ ; where sij denotes the thresholds between the categories of item i, and ki

denotes the factor loading for item i. The following transformation can be applied to convert the Mplus

thresholds (s) and factor loadings (k) into the difficulty (b) and discrimination (a) parameters of the graded

response model: bij ¼
sij
ki
; and ai ¼ ki
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sample. We specifically demonstrate how LVMMs can

complement IRT analysis to examine and address the

assumption of local independence underlying latent vari-

able measurement theory. As aptly described in the DLD

framework, local independence requires exchangeability of

items (dimensionality) as well as of sampling units (in-

variance) [10, 11]. However, despite the apparent utility of

LVMMs to inform item selection based on the exchange-

ability of sampling units, these models do not always

provide conclusive results. Accordingly, it is widely

acknowledged that item selection should not be exclusively

driven by these statistical considerations. Both item content

and theoretical considerations need to be taken into account

[2, 16]. For example, in our analysis, most of the retained

items address difficulty related to basic activities of daily

living at more severe levels of disability (e.g., dressing,

bathing, toilet etc.), whereas items pertaining to social

activities and leisure activities were not retained. Conse-

quently, content validity, and therefore construct validity,

may have been affected by the removal of items. Further

validation research is needed to determine the extent to

which the remaining items fully reflect the intended con-

struct of interest. The estimated correlation of the factor

scores based on the original 39 items and the remaining 9

items is quite large (i.e., 0.83), providing support for con-

current validity. However, the correlation is not perfect.

Depending on the purpose of measurement and the con-

ceptualization of daily activities, different decisions about

the retention of items, or the option of revising items to be

more invariant, may be made.

There are several important areas for further method-

ological development regarding the use of LVMM for the

identification of least invariant items. First, simulation

studies are recommended to determine the optimal

sequential process for removing items that lack measure-

ment invariance. In the example analysis, all items that met

a particular criterion for invariance were removed before

refitting the LVMM. The rationale is to remove those items

that lack invariance with respect to particular latent classes,

prior to estimating new latent class parameters. Another

option is to remove one item at a time, such that the latent

class parameters are reestimated every time an item is

removed. Second, as is common in factor analysis, IRT,

and Rasch analysis, the LVMMs in our analysis assume

normally distributed latent factors (although this is not a

necessary condition for latent variable modeling). LVMMs

may detect artefactual latent classes when this assumption

is not met [60]. In addition, although the widely used

graded response model was used in our analysis, other IRT

and Rasch models could be utilized. Simulation studies are

needed to determine the extent to which mis-specification

of latent factor distributions and different specifications of

latent variable measurement structures may affect LVMM

results in the context of test construction. Third, simulation

studies are recommended for determining the potential

implications of multidimensionality with respect to iden-

tification of DIF and the use of LVMMs, for ‘‘[a]lthough

the presence of DIF automatically implies the presence of a

secondary dimension, the presence of a secondary dimen-

sion does not automatically imply the presence of DIF’’

[61, p. 108]. While our expository analyses exemplifies the

application of LVMM to a unidimensional set of items, it is

important to consider the challenges of distinguishing

multidimensional constructs from DIF, especially when

there is evidence of ‘‘nuisance dimensions’’, which could

be manifestations of DIF [24, 29, 62]. Fourth, it is not

known to what extent DIF analyses may be influenced by

inconclusive class membership (i.e., entropy values less

than 1). In addition, other DIF detection methods and effect

size criteria for identifying invariant items could be utilized

[6]. The OLR DIF detection approach utilized in the

expository analysis was chosen because it is relatively

straightforward to conduct and has a strong track record in

psychometric analyses of PROMs. Although extensive

research comparing different DIF detection methods has

been conducted [e.g., 6], previous studies have not focused

on the application of these methods in relation to LVMMs.

Simulation studies and primary research can be used to

develop specific recommendations for implementing

LVMMs across a range of data-analytic conditions.

Conclusion

We propose a theoretical foundation and general approach

for using LVMMs in test construction with the intent to

stimulate further methodological development for hetero-

geneous populations. An important goal in the measurement

of PROMs is to ensure that the perspectives of patients are

represented in an unbiasedmanner. TheDLD framework and

use of LVMMs have significant potential for advancing

theoretical developments and research on item selection for

test construction of PROMs in heterogeneous populations.
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