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Multiple sclerosis (MS) is generally considered to 
be an autoimmune disorder with myelin as the tar- 
get and with several unidentified viruses playing 
ancillary roles, possibly through molecular mimi- 
cry. Although this paradigm has led to important 
progress on potential mechanisms of myelin loss, 
neither a target antigen in myelin nor a triggering 
mechanism has yet been identified, leaving the 
etiology of MS still unknown. Animal models of viral 
demyelination and studies showing that JC virus 
(JCV), the polyomavirus which causes progres- 
sive multifocal leukoencephalopathy (PML), may 
be latent in some normal human brains suggest 
another possibility. A host immune response target- 
ing proteins expressed at low levels from viral DNA 
latent in the central nervous system (CNS) might 
underlie a focal demyelinating disease such as MS. 
A shift from autoimmunity to a latent-virus model 
is not a trivial substitution of target antigens. This 
shift would expand the search for a definitive labo- 
ratory test for MS and could lead to improved thera- 
peutic and preventive approaches. 

Introduction 
For more than 25 years the autoimmune theory 
of multiple sclerosis (MS) etiology has dominated 
the field. The origins of the experimental allergic 
encephalomyelitis (EAE) / autoimmunity paradigm go 
back nearly 60 years to  the work of Rivers and col- 
leagues on demyelination following repeated injec- 
tions of normal rabbit brain homogenate into mon- 
keys (1). Despite occasional dissent by some neuro- 
pathologists (2-4), EAE has generally been considered 
to have sufficient clinical and pathological similari- 
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ties to MS to provide a valid model. Development of 
the chronic-relapsing variant of experimental allergic 
encephalomyelitis (CR-EAE) added to the utility of 
this model (5,6). Over the years, increasingly sophis- 
ticated immunological approaches have dissected all 
aspects of the EAE model, as well as the immune 
dysregulation evident in MS (7-15). However, while 
T cells specific for myelin basic protein (MBP) can 
be found in the circulation of MS patients, similar 
cells can be demonstrated in healthy individuals 
as well (9,16-21). Thus, questions persist about the 
significance of these immunological abnormalities 
and anti-myelin reactivities, some of which might be 
a reflection of natural immunity or epiphenomena 
resulting from myelin breakdown, rather than its 
cause (7,2225). Other immunological abnormalities 
might be secondary to virus recrudescence (26). A 
recent report of the development of white matter 
1e:;ions in severe combined immunodeficiency (SCID) 
mice following intracisternal injection of CSF mono- 
nuclear cells from MS patients in exacerbation (27) 
supports a pathogenetic role for these cells, but their 
antigen specificity, if any, remains undefined. 
Experimentally, viral concepts of MS etiopathogene- 
sis owe much to  the elegant studies of demyelination 
mediated by the immune response to viral gene pro- 
ducts delineated in the Theiler's murine encephalo- 
myelitis virus (TMEV) model (28). However, reports 
of a variety of candidate MS viruses isolated from 
the human brain have remained largely unconfirmed 
in other laboratories (29), and an appropriate viral 
model involving latency and reactivation of a human 
virus in glial cells has been lacking. More recently, 
the molecular mimicry hypothesis of viral induction 
of autoimmunity by chance cross-reactivity with 
brain antigens (30) has led to  the "multiple virus 
hypothesis" (31) which further weakens the case for 
a single specific etiologic viral agent in the brain. 
Under these circumstances any single-virus etiology 
proposed for MS tends to face a skeptical reception. 
It is not the purpose of this presentation to review 
the entire field of virus persistence and demyelina- 
tion, nor to make a case for a particular virus as a 
major cause of MS, but rather to use the example of a 
ubiquitous virus with tropism for glial cells to illus- 
trate the value of a modified paradigm for investi- 
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Figure 1 Perivascular cellular infiltrates in a case of macaque progressive multrfocal leukoencephalopathy (PML) due to SV40 
occurring on a background of simian AIDS; a Perivascular mononuclear cell infiltrates characteristic of cell-mediated immune 
response to antigen in brain tissue. Hematoxylin & Eosin and Lux01 fast blue staining. x 140; b Doublelabel immunostaining with 
antibody to simian virus 40 (SV40) virus capsid proteins (black peroxidase label) and glial fibrillary acidic protein (GFAP) (red alkaline 
phosphatase label) shows SV40-infected glial cells in the surrounding brain parenchyma (arrowheads). No counterstain. Method 
modified from J Neuroimrnunol 19: 223-236. reference 80. x 140: c SV40-infected oligodendrocytes, one near a reactive astrocyte, 
enlarged from (b). x 600; d SV40-infected reactive astrocytes in another region of the same macaque brain, immunostained as 
in (b). Note large nuclei with mottled staining for JCV capsid antigens in cells immunostained for GFAP in the cytoplasm. x 900 

gating and explaining MS. For previous discussions measles virus (45) (prior to the introduction of the 
of virus persistence in relation to demyelinating measles vaccine). Other examples of common agents 
disease see references (32-39). would be the closely related human polyomaviruses 

known as JC virus UCV) (46) and BK virus (BKV) (47). 
Serological evidence suggests that JCV and BKV each The Nature Of a Muitiipie (MS) Virus 

It is thought that an MS virus could be one of two 
basic types: 1) A rare agent which infects relative- 
ly few individuals but is frequently pathogenic, or 
2) A common agent which infects a majority of the 
population and perhaps a significant number of 
normal brains, but, in which the virus expression 
and the host response to the infection (for genetic 
and environmental reasons) is pathogenetic in only 
a few individuals. Into the former group would fall 
certain retroviruses when they invade non-endemic 
areas (40), the unconventional agents which cause 
spongiform encephalopathies, e.g., Jakob Creutzfeldt 
disease and canine distemper virus. The latter group 
would include such agents as Epstein-Barr virus (41), 
coronavirus (42,43), herpes simplex virus (44) and 

infect more than 70% ofthe population, mainly dur- 
ing childhood (45). JCV causes a fatal demyelinating 
disease, progressive multifocal leukoencephalopathy 
(PML), in rare immunocompromised adults (49-53). 
This review addresses the implications of the recent 
findings of JCV DNA in human brain tissue with- 
out known neurological disease (54-58). Curiously, 
although JCV has been known for 20 years (46) 
and its lytic infection of oligodendrocytes in PML 
(59) make it arguably the best example of a human 
viral demyelinating agent (53,60), its possible signi- 
ficance for MS has not been widely noted. For exam- 
ple, several compendiums of recent basic and clinical 
MS research either fail to mention JCV and PML 
(61-63), or they refer to PML only in passing (64). 
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However, all of these books discuss measles virus 
and subacute sclerosing panencephalitis, and three 
of them also consider canine distemper virus and 
canine distemper encephalomyelitis (61,63,64). This 
oversight is in part a consequence of virus nomen- 
clature. The two human polyomaviruses, along with 
the highly homologous simian virus 40 (SV40) and 
the more distantly related mouse polyoma virus, are 
all considered to be small DNA tumor viruses which 
are oncogenic in small animal hosts (65-69). This 
categorization as tumor viruses has focused attention 
on their possible role in human tumor induction 
(70-73) but, unfortunately, has tended to obscure the 
significance of these viruses for chronic demyeli- 
nating disease in their natural hosts. 

An Animal Model for Progressive Multi- 
focal Leukoencephalopathy (PML) and Anti- 
viral Immunity in the Central Nervous System 
PML in the macaque provides an animal model for 
the study of the pathogenesis of neurotropic polyo- 
maviruses (74-76). Simian PML is caused by SV40 
(77,78) which shares 69% genomic homology with 
JCV (79). In analogy to human PML, simian PML 
occurs spontaneously on a background of natural or 
experimental simian autoimmune deficiency syn- 
drome (SAIDS) (75,76). Although the existence of 
brain latency in this model has not yet been estab- 
lished, the occurrence of PML in a macaque known 
to be seropositive for SV40 several years before onset 
of neurological disease suggests that reactivation of 
SV40 does occur (76). 
Immunocytochemical studies in our laboratory indi- 
cate that perivascular cellular infiltration, apparently 
due to immunological reactivity to SV40 antigens, 
occurs in this model (Fig. 1). These results suggest 
that SV40 in brain glial cells around vessels can 
trigger lymphocytic infiltration. Although human 
PML is thought to characteristically lack perivascular 
mononuclear cell infiltration because of the under- 
lying immunocompromising condition, in fact peri- 
vascular cuffing does occur (e.g., see description of 
cases 4, 6 and 7 of Richardson (81)) and the simian 
model may not be different in this regard. 
While its relevance as a PML model is apparent, 
the SV40-infected macaque might also provide a 
model for MS-like disease induced by a latent virus. 
If some of these animals carry a latent SV40 infec- 
tion in the brain, and the balance between viral 
expression and anti-SV40 immunity tips to the other 
side so that SV40 reactivation is abortive, then the 
pathology might be limited to immune-mediated 
destruction of glial cells with primary demyelination. 
Thus, simian immunodeficiency virus (S1V)-infected 
macaques should be observed regularly for the pos- 
sible occurrence of MS-like signs with demyelina- 
tion attributable to mononuclear cell infiltration in 
response to abortively infected glial cells, rather 
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Figure 2 JC virus (JCV) regulatory region DNA undergoes a 
twa-stage process of deletion and duplication known as "brain 
adaptation" to  generate the progressive multifocal leuko- 
encephalopathy (PML)-type viral genome capable of replicating 
in glial cells of the human brain. It is this rearranged promoter/ 
enhancer, not the archetypal form circulating in the population, 
which becomes neurotropic in its host. The JCV isolates 
obtained from 11 PML brains-were each uniquely rearranged; 
none was identical to the prototype Mad-1 strain. The host 
enzymes mediating these rearrangements are unknown. 
Diagram modified from J vim/ 64: 31 39-31 43, reference 83. 

than to productive SV40 infection or to SIV-induced 
pathology. 

Presence of JC Virus DNA at Low Levels in 
Some Human Brains without Neurological 
Disease 
Our studies with the polymerase chain reaction (PCR) 
on frozen sections of brain tissue without known 
neurological disease have shown that as many as half 
of the brains may contain very low levels of JCV 
DNA (54). Sequences of amplified DNA fragments 
from these brains have a rearranged regulatory region 
showing deletion followed by duplication of pro- 
moter / enhancer elements (54), rather than the stable 
"archetypal" form which is found in the kidney and 
shed into the urine (82,83) (Fig. 2). 
There is additional data in support of these findings. 
PCR analysis of DNA extracted from fixed brain 
tissue, obtained from aged individuals without PML, 
was able to detect JCV DNA in one-third of the brains 
(55). In another study in which PCR was used to 
detect JCV in the brains of human immunodefi- 
ciency virus (H1V)-positive individuals without AIDS 
or other CNS diseases such as PML, 4 of 13 brains 
were found to contain JCV DNA (56). In that same 
study, JCV DNA was found in 1 of the 12 normal 
brains. In a third study, 19 of 67 brains without 
PML (28%) were found to harbor JCV DNA by both 
PCR and Southern blot hybridization analysis (57). 
Two of the positive cases were confirmed by direct 
cloning of free full length JCV DNA from the infected 
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tissue. In the same study, 2 of 8 MS brains showed 
evidence of JCV DNA (57). In addition, 18 of the 19 
JCV-positive brains were also positive for BKV DNA, 
but at much lower levels (57). However, in a fifth 
study PCR failed to detect JCV in DNA preparations 
from either MS or normal brains (84). Additional 
studies are required to ascertain the proportion of 
non-PML brains with polyomavirus infection and the 
state of the viral DNA. 
In these individuals there was no reported evidence 
for virus particles, nor for JCV expression in the 
brain or neuropathological changes attributable to 
the presence of viral DNA. However, in another 
study evidence for JCV DNA was found by in situ 
hybridization in brains of 3 of 10 elderly patients 
without clinical PML, but with very small foci of 
demyelination (58). It should be noted that these 
findings could not be reproduced in a study of 
Alzheimer's disease brain tissue (85). Thus, it is cur- 
rently not clear whether latent JCV infections may 
sometimes reactivate minimally in elderly individuals 
with little, if any, pathological change and without 
overt neurological symptoms (86). 
What do these findings suggest about the pathogene- 
sis of PML or about a role for a latent DNA virus in 
neurological diseases of unknown etiology? 

Implications for the Pathogenesis of Progres- 
sive Multifocal Leukoencephalopathy (PML) 
PML was once an extremely rare complication of 
chronic lymphocytic leukemia and lymphomas, but 
now occurs in approximately 26% (or more) of AIDS 
patients (87,88). The finding of JCV DNA in normal 
brains suggests that some cases of PML, which is 
almost exclusively an adult disease, may represent 
the reactivation of latent viral DNA harbored in the 
brain following a childhood infection. When PML 
occurs in AIDS, it seems likely that two main factors 
combine to promote JCV reactivation. First, there is 
the immunosuppressive effect of HIV-1 infection. In 
addition, since the HIV-1 Tat protein can transacti- 
vate JCV late transcription in vitro (89-91), it seems 
likely that Tat produced by HIV-1 infection of the 
CNS transactivates latent JCV in the brain. Brain 
tissue doubly infected with HIV and JCV has been 
observed in several studies (92-94). However, since 
Tat is a regulatory protein expressed prior to viral 
replication, HIV particles need not be present for Tat 
to be expressed. Furthermore, there is no apparent 
requirement for superinfection of JCV-containing 
glial cells by HIV since a single HIV-infected cell can 
transactivate as many as 1,000 uninfected bystander 

human brain could provide a target for immune- 
mediated demyelination. Thus, while PML represents 
one type of host response to a latent virus infection 
following immunosuppression and transactivation, 
quite another host response to the same latent virus 
might involve strictly limited viral antigen expres- 
sion, which when combined with a hyperactive 
immune response to CNS viral antigen, could lead 
to demyelinating disease (98). In the latent-virus 
model a viral protein, or possibly a cellular protein 
aberrantly expressed, provides the antigenic target. 
In addition, degenerative changes in latently infected 
cells leading to cell death with antigen release can- 
not be excluded. 

Variables Influencing Viral Pathogenesis in the 
Central Nervous System 
There is likely to be a continuum between latent 
infections which remain entirely quiescent on the 
one hand, and those which progress to clinically defi- 
nite demyelinating disease on the other. For example, 
primary demyelination without clinical MS has been 
discovered during routine pathological study at 
autopsy (99,100). Abnormali-ties on neuroimaging 
suggestive of subclinical MS have been found in 
healthy identical twins (101) and unaffected siblings 
of MS patients (102), as well as 20% of older adults 
(103). What would determine whether a latent virus 
infection remains entirely benign, or erupts as a 
chronic demyelinating disease such as MS? The pre- 
cise mechanisms which trigger JCV and BKV expres- 
sion in kidney tissues leading to virus excretion 
under certain conditions, e.g., late in pregnancy 
(104) and during immunosuppression (105,106) are 
not yet understood. Nevertheless, it is possible to 
suggest a variety of factors capable of influencing 
virus expression in human glial cells. The following 
likely factors would include intrinsic (i.e., genetics of 
host and virus) and extrinsic (e.g., environmental) 
influences on the host's immune response. 

Genetics of the host. Animal models have document- 
ed the important influence of host genetics in deter- 
mining the outcome of virus infections (107,108). 
These genetic influences most likely include deter- 
minants of the specificity, type and strength of the 
immune response. They may in turn control the 
severity and extent of the primary infection and thus 
the extent of latency in tissues, e.g., kidney, spleen, 
bone marrow and brain. The immunogenetic aspects 
of MS (109) can be understood in this context, as 
well as in the context of autoimmunity to MBP. 

Genetics of the virus. At least two distinct genotypes 
of JCV circulate in the human population (1 10,111). 
Two types of JCV in the United States, termed type 1 
and type 2, have been identified by DNA coding 
region sequence data from 11 PML isolates (111). 
While both are also present in Europe, to date only 

cells with which it is in contact (95,96). 

Implications for the Etiology of MS 
As postulated from the TMEV model (97), and in 
analogy to the prediction derived above from the 
macaque model, a latent polyomavirus infecting the 
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one of these has been found in Asian populations 
(1 10). Most of the DNA sequence differences between 
JCV types 1 and 2 are silent, i.e., do not cause type- 
specific amino acid substitutions (1 11). Thus, the 
capsid proteins of the two types of JCV are antigeni- 
cally similar, and types 1 and 2 viruses are not sero- 
logically distinguishable. However, a few type-specif- 
ic amino acid changes are predicted in the C-termi- 
nus of T-antigen which might have functional signif- 
icance (1 11). By analogy to SV40 T-antigen (1 12), the 
C-terminus of JCV T-antigen may contain a host- 
range function. The possible existence of distinct 
types of JCV characteristic of Northern Europe and 
Asia suggests that differing types of a virus circulating 
in European and Japanese populations might con- 
tribute to the contrasting clinical presentations of MS 
(1 13), in addition to the immunogenetic differences 
in Asian populations which have been previously 
invoked (114). 

Site of integration into the host genome. Small DNA 
tumor viruses such as the polyomaviruses have a 
propensity to be integrated into host cell DNA dur- 
ing transformation, with oncogenic effects mediated 
by subsequent viral oncogene (T-antigen) expres- 
sion. If the viral agents were integrated into the 
DNA of scattered glial host cells early in life (per- 
haps during early brain development) and thus had 
been passed on to both daughter cells during each 
host cell mitosis, a ready explanation for multifocal 
infection (and multifocal lesions) would be provided. 
(However, free viral genomes could also be lineally 
passed to daughter cells if viral replication is nega- 
tively regulated by a cis-acting mechanism and 
restricted to once per cell generation (115)). Each 
focus of infection would represent the progeny of a 
single infected precursor cell. The cellular genes 
flanking the insertion site could influence viral 
expression, and, in turn, viral promoters / enhancers 
could alter the expression of nearby cellular genes. 
The site of cleavage of the circular viral genome 
(5,130 bp for JCV (Mad-1) (116)) would be impor- 
tant, as interruption of either the regulatory region 
or viral early coding region would preclude produc- 
tion of an intact T-antigen. A truncated polypeptide 
might, however, be sufficient to provide an antigenic 
target in glial cells. 

Timing of primary infection. It can be assumed that 
virus latent in the adult brain may be acquired dur- 
ing primary infection early in life, or possibly trans- 
placentally from a mother who reactivates the virus 
during pregnancy (104,105). Unfortunately, primary 
infection in the child is difficult to pinpoint as it 
lacks known disease symptoms and can only be 
identified by seroconversion. Maternal reactivation 
with shedding of virus in the urine is asymptomatic 
as well. The timing, duration, and site of the primary 
infection, as well as the magnitude of the resulting 

viremia, will be important determinants of whether 
and to what extent the virus penetrates the develop- 
ing brain and establishes latency, and will influence 
the eventual outcome of viral latency. In general, for 
a given virus load, the earlier in brain development 
this seeding occurs, the greater the number of daugh- 
ter cells to which the viral genome could be lineally 
passed. This is true whether the viral DNA inte- 
grates into host cell DNA or free virus replicates syn- 
chronously with cell DNA during mitosis. 

Cell types targeted by  brain infection. Although JCV 
grows best in human fetal glial cells, glial cells are 
not the exclusive target of JCV infection in vivo. 
Infection of the kidney (117), spleen (118), and bone 
marrow (119) is well documented. Within the brain 
other cell types may be involved. Abortive granule 
cell infection has been observed in cerebellar PML 
(120). Other cell types infected include microglial 
cells (121) and brain endothelial cells (122). JCV 
infection has been observed in umbilical vein endo- 
thelial cells in culture (123) and in vascular endo- 
thelial cells of the neonatally infected hamster brain 
(124). Since astrocytic endfeet contact up to 95% of 
the endothelial cells of the brain microvasculature 
(125), infection of brain endothelial cells following 
early viremia would provide an avenue for an agent 
coming from the circulation to reach astrocytes, and 
after replication, to infect surrounding oligodendro- 
cytes. Macaque PML brain showed several isolated 
clusters of SV40-infected oligodendrocytes around 
an infected astrocyte (Fig. 3). Although other inter- 
pretations are possible, this unique array is best 
explained by direct passage of virus from the cen- 
trally located astrocyte to the surrounding oligoden- 
drocytes which it contacts. 
In human PML brain clusters of a few enlarged 
oligodendrocytes have been described as the earliest 
recognizable microscopic lesion (128,129). They cre- 
ated demyelinated foci of pinhead size (130), usualIy 
1 to 2 millimeters (mm) in diameter (128,129), but 
sometimes as small as 0.1 to 0.5 mm (131,132). In 
these lesions small blood vessels were often seen 
(129,131,132), although no consistent perivascular 
location was proved. Giant astrocytes in PML lesions 
have been observed with a cellular process attached 
to the wall of an adjacent blood vessel (133). In one 
study intracytoplasmic clusters of JCV particles were 
observed by electron microscopy in infected astro- 
cytes, sometimes near foot processes (134). These 
might be passed to susceptible oligodendrocytes, 
although in late stages of disease such intracyto- 
plasmic particles can also be interpreted as an early 
step in astrocyte infection by virions taken up from 
surrounding cell debris (135). 
The presence of small clusters of infected oligo- 
dendrocytes in the human PML brain can be inter- 
preted in one of the following ways. Firstly, the 
characteristic pinpoint foci of demyelination in 
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a b 
Figure 3 Clusters of simian virus 40 (SV40)-infected oligodendrocytes surround an infected astrocyte in the macaque brain. 
a Note the immunostained astrocyte process extending to an infected oligodendrocyte (arrowhead). Smaller groups of, infected 
oligodendrocytes were seen at this location in both adjacent sections indicating that the infected cells surround the astrocyte on all 
sides. x 350; b A similar cluster in another section. lmmunostaining by monoclonal antibodies BH3 and CE5 to SV40 capsid 
proteins (1 26) with biotinylated goat antibody to mouse IgG. followed by peroxidase conjugated streptavidin as described (1 27). 
No counterstain. x 175 

early PML could result from cytolysis of a cluster 
of oligodendrocytes infected by contact with the 
same infected astrocyte. The length of the processes 
of this central astrocyte would determine the dia- 
meter of this early focus of infection, and thus the 
extent of the lesion (0.1 to 2.0 mm). The infected 
astrocyte could have received its virus from an 
infected endothelial cell. Although endothelial cell 
infection is well recognized as a possible route for 
virus penetration into the brain (136), it must be 
emphasized that direct evidence for polyomavirus 
transfer along this pathway is lacking and at present 
this scheme is a working hypothesis. Secondly, clus- 
ters of infected glial cells could arise when virus is 
passed to daughter cells from a common infected 
glial precursor during cell proliferation. This could 
OCN with free or integrated virus. The size of such 
clusters would be determined by the stage of devel- 
opment at which infection initially occurs and the 
efficiency with which the viral minichromosome 
persists and replicates. Thirdly, a cluster of infected 
cells might arise by infection with extracellular virus 
released from a lysed cell and diffused locally. This 
latter possibility seems less likely, as it should be a 
recurring feature of spread beyond coalescing lesions 
within the brain, not a feature limited to very early 
lesions and very early disease. 

Immune response: environmental determinants. 
Environmental factors will modulate the viral and 
host genetic determinants. These could include coin- 
fection with closely related viruses which may influ- 
ence the immune response to the pathogenic virus. 
In the case of JCV, these would include various 
serotypes of BKV (137,138). The existence of distinct 
serotypes of BK virus has been confirmed by DNA 
sequence comparison of wildtype BKV(Dun) and 
the variant known as BKV(AS) (139). BKV infection 

will probably modulate the immune response to the 
potentially cross-reactive JCV (= 80% amino acid 
sequence identity (79)). The BKV(AS) strains, which 
comprised 15% of BKV strains in one series of uri- 
nary isolates (140), lack the primary antigenic epi- 
tope on the wild type BKV capsid (139), as do the 
BKV(DB) strains (138). Which one of these poten- 
tially cross-reactive BKV serotypes is associated with 
a JCV infection, and the order in which the two 
infections were acquired, might significantly influ- 
ence JCV immunoregulation. In general, antibodies 
to BKV are acquired by the population at a younger 
age than are those to JCV (48). Reversal of the usual 
order of infection, i.e., acquisition of JCV infection 
before BKV, might influence the strength and speci- 
ficity of the immune response to JCV (and BKV). The 
cellular immune responses to JCV and BKV virion 
proteins or T-antigens have been studied very little 
in any human populations (141,142) due to lack of 
antigen. 

The Role of Retroviruses: Late Region Transacti- 
vution. The ability of HIV-1 Tat to transactivate the 
JCV late region promoter (90) suggests that HIV-1 
may play a more direct role in viral reactivation 
leading to the induction of PML in AIDS than by 
immunosuppression alone. In fact, HIV-1 Tat pro- 
tein is a stronger activator of JCV late region tran- 
scription than is T-antigen itself, and the two act 
synergistically (89). The potential role of HIV-1 Tat in 
modulating JCV antigen expression during latency, 
i.e., prior to DNA replication and in the absence of 
capsid protein synthesis, remains to be explored. 

MS-like Disease in AIDS Patients 
It is noteworthy that HIV-1 infection can promote 
MS-like disease prior to or during onset of clinical 
AIDS (143-147). This phenomenon might be a direct 
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Table 1 Models of Polyomavirus-induced Disease in the CNS 

Animal 

Rhesus monkey 

Hamster 

Transgenic mouse 

Transgenic mouse 

virus 

SV40 

JCV (Mad-1) 

JCV* 

Polyoma3 

Cornrnen 6: 

Natural SV40 infec1:ion followed by 
natural or experimental SIV infection 

Latent glial/endothelial infection following 
intracerebral inoculation of newborns' 

Dysmyelination in second and subsequent 
generation mice 

Expression primarily in astrocytes with 
dysmyelination 

References 

75,76 

1 24,127 

149,150 

151 

1 Tumors observed at four to six months, but demyelination not evident a t  the light microscope level 

2 Early region genes, large and small T antigens. 

3 Early region gene, large T antigen. 

(H.G. Ressetar, personal communication) 

Abbreviations: SV40, simian virus 40; SIV, simian immunodeficiency virus; JCV. JC virus 

result of HIV-1 brain infection, or an indirect effect 
mediated by activation of another latent virus. If 
the latter, these patients might represent a group in 
which abortive viral reactivation is sufficient to cause 
neurological disease, but stops short of active viral 
replication and fatal productive CNS infection. TO 
date only one AIDS patient presenting with MS-like 
symptoms has been reported to have developed 
PML (143). In another of these patients whose brain 
was biopsied, JCV replication was not detected by 
in sihi hybridization, although PCR revealed that 
bone marrow and peripheral blood lymphocytes 
were infected by JCV (147). Note, however, that if it 
is postulated that MS patients show a hyperactive 
immune response to a latent viral brain antigen, 
then these patients may be less likely to progress to 
a productive viral infection of the brain than those 
who lack an antiviral CNS immune response. Thus, 
in any cases of MS-like demyelinating disease in 
which JCV provides the antigenic target, progres- 

sion to PML under the influence of HIV-1 infection 
may actually be less likely than it would in ordinary 
JCV latency. 

Animal Models 
A useful and instructive animal model for immune- 
mediated demyelination triggered by viral antigen in 
the CNS has been provided by the Theiler's murine 
encephalomyelitis virus infection (34,148). Another 
w ell-developed model is provided by coronavirus- 
induced demyelinating encephalomyelitis in rats 
(35-37). For study of the pathogenesis of polyoma- 
viruses in the CNS and the potential role of these 
small DNA viruses in demyelinating disease, four 
different animal models are available (Table 1). 
These models of polyomavirus CNS infection include 
simian PML due to SV40 in the context of simian 
AIDS (74-77), and the neonatal hamster brain infec- 
tjon (67,124,127) with persistence of JCV in brain 
cells (Ressetar, unpublished data). Note that the ham- 
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MS in 
Adulthood 

Med~llo- 
Latency From blastoma in 

No Disease 

Figure 4 Four possible outcomes of latent JC virus (JCV) 
(or other small DNA tumor virus) infection of the brain fol- 
lowing primary infection in the perinatal period or in child- 
hood. a JCV remains entirely latent and undetected by the 
immune response in most individuals; b Following irnmuno- 
suppressive disease, immunosuppressive therapy, and/or 
retroviral transactivation. a few may develop a productive 
infection, e.g., progressive multifocal leukoencephalopathy 
(PML); c The immune response to the multifocal infection 
might trigger chronic demyelinating disease such as multiple 
sclerosis (MS); d Expression of a viral oncogene (e.g., T-anti- 
gen) could lead to transformation of susceptible cells and 
tumorigenesis. 

ster brain infection currently provides a model of 
brain tumor induction and brain endothelial cell 
infection by JCV (124,127). Additional experimental 
manipulation will likely be required to create a 
model of immune-mediated demyelination triggered 
by polyomavirus antigen in hamster glial cells. Trans- 
genic mice carrying the JCV early region expressed 
in oligodendrocytes showed dysmyelination in the 
CNS in the second generation (149). In another 
transgenic mouse model, severe dysmyelination 
occurred in animals carrying mouse polyoma virus 
T-antigen DNA which was expressed primarily in 
astrocytes (151). This finding points toward a key 
role for the astrocyte in oligodendrocyte support and 
myelin formation and maintenance. 

Discussion 
There are more data available in all medical disci- 
plines for MS than for any other neurological disease, 
yet its etiopathogenesis remains mysterious. Could 
brain infection with a latent virus capable of limited 
reactivation in glial cells explain this wealth of data? 
The example of the polyomaviruses suggests that it 
could. Unfortunately, our knowledge of the natural 
history of polyomavirus infections of humans is still 
fragmentary, and there is very little data available on 
these infections in relation to MS. Although JCV was 
first cultured and characterized in 1971 (46), primary 
JCV infections in humans have never been identi- 

fied and have therefore been impossible to study. 
Serological tests are presently the only available indi- 
cator of acquisition of this (apparently) silent initial 
infection. The most widely used antibody assay, 
hemagglutination inhibition, requires large amounts 
of the virus which is in limited supply due to the 
difficulty with which JCV is cultured in primary 
human fetal glial cells (152). A single report on BKV 
serology in MS (153) did not reveal an association. 
There is no published information on JCV serology 
in relation to MS. 
With respect to pathology, a systematic comparison 
of lesion development and distribution in PML and 
MS brains has never been reported. However, com- 
parison of the recognized pathological features of 
each disease suggests some interesting parallels (98). 
It is noteworthy that the very small early foci 
described for PML (128-132) are in some ways remi- 
niscent of the earliest MS lesions as described by 
Lumsden ( 2 ) .  (For discussion of early MS pathology 
see also reference 154). The relationship of many 
small MS plaques to the course of a vessel (2,155) is 
consistent with the proposed route of polyomavirus 
entry into the CNS. At onset the topology of MS 
lesions may be defined in large part by the distri- 
bution of viral antigen along the pathway taken by 
the virus on leaving the circulation and entering the 
brain. This path could be within dividing cells or 
between cells in contact, or both. 
Recent neuroimaging data suggest that disturbance 
of the blood-brain barrier with or without clinical 
symptoms is the initial event in the development of 
new demyelinated lesions in relapsing / remitting MS 
(103,156,157). These findings emphasize a role for 
the endothelium in MS lesion pathogenesis, and 
have generally been interpreted in terms of the EAE 
model (158). Can they also be accommodated by a 
latent-virus model? In fact, as described above, JCV 
can infect brain endothelial cells. Productive infec- 
tion of endothelial cells by JCV is unusual in PML 
(122), but an abortive infection of hamster endothe- 
lial cells in which T-antigen is expressed at 30 days 
of age is particularly pronounced following immuno- 
suppressive treatment with cyclophosphamide (124). 
Thus, initiating events at the blood-brain barrier in 
MS pathogenesis can be accommodated by a viral 
hypothesis in which immune responses targeting 
cells in the parenchyma follow viral reactivation in 
infected endothelial cells nearby, as originally pos- 
tulated by Wisniewski et al. (3). 

Possible Outcomes of Central Nervous System 
Polyomavirus Infection 
The polyomaviruses are involved not only in 
demyelinating disease, but are best known as DNA 
tumor viruses in animal models. This has encour- 
aged a continuing search for these viruses in human 
tumors (73). Thus, three possible outcomes of JCV 
latency in the human brain can be envisioned (see 
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Fig. 4). The etiological role of JCV in PML is well 
established, but the other outcomes (Figs. 4c,4d) 
remain speculative. With respect to tumorigenesis 
by JCV, interest has centered around medulloblas- 
tomas (67,127,159,160), but there is currently no 
direct evidence for involvement of JCV in human 
tumors. However, from this perspective the unex- 
plained reports of MS lesions and gliomas occupying 
the same anatomical locations (161-166) may not 
be chance occurrences. Reports that PML and multi- 
ple gliomas (167) or astrocytomas (168) can coincide 
are also of interest in this context. Finally, the coinci- 
dence of clinical MS and PML (169,170) completes 
the reported associations between these three dif- 
ferent outcomes. This latter association occurred 
before the AIDS epidemic under the combined influ- 
ence of systemic lupus erythematosus (SLE) and 
corticosteroid therapy (170). It is not certain that 
this was a case of MS as the demyelinated lesions 
observed at autopsy could not be distinguished from 
those of chronic PML (171). 

Conclusion 
A latent virus distributed multifocally in the CNS 
with its expression modulated by the immune 
response as well as by transactivating factors acting 
within or between cells, could explain the varied 
clinical course of MS. In view of the evidence for 
their presence in normal brain, the small human 
DNA viruses with gliotropic properties provide a 
compelling argument for a disease mechanism in 
which a common virus latent in CNS white matter 
provokes an uncommon immunopathological res- 
ponse in a few susceptible individuals. 
Along with the recent evidence for coronavirus 
sequences in MS brains (42,43), these polyomavirus 
findings emphasize the relevance of the latent-virus 
model to demyelinating disease. Virus latency in the 
CNS couid be the essential precondition for onset 
of MS pathology, i.e., the so-called "MS trait" (172). 
AIthough the number of different viruses which may 
eventually be implicated in CNS latency remains 
unclear, it is apparent that the immune response to 
a single virus in the CNS could provoke a disease 
as diverse and variable in its expression as MS. 
The interplay of the genetic and environmental 
factors listed above acting on a viral infection capa- 
ble of latency and reactivation could explain the 
complex and unpredictable clinical course of MS 
as well as does the CR-EAE model. The latent-virus 
model of MS pathogenesis has several conceptual 
advantages: 1) Provides a mechanism for multifocal 
distribution of antigen in the CNS without requiring 
viral replication independent of cell division, if 
the infection occurs early in life; 2) Allows for regu- 
lated antigen expression, variable in time, within 
those foci, and 3) Has the potential for modula- 
tion of the immune response by cross-reactive 
viral antigen in organs outside the CNS (e.g., by anti- 

gens of BKV if the primary CNS agent were JCV). 
With the development of highly sensitive PCR 
techniques, the tools to detect MS candidate viruses 
latent in the human brain are in hand. Even if 
many latently infected cells have been destroyed by 
the immune response in the course of the disease, 
some infected cells which express little or no antigen 
and therefore escape destruction may continue to 
harbor detectable levels of viral DNA. 
The choice of paradigm is important because it 
determines the range of questions asked, and can, 
in turn, limit the answers obtained. Is it time to 
change the paradigm? Within the framework of the 
EAE / autoimmunity paradigm have come significant 
advances in our understanding of the pathogenesis 
of' MS (173,174), and promising new approaches 
to treatment (1 75-177), but much remains uncer- 
tain (4,178,179). After 25 years of intensive inves- 
tigation, there is still no definite autoantigen, no 
breakthrough in laboratory diagnosis, no effective 
long-term treatment for MS (180,181), and there 
are no approaches to disease prevention. A fuller 
understanding of the disease could lead to new diag- 
nostic laboratory tests, and to new possibilities for 
therapy and prevention. The direction of MS therapy 
research indicated by a latent-virus paradigm would 
be a combined attack on both the afferent and 
efferent arms of the immune response. This would 
involve inhibition of viral reactivation to reduce 
both the (peripheral) immunogenic stimulus as well 
as the (central) antigenic target and, if possible, 
selective immunosuppression directed toward a CNS 
antiviral immune response to reduce inflammation 
without provoking increased antigen expression. 
Clearly, a solid rationale for the use of antiviral 
agents would ensure new emphasis on their develop- 
ment and future testing. 
A final resolution of the seemingly intractable MS 
problem, which has been aptly described [borrowing 
from Churchill) as "a riddIe wrapped in a mystery 
inside an enigma" (172), will require the framework 
of an authentic paradigm. Although MS is now fre- 
quently described as an autoimmune disease (182), 
the use of a latent-virus paradigm might acceler- 
ate progress by emphasizing avenues of research 
which the more narrowly based EAE I autoimmunity 
paradigm bypasses. 
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