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Abstract

Motivation: In any macromolecular polyprotic system—for example protein, DNA or RNA—the iso-

electric point—commonly referred to as the pI—can be defined as the point of singularity in a titra-

tion curve, corresponding to the solution pH value at which the net overall surface charge—and

thus the electrophoretic mobility—of the ampholyte sums to zero. Different modern analytical bio-

chemistry and proteomics methods depend on the isoelectric point as a principal feature for pro-

tein and peptide characterization. Protein separation by isoelectric point is a critical part of 2-D gel

electrophoresis, a key precursor of proteomics, where discrete spots can be digested in-gel, and

proteins subsequently identified by analytical mass spectrometry. Peptide fractionation according

to their pI is also widely used in current proteomics sample preparation procedures previous to the

LC-MS/MS analysis. Therefore accurate theoretical prediction of pI would expedite such analysis.

While such pI calculation is widely used, it remains largely untested, motivating our efforts to

benchmark pI prediction methods.

Results: Using data from the database PIP-DB and one publically available dataset as our reference

gold standard, we have undertaken the benchmarking of pI calculation methods. We find that

methods vary in their accuracy and are highly sensitive to the choice of basis set. The machine-

learning algorithms, especially the SVM-based algorithm, showed a superior performance when

studying peptide mixtures. In general, learning-based pI prediction methods (such as Cofactor,

SVM and Branca) require a large training dataset and their resulting performance will strongly

depend of the quality of that data. In contrast with Iterative methods, machine-learning algorithms

have the advantage of being able to add new features to improve the accuracy of prediction.
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1 Introduction

In a titration curve, the isoelectric point (pI) is the value at which

the overall net surface charge of a macromolecular polyprotic spe-

cies equals zero. Protein pI values are amongst the most widely

determined and widely reported quantities in all of biochemistry

and proteomics. The pI is obtained as essentially incidental informa-

tion during isoelectric focusing (IEF) experiments, free flow electro-

phoresis (FFE), capillary electrophoresis, and in-gel electrophoresis

experiments using IPG strips (Audain et al., 2014; Ramos et al.,

2008). Electrophoresis-based separation of proteins and peptides in

both free-flow and gel systems has been adapted to a wide variety of

proteomics platforms in order to reduce the complexity of the

studied proteome (Ramos et al., 2008, 2011). In addition to the

resolution and dynamic range of the fractionation technique, com-

bining the electrophoretic separation of proteins with mass spec-

trometry analysis provides an orthogonal analytical method for

improving protein identification in different workflows (Perez-

Riverol et al., 2013).

Assuming a protein to be denatured, theoretical calculation of the

pI is typically rapid, requiring only the sequence as input (Cargile et al.,

2004). Most techniques exploit tabulated pKa values for the different

ionizable amino acid residues; such values are assumed to be constant

regardless of structural context (Maldonado et al., 2010). Many au-

thors have reported different values for the pKas of protein side chains

and most of them are derived from measurements of side chains in iso-

lated amino acids or from model compounds; as well as values derived

from ionizable side chains in situ (Bjellqvist et al., 1993; Lengqvist

et al., 2011). As many such alternative theoretical methods have been

proposed, the calculation of protein pI values is in urgent need of

benchmarking, since its accuracy remains largely untested. Extant com-

parison has been exiguous, using very small datasets (Patrickios and

Yamasaki, 1995), peptides rather than proteins (Cargile et al., 2004;

Lengqvist et al., 2011) or has reported poor accuracy (Henriksson

et al., 1995; Patrickios and Yamasaki, 1995).

We have previously described the database PIP-DB (Bunkute

et al., 2015), a collection of proteins, with associated experimentally

determined pI values, as collated from the literature (Bunkute et al.,

2015). In this paper, we use PIP-DB as a gold standard reference for

comparison, and describe the benchmarking of protein pI predic-

tion. We also include a peptide dataset to evaluate the performance

of pI prediction methods when estimating peptide pIs, due to the im-

portance of properly assessing the accuracy of such prediction. As

previously we combine different methods with different parameter

values. Specifically, we evaluated five isoelectric point prediction al-

gorithms: Iterative (Maldonado et al., 2010; Patrickios and

Yamasaki, 1995), Bjellquivst (Bjellqvist et al., 1993; Cargile et al.,

2008), Cofactor (Cargile et al., 2008), SVM (Perez-Riverol et al.,

2012) and Branca (Branca et al., 2014); using, where appropriate, a

set of alternate values for ionizable amino acid side chain pKas.

2 Methods

Five different isoelectric point prediction algorithms were evaluated:

Iterative (Maldonado et al., 2010; Patrickios and Yamasaki, 1995),

Bjellquivst (Bjellqvist et al., 1993; Cargile et al., 2008), Cofactor

(Cargile et al., 2008), SVM (Perez-Riverol et al., 2012) and Branca

(Branca et al., 2014). The iterative model only considers the contri-

bution of individual pKa values to the Henderson-Hasselbach equa-

tion (Patrickios and Yamasaki, 1995). The Bjellquivst (Bjellqvist

et al., 1993) algorithm is based on determining the pKa differences

between closely related amino acids, and it was the first algorithm

to propose a different pKa value depending on the amino acid pos-

ition in the sequence. The Cofactor algorithm (Cargile et al., 2008)

accounts for the effect of adjacent amino acids 63 residues away

from a charged aspartic or glutamic acid and the C-terminus, as well

as applying a correction term to the corresponding pKa values.

Perez-Riverol and co-workers (Perez-Riverol et al., 2012) proposed

a support vector machine approach to predict the isoelectric point of

peptides in electrophoretic experiments based on amino acid se-

quences and AAIndex properties. The Branca method (Branca et al.,

2014) uses pKa value correction considering the influence of neigh-

boring ionizable groups up to six residues away, multiplying each

correction factor by the charged fraction of the neighboring ioniz-

able group before applying it to the initial pKa value. It also intro-

duces the use of a statistical correction factor that depends on the

number and type (Asp or Glu) of carboxylic acid side chains in the

sequence.

Different pKa values were evaluated for each method: for the

iterative algorithm we include multiple pKa sets reported previously

(Supplementary Information, Table 1). The Bjellquivst method

was evaluated using different pKa correction factors for C- and N-

terminus (Calibrated (Gauci et al., 2008), Expasy (Gasteiger et al.,

2003), Skoog and default (Bjellqvist et al., 1993)). The algorithms

Cofactor and SVM were evaluated using the default values reported

in the corresponding publications. The Branca algorithm was used

with the flag pKconstants_plain set, and without considering add-

itional chemical modification in the polypeptide sequence (for ex-

ample, peptides derivatized with iTRAQ or TMT reagents).

Detailed information of each estimation method can be found in

Supplementary Information S1.

2.1 pIR R-package

To facilitate analysis of isoelectric point prediction for peptides and

proteins, an R package (pIR) was developed using standard best

practices for bioinformatics software development (Leprevost et al.,

2014; Perez-Riverol et al., 2014). It provides several datasets used in

Table 1. Benchmark statistics for peptides and protein

Peptide Protein

Method R2 RMSD R2 RMSD

SVM 0.96 0.21 0.59 1.28

ITERATIVE_GRIMSLEY 0.96 0.27 0.54 1.45

BJELL_DEFAULT 0.96 0.28 0.58 1.37

ITERATIVE_RODWELL 0.96 0.31 0.58 1.47

BJELL_CALLIBRATED 0.96 0.32 0.59 1.41

BJELL_EXPASY 0.96 0.33 0.60 1.41

ITERATIVE_THURLKILL 0.96 0.36 0.57 1.50

COFACTOR 0.86 0.44 0.57 1.39

ITERATIVE_SILLERO 0.96 0.46 0.58 1.52

ITERATIVE_TOSELAND 0.95 0.47 0.53 1.41

ITERATIVE_EMBOSS 0.96 0.48 0.57 1.54

BRANCA 0.85 0.51 – –

BJELL_SKOOG 0.93 0.66 0.57 1.47

ITERATIVE_SOLOMON 0.93 0.71 0.57 1.48

ITERATIVE_LEHNINGER 0.93 0.71 0.57 1.48

ITERATIVE_PATRICKIOS 0.42 1.63 0.15 2.73

Pearson correlation (R2) and root-mean-square deviation (RMSD) for

methods and each pKa set. The best combination (higher R2 and low RMSD)

was obtained using the support vector machine algorithm for peptides, and

the Bjellquivst algorithm with the Expasy pKa set for proteins.
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the current study with the corresponding experimental and predicted

isoelectric point values. It also provides a framework for reprodu-

cible analysis, allowing correlation and RMSD analysis of the

predicted values; plot visualization and data processing (outlier

removal, null value detection). pIR was implemented in R ver-

sion �2.13.0 and is available from URL: https://github.com/ypri

verol/pIR.

2.2 Datasets
For the protein analysis, PIP-DB (Bunkute et al., 2015) (version 1.0),

which contains curated protein pI literature data, was used to deter-

mine the accuracy of isoelectric point calculation. All proteins where

sequence data was available were retrieved from PIP-DB with the

corresponding experimental isoelectric point.

For the peptide analysis, a previously published dataset was used

(Heller et al., 2005). We utilized the PeptideProphet score to filter

out low-confidence peptides from the dataset. In summary, a cellular

extract of Drosophila Kc167 cells was fractionated in an isoelectric

focusing Off-GEL device using 15 fractions. The tryptic proteome is

separated using the isoelectric point and the experimentally derived

pI values are reported with the final results. The identified peptides

were analyzed with two different database search engines, namely

PHENYX and SEQUEST, together with PeptideProphet, which is a

popular post-processing peptide identification tool: a final list of

6529 peptides were used for the present study (Heller et al., 2005).

In addition, we have analyzed the impact of common post-transla-

tional modifications on isoelectric point estimation using a third data-

set, as published previously by Gauci et al. (2008). This experimental

dataset was obtained using online TiO2 enrichment in combination

with in-gel peptide IEF of a Zebrafish embryo lysate. It contains sub-

populations of phosphorylated and N-terminal acetylated peptides

whit the corresponding experimental pI values associated.

3 Results

3.1 Isoelectric point estimation of protein sequences
Initially, PIP-DB (Bunkute et al., 2015) was divided into two subsets:

proteins with several experimental pI values and proteins with a single

experimental pI value (called unique proteins hereafter). Figure 1

shows the protein distribution by isoelectric point for both sets. The

second group (proteins with only one pI value) contains 1066 pro-

teins, most of which are from acid fractions (pH range 3.0–6.0).

As PIP-DB contains legacy data, not all entries were deemed use-

ful. Initially, we isolated entries with a single measured isoelectric

point rather than entries with multiple pI values or a range of values.

Estimation of theoretical pI values was undertaken on the unique

protein subset. Pearson correlation coefficients and root-mean

square deviation (RMSD) values were used to evaluate the perform-

ance of the methods in predicting pI.

Table 1 summarizes the correlation coefficients and RMSD values

achieved for each evaluated algorithm. The overall correlation between

the experimental and theoretical pI values varied between R2¼0.60

(Bjellquivst—Expasy pKa set) and R2¼0.15 (Iterative-Patrickios pKa

set). The lowest RMSD value was for the SVM algorithm

(RMSD¼1.28). Most of the algorithms performed poorly when pre-

dicting protein pI, with a correlation coefficient between 0.55 and 0.58.

Figure 2 shows the correlation between the experimental value and

the predicted values for five different methods. The correlation in the

basic fractions (pI>7.5) is inferior compared to the complete dataset.

Compared to previous studies with peptides (Perez-Riverol et al.,

2012), the best correlation is obtained in the neutral range (5.0–7.0 pH)

where fewer proteins are observed. Interestingly, the algorithms based

on machine learning techniques, such as those of Cargile et al.

(Cofactor) and Perez-Riverol et al. (SVM), show a similar correlation

compared with the Iterative and Bjellquivst methods: 0.58 and 0.57.

These results are consistent with the nature of machine learning algo-

rithms, such as support vector machines and genetic algorithms, which

depend critically on the quality and size of training datasets (Larranaga

et al., 2006; Perez-Riverol et al., 2012).

These algorithms were developed for peptide-mixture prediction

where a large number of peptides can be used to train the model

(Perez-Riverol et al., 2012). The recently developed Branca algo-

rithm cannot be used to compute protein isoelectric points as it was

only optimized for peptides with K or R at their C-terminus: it fails

for proteins that do not have a basic C-terminus. This low correl-

ation between experimental and predicted values demonstrated that

only certain of the algorithms could be used for in silico studies of

the isoelectric point distribution in proteomes, such as those by Wu

et al. (2006) and Carugo (2007).

Fig. 1. Composition of isoelectric points from PIP-DB (2675 proteins) for the

two datasets: unique proteins (proteins with only one isoelectric point value,

1066 proteins); and non-unique proteins (proteins with two or more pI experi-

mental values, 1609). The chart shows the protein number versus pH distribu-

tion for both subsets (pH range 3.0–10)

Fig. 2. Experimental versus theoretical isoelectric point of proteins from PID-

DB. Five different combinations of methods and pKa values and algorithms

were used. The x-axis corresponds to the experimental isoelectric point range

of 3–10 and the y-axis is the corresponding calculated values
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Figure 3 shows the distribution of experimental isoelectric points

and predicted distributions for several algorithms. The distribution

of the experimental values only shows similarity to the theoretical

distribution of the SVM (Perez-Riverol et al., 2012), Bjellquivst

(Bjellqvist et al., 1993) and Iterative (with Lehninger pKa set) algo-

rithms. We explored the correlation between the theoretical and ex-

perimental isoelectric point of proteins for the complete PIP-DB

database (Supplementary Information S2, Fig. 1) using four pKa sets

(DEFAUT, Expasy, CALIBRATED and SKOOG). The correlation

for the CALIBRATED and Expasy pK sets is negative (R2¼�0.017)

for the entire PIP-DB. In contrast to peptides, over 50% of the pro-

teins in our dataset have more than one experimental pI (Table 2),

making it difficult to study this property properly, due to the historic

use of poor analytical methods, together with protein denaturation

and fragmentation (Ramos et al., 2012).

A potential use of pI prediction algorithms is the possibility to detect

outliers from experimental data and detect possible incorrect assign-

ment at the protein and peptide level (Perez-Riverol et al., 2011). The

number of outliers also can be use as quality assessment metric of the

separation technique (Ramos et al., 2011). If the algorithm is more ac-

curate it tends to predict more outliers and possible false-positive identi-

fications assignments. Figure 4 shows the distribution of outliers and

non-outliers, of four of the pI algorithms under study. The SVM-based

algorithm proposed by Perez-Riverol and co-workers in 2012 predicted

the percentage of outliers, especially in the neutral and basic regions,

where the method out-performs the other algorithms.

3.2 Isoelectric point estimation of peptide sequences
Results seen for the peptide dataset are markedly different: a high cor-

relation was observed for most methods (Table 1). Although the top

seven methods all show the same correlation R2¼0.96, the best result

is the SVM method (Perez-Riverol et al., 2012) which has the lowest

RMSD (0.21). Figure 5 shows the average pI and standard deviation

from IEF fractions from the peptide dataset analyzed. The largest stand-

ard deviation was found in the 5–7 pI range. The best correlation is

always observed in the acid fractions (Fig. 4). In this region, most of the

Fig. 3. Distribution of isoelectric point for different methods and the experi-

mental distribution. The y-axis is the number of proteins for the correspond-

ing isoelectric point value (x-axis)

Table 2. Protein occurrence in PIP-DB

Occurrences 1 2 3 4 5 6 7 8 9 10 11 12 13 15 >15

Number

of proteins

1042 183 81 41 30 21 14 8 4 5 3 3 2 1 8

Over 50% of proteins are found with at least 2 experimental isoelectric

point value associated.

Fig. 4. Distribution of outliers and non-outliers populations of the PIPDB por-

tion evaluated. An outliers is defined if: Abs(pIexperimental – pItheoretical)�SD

(pItheoretical)

Fig. 5. Experimental versus theoretical isoelectric point for 11 different pep-

tide fractions of an OFF-GEL electrophoresis experiment (Heller dataset)
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methods generated a good estimate for the peptides, with a pI between

4.0 and 5.0, where the lowest RMSD was obtained. Similar to the

results obtained on PIP-DB analysis, the Iterative method used with the

Patrickios pKa set fails fully in the complete dataset.

The Bjellquivst algorithm shows a higher number of outliers

(black dots) in the basic fractions compare with the SVM algorithm

(Supplementary Information S2, Fig. 2). Outlier (peptide with devi-

ant pI) detection is highly dependent on both the accuracy of the pI

estimation and the quality of the electrophoretic experiment (Ramos

et al., 2011). Predicted pIs can be applied to remove less likely iden-

tified peptides and to curate the final protein identification result

lists in a shotgun proteomics experiment (Perez-Riverol et al.,

2011). Importantly an outlier may not necessarily imply an estima-

tion error, but may indicate the presence of one or more posttransla-

tional modifications (Lengqvist et al., 2011).

Interestingly, no major changes in the correlation values are

observed when different pKa sets are used with the Bjellqvist

method, 0.95–0.96; this suggests that most of the pKas values pub-

lished after Bjellqvist (Bjellqvist et al., 1993) only perform better in

certain analytical settings (Table 1). A similar trend is observed for

the Iterative method; this again suggests that none of the sets of pKa

values is optimal or is necessarily superior to any other, and in most

cases different pKa values should be used for different calculations.

The cofactor method (Fig. 4) performs more poorly than most of the

algorithms as it was designed to study acid fractions only (Cargile

et al., 2008). The recent Branca algorithm also exhibited a poor per-

formance on this dataset (R2¼0.85, Table 1). It was also designed

and trained to study peptides in acid fractions by adding corrections

to the original pKa sets proposed by Bjellquivst. For this reason, in

basic ranges the algorithm has a low correlation coefficient and a

high RMSD value (Fig. 4).

In contrast, other methods such as SVM, Bjellqvist and Iterative

(with certain pKa sets) show better behavior throughout the frac-

tions analyzed. The confidence intervals indicating the ability to pre-

dict near to an ideal performance (pIexperimental versus pIpredicted) are

closest for these last algorithms.

3.3 Isoelectric point estimation of modified peptides
Post-translational and experimentally induced peptide modifications

can shift peptide pI compared to the values estimated for the

unmodified sequence in two ways: (i) by introducing charged groups

or (ii) by neutralizing charged groups (Ramos et al., 2011). The re-

sults presented in Section 3.2, show for most of the algorithms, a

good correlation between the predicted and experimental pI values

of peptides on a ‘non-modified’ dataset. However, an extended ana-

lysis taking into account post-translational modifications such as

phosphorylation and N-terminal acetylation will provide a more ac-

curate representation of a real electrophoretic experiment. Figures 6

and 7 show the experimental pI values versus the predicted phos-

phopeptide and acetylated peptide pI and also the non-modified

variants for several pI algorithms, with a previously reported

dataset (Gauci et al., 2008). The best correlation was obtained when

the modification was considered during the estimation of the

theoretical pI, increasing the correlation from 0.4 to 0.9 for most

of the algorithms (Supplementary Information S3), demonstrating

the dramatic effect of post-translational modifications on pI

estimation.

When the N-terminus of a peptide is acetylated, a positive charge

is lost, decreasing the overall charge of the peptide (Gauci et al.,

2008; Lengqvist et al., 2011). Correspondingly, phosphorylation af-

fects the charge of a peptide by adding a negatively charged group

(Halligan, 2009; Ramos et al., 2011). Figure 7 shows that the im-

pact of acetylation is more predominant to phosphorylation, making

results poorer if acetylation is not take into account. If those PTMs

are not considered during predictions and in silico studies, the final

results can be completely different to the real experiment, especially,

Fig. 6. Correlation between predicted pI versus experimental pI. The plots

show the correlation obtained if Phosphorylation is exclude (*) or include (D)

in the pI calculation. Ra and Rb denote the correlation coefficients excluding

and including the modification in the estimation respectively. The pKa and

pKb values of 1.2 and 6.5 for phosphorylation S and T were used to consider

the phosphorylation effect in the pI estimation

Fig. 7. Correlation between predicted pI versus experimental pI. The plots

show the correlation obtained if N-terminal acetylation is exclude (*) or in-

clude (D) in the pI calculation. Ra and Rb denote the correlation coefficients

excluding and including the modification in the estimation respectively. The

pI of the N-terminal acetylated peptides was calculated by omitting the pK

values of the N-terminal residue in the peptide sequence
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the acetylation due the distribution of Lysine and N-terminally in

tryptic proteomes (Perez-Riverol et al., 2011).

4 Discussion

Our benchmarking comparison constitutes a strong blind test, since

no method is in any way optimized for this particular data set and

all the proteins and corresponding isoelectric points were collected

from different sources and correspond to distinct analytical settings.

The present study demonstrates that the algorithms from Bjellqvist

et al. and Perez-Riverol et al. represent the most accurate algorithms

overall for computing protein isoelectric points. The results also

demonstrate that when other pKa sets are employed no significant

differences were seen for the Bjellqvist et al. approach, and most of

the small differences observed can be related to specific analytical

conditions specific to the experiment. The poor performance of all

evaluated algorithms for the single value protein dataset is alarming.

There are several possible explanations for this behaviour. The data-

set was evaluated using a variety of methods over many decades.

Thus the intrinsic variation will arise both from true biological vari-

ation (the presence of unknown processed or truncated proteins or

proteins with charged post-translational modifications, etc.) and

other errors introduced by a gallimaufry of different experimental

protocols, each with distinct and incommensurable calibration. The

low correlation between experimental and predicted values throws

serious doubt on the veracity of many theoretical studies of isoelec-

tric point distributions in whole proteomes, such as the studies by

Wu et al. (2006) and Carugo (2007), and any arguments made on

that basis. An alternative exegesis posits that PIP-DB must contain a

large number of annotation errors, as introduced during database

construction, which seriously contaminates the result. This is clearly

possible, if highly unlikely.

In IEF gels or SDS-PAGE experiments, it is common to find the

same polypeptide instance through multiple experimental fractions,

due to diffusion phenomena, or from uneven cutting during band

excision across of the gel. In addition, the peptides or proteins could

have precipitated out of solution during migration from the well to

the appropriate pH in the gel.

Possible aggregation and degradation could contribute to en-

hance inappropriate focalization, making it difficult to correctly in-

terpret the results obtained. It has also been shown that not only the

amino acid composition but also its subsequent modification can in-

fluence the accurate estimation of the isoelectric point, e.g. common

modifications such as phosphorylation and acetylation which might

lead to the shielding of surface charges (as previously described in

Section 3.3). PIP-DB illustrates this complex scenario as shown

in the Table 3. It contains multiple proteins that may be ‘detectable’

in both acid and basic region, showing a wide focalization zone.

Most pI prediction methods do not take into account such ‘artifacts’

and will thus fail to make accurate estimates.

These results also highlight the need for a complete and customiz-

able tool that can provide all available algorithms and pKa sets for iso-

electric point analysis. The machine-learning algorithms, especially the

SVM-based algorithm, showed a superior performance when studying

peptide mixtures. In general, learning-based pI prediction methods

(such as Cofactor, SVM and Branca) require a large training dataset

and their resulting performance will strongly depend of the quality of

that data. Even though Cofactor and Branca algorithms are based on

learning approaches, it is not possible to retrain these algorithms with

different datasets. In this sense, the SVM approach shows more ‘flexibil-

ity’ in pI computation, and this feature can improve prediction accur-

acy. In contrast with Iterative methods, machine-learning algorithms

have the advantage of being able to add new features to improve predic-

tion. Considering the amount of pKa sets reported to date, use of the

Iterative approach provides a good opportunity to find some variant

that fits well with particular experimental conditions. In the near future,

new algorithms and bioinformatics tools should be able to provide a

way of choosing different pKa sets and thus obtain more accurate pre-

diction for a given analytical setting. The SVM and Cofactor methods

should only be used where a high number of sequences are studied and

can thus be used to train the algorithms. We observed notable fluctu-

ations in pI predictions for Iterative methods on a small dataset, show-

ing this method to be sensitive to small changes in the amino acid pKa

values used. Moreover, the algorithm fails when certain pKa values are

missing. We envisage that more algorithms based on machine learning,

including new additional features, should be explored allowing the de-

velopment of fast, accurate and reliable pI calculation algorithms for

use in future protein and peptide proteomic analysis.
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