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Globalization and global climate change will probably be accompanied by rapid social and bio-
physical changes that may be caused by external forcing or internal nonlinear dynamics. These
changes often subject residing populations (human or otherwise) to harsh environments and
force them to respond. Research efforts have mostly focused on the underlying mechanisms
that drive these changes and the characteristics of new equilibria towards which populations
would adapt. However, the transient dynamics of how populations respond under these new
regimes is equally, if not more, important, and systematic analysis of such dynamics has received
less attention. Here, we investigate this problem under the framework of replicator dynamics
with fixed reward kernels. We show that at least two types of population responses are
possible—cohesive and population-dividing transitions—and demonstrate that the critical
transition between the two, as well as other important properties, can be expressed in simple
relationships between the shape of reward structure, shift magnitude and initial strategy diver-
sity. Importantly, these relationships are derived from a simple, yet powerful and versatile,
method. As many important phenomena, from political polarization to the evolution of distinct
ecological traits, may be cast in terms of division of populations, we expect our findings and
method to be useful and applicable for understanding population responses to change in a
wide range of contexts.
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1. INTRODUCTION

Over the past decade, we have witnessed a series of
rapid and unprecedented changes at the global scale.
The food crisis of 2007 and subsequently the financial
crisis of 2008, the Arab Spring and the European debt
crisis in 2011 have paved the way for major restructur-
ing of the political, economic and social systems around
the world. Such rapid social changes, punctuated by
periods of stability, are also well represented in the his-
torical and archaeological records [1]. Recent work in
ecology and earth system science suggests that natural
systems, too, exhibit rapid shifts [2,3]. The underlying
causes of these shifts, be they external forcings or
internal nonlinear dynamics [4,5], have deservedly
received much attention. This has been accompanied
by much discussion that focuses on what new confi-
gurations, or equilibria, populations residing in such
changing environments would adapt towards. How-
ever, understanding how populations respond under
these new environments or regimes—i.e. the transient
orrespondence (rachata.muneepeerakul@asu.edu).
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dynamics—is equally, if not more, important [6]. Given
the adaptive nature of populations, the transient
dynamics may play a crucial role in determining the
very characteristics of the new equilibria. For example,
if a population splits into groups as it responds to an
exogenously imposed change, this may lead to potentially
costly internal conflict and jeopardize the possibility of
the population actually reaching the new equilibrium.
Understanding the dynamics of such population respon-
ses is the focus of this paper. This focus on the transient
behaviour—as opposed to the endpoint equilibrium—
provides an important complementary perspective to
help investigate problems related to population responses
to change. Particularly, we ask: What types of transitions
in populations, human or otherwise, can be induced by
rapid shifts in the biophysical and social environment?

To investigate these transition dynamics, we con-
sider a simple model in which the environment shifts
suddenly and a population of agents characterized by
a continuous distribution of strategies (or traits)
respond to this shift. We assume that before the shift,
the population had been exposed to a particular set of
environmental conditions—a regime—for an extended
period of time. The population would have therefore
adapted in the sense that agents have fine-tuned their
This journal is q 2012 The Royal Society
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strategies to fit that regime, and consequently per-
formed rather well. A shift then occurs. Compared
with the performance just prior to the shift, the popu-
lation’s overall performance initially plummets, but
subsequently recovers through an adaptive process
involving changes in the strategy distribution. Broadly
speaking, the preceding description characterizes
many social and ecological systems, especially in this
era of globalization and global climate change [7–9].
strategy, s

p(s,0)

s*1 s*2

Figure 1. Schematic of the shift-and-response scenario: the red
curve represents the reward kernel under the new regime; s*1
and s*2 are the best strategies, i.e. those with maximum
reward, under the old and new regimes, respectively; the
blue curve represents the strategy distribution at the time
that the shift occurs. The focus of this analysis is on how
the strategy distribution responds under the new regime.
2. THE MODEL

Such scenarios of shifts and responses can be studied
through the so-called replicator equation [10–14]. The
continuous replicator equation is defined as

@pðs; tÞ
@t

¼ pðs; tÞ½Rðs; tÞ � Et ½R��; ð2:1Þ

where p(s, t) is the probability density function (pdf), or
frequency distribution, of strategy s at time t, R(s, t) the
‘reward kernel’ specifying the reward earned by users
of strategy s at time t (depending on the context,
‘reward’ may mean actual monetary reward, fitness,
reproductive success, etc.), and Et[R] ¼

Ð
p(s,t)R(s,t)ds

the population-averaged reward at time t [12,14,15].
Equation (2.1) describes how p(s, t) evolves, driven by
a ubiquitous feature observed in many systems: if a strat-
egy performs better than the average, its frequency
increases, and vice versa. In social systems, this effect
can be generated through social learning—agents copy
strategies that perform better than average; in ecological
systems, this simply reflects higher reproductive fitness
of users of better strategies. Recent work on this
equation [13,14] has shown that its solution takes the
form of time-dependent Boltzmann distribution:

pðs; tÞ ¼ p0ðsÞexp½Fðs; tÞ�
ZðtÞ ; ð2:2Þ

where p0(s) ¼ p(s,0), F(s,t) ¼
Ð

0
t R(s,t)dt and Z(t) ¼Ð

p0(s)exp[F(s,t)]ds. In cases where R(s,t) ¼ R(s), i.e.
the reward kernel can be appropriately assumed, fixed
over the duration of study, F(s,t) takes a simpler form
of tR(s). In the following analysis, we focus on this special
case in which, after the shift, the same reward kernel
is assumed valid over the ensuing time period/scale
under consideration.

Figure 1 illustrates the system we study sche-
matically. We assume that the initial distribution of
strategies within the population p0(s) centres about
the best strategy under the previous long-standing
regime, s*1. Then, at some instant t ¼ 0, the regime,
characterized by reward kernel R(s), shifts such that
the best strategy under the new regime becomes s*2
(red curve in figure 1). The population then adapts
to this new regime and, ultimately, the strategy
distribution p(s,t) moves towards s*2.

However, the manner in which the population moves
towards s*2 matters, and there are two possibilities.
First, the population may change as a cohesive unit
towards s*2; in that case the strategy distribution
p(s,t) would exhibit a ‘travelling peak’-type behaviour
(figure 2a). Alternatively, the population may divide
J. R. Soc. Interface (2012)
itself into two groups—one tending to hold on to the
old best strategy s*1 and the new emerging one tending
to adopt the new best strategy s*2—and the latter
group eventually dominates owing to their greater
reward (figure 2b). (Multiple peaks are possible,
depending on the reward kernel shape, but the same
analysis framework still applies.) This difference may
have significant implications for a wide range of sys-
tems. For example, such division may lead to serious
tension in particular social contexts (e.g. polariza-
tion and increased inequality that accompanied the
transition from centrally planned to market-based
economies [16–18]); or correspond to extinction or
replacement of a group of species by another in ecologi-
cal contexts. We show that the conditions of shifts that
induce these two different types of responses can be
derived based on the observation that the first type
corresponds to strategy distribution p(s,t) that
is always unimodal (i.e. having only one peak at all
times) and the second type corresponds to p(s,t) that
is temporarily bimodal (i.e. having two peaks).
3. MODEL ANALYSIS

Let sm,t denote all strategies that satisfy @pðs; tÞ=@s ¼ 0
(i.e. @pðs; tÞ=@sjs¼sm;t

¼ 0); that is, sm,t locates either
a local maximum or a local minimum of the strategy
distribution at time t. Applying this to the solution
given by equation (2.2) yields the following identity
for sm,t:

R0ðsm;tÞ ¼ �
p00ðsm;tÞ
p0ðsm;tÞt

; ð3:1Þ

where R0ðsm;tÞ ¼ dRðsÞ=dsjs¼sm;t
and p00ðsm;tÞ ¼ dp0ðsÞ=

dsjs¼sm;t
. Making a reasonable assumption that the

initial strategy distribution p0(s) is well approximated
by a Gaussian distribution with mean s*1, the formerly
best strategy, and with arbitrary variance D2, presum-
ably maintained by some fluctuation of the reward
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Figure 2. Illustration of the dynamics of the strategy distribution p(s,t) for a Gaussian-type R(s): (a) travelling peak transition, in
which the population move together as a cohesive unit; and (b) population-dividing transition, in which p(s,t) exhibits two peaks
during the transition. The initial strategy distribution p0(s)(¼p(s,0)) is the same in both cases. Note that in this particular case,
the condition for population dividing is Ds� ¼ js�2 � s�1j . Ds�crit ¼ 3

ffiffiffi
3
p

s=2 (see text). Therefore, the division can be induced by a
small s (as done here) or equivalently a large Ds*. As discussed in the text, D2 sets the pace of the dynamics: larger D2 means that
the slope of the blue straight line flattens more rapidly.
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kernel under the old regime, we obtain a much more
useful identity for sm,t:

R0ðsm;tÞ ¼
sm;t � s�1

D2t
: ð3:2Þ

Here, before proceeding to derive further results,
some elaboration on the conditions employed in our
model development is in order. In particular, we con-
sider the following two conditions: (i) the reward
kernel R(s) is considered fixed over the time scale of
the analysis; and (ii) the strategy distribution at the
time of shift p0(s) is characterized by variance D2 pre-
sumably maintained by some fluctuation of the
reward kernel under the old regime. The central issue
here is time scale. Note that if a reward kernel is fixed
over a very long time, the model predicts that the strat-
egy distribution would become highly concentrated at
its best strategy s*; mathematically, this corresponds to
limt!1pðs; tÞ ¼ dðs � s�Þ. This would imply that D2

should be very small, on the order of 1/T, with T
being the duration of the old regime. However, over a
long time scale, the reward kernel itself would probably
exhibit some degree of fluctuation, thereby preventing
such concentration of strategies in the population and
thus maintaining some diversity of strategies—this
diversity is what D2 represents. Now, in our analysis,
the reward kernel R(s,t) ¼ R(s) is assumed to be
J. R. Soc. Interface (2012)
fixed. This is valid only over a relatively short period
of time; in fact, the extent to which the reward kernel
can be assumed fixed defines the validity of our analyti-
cal framework. Note that such validity over a relatively
short time scale is consistent with our focus on short-
term transient behaviour. Nonetheless, this issue of
time scale is important and must be taken into account
in future model development and in implementing this
model in conjunction with other models.

Equation (3.2) succinctly highlights the importance
of strategy diversity at the time of shift: D2 sets the
pace of the population response—larger D2, faster
response—regardless of the division. This is in agree-
ment with existing work in ecology, which emphasizes
the importance of biodiversity in coping with environ-
mental changes [19], and with models in mathematical
finance in which herding behaviour (reduction of
diversity) makes financial markets more fragile [20–22].

Importantly, equation (3.2) allows for a simple, yet
powerful and versatile, graphical method that can be
used to study the population division and is applicable
for reward kernels of arbitrary shape: sm,t is located
where function R0(s)–(s2s*1)/D2t changes sign (for a
continuous R0(s), this is simply the intersection
between the straight line (s2s*1)/D2t and R0(s)). As dis-
cussed later, population division corresponds to the
distribution of strategies adopted by the population,
p(s,t), having more than one peak. This occurs when



Table 1. Population-dividing threshold Ds*crit for selected
reward kernel R(s). Ds*crit, when it exists, is simply
proportional to a measure of how wide R(s) is; this holds
even for a heavy-tailed R(s), such as the Cauchy-type reward
kernel, whose variance does not exist. A,B and C are
constants (B,C . 0). n.a. indicates that the reward kernel
intrinsically does not induce population-dividing transition.

R(s) Ds�crit

C expf– (s–s*2)
2/2s2g (Gaussian) 3

ffiffiffi
3
p

s=2
C expf– j s–s*2j/sg (exponential, two-sided) s

C f(s–s*2)
2 þ a2)g21 (Cauchy, two-sided) 2a

A–B(s–s*2)
2 (inverted parabola) n.a.

A–Bjs–s*2j (linear) n.a.
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there are at least three values for sm,t. It then follows
that a necessary condition for the population division
is non-concavity of R0(s), as there are at most two inter-
sections between a straight line and a concave function.
It is worth pointing out that while non-concavity has
been shown to be responsible for multiple equilibria in
many ecological [3,4,19,23] and economic [24–27]
models, the present analysis addresses something
different, namely its effects on transient behaviour.

The identity in equation (3.2) is the key in arriving
at one of our central findings: the reward kernel-
dependent threshold of the shift magnitude that
separates cohesion and division of population response.
Using equation (3.2) and some geometric arguments
(see appendix A and figure 4 therein), it can be shown
that the population will respond to the shift by dividing
into groups, if

Ds� .
R0ðŝÞ
R00ðŝÞ

����
����þ js�2 � ŝj ¼: Ds�crit; ð3:3Þ

where Ds* ¼ js*2–s*1j is the shift magnitude. R0ðŝÞ and
R00ðŝÞ are the first and second derivatives of the
reward kernel R(s), respectively, evaluated at
s ¼ ŝ [ ½s�1; s�2�. Here ŝ is the closest point to s*2 that
satisfies lims!ŝ�R

000ðsÞ . 0 and lims!ŝþR
000ðsÞ , 0 (i.e.

R000ðsÞ ¼ d3RðsÞ=ds3 changes sign at ŝ), assuming here
s*2 . s*1. (Note that for s*2 , s*1, these conditions become
lims!ŝ�R

000ðsÞ , 0 and lims!ŝþR
000ðsÞ . 0 for the same

geometrical reason.) For a continuous R0(s), ŝ is
simply the inflection point of R0(s). We call the critical
value Ds*crit in the above inequality the ‘population-
dividing threshold’. Furthermore, equation (3.2) can
also be used to calculate the times at which the new
peak starts to form and when the old peak completely
disintegrates (see appendix B). In addition, it is impor-
tant to note that while equation (3.3) can be applied to
a wide range of families of reward kernels (see table 1 for
examples), for very irregular reward kernels (e.g. those
involving multiple local maxima, discontinuities, and
thus undefined higher-order derivatives of R(s)), one
must resort to equation (3.2) to determine Ds*crit.
4. DISCUSSION

A few illustrative examples are given in order to demon-
strate the significance and applicability of these results.
Let us consider two reward kernels with very different
shapes, corresponding to different social/ecological
regimes. First, we consider R(s) ¼ C exp[–(s–s*2)

2/2s2],
where C . 0 is a constant (but not 1=

ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

as R(s) is
not necessarily a pdf) and s is a parameter represent-
ing the width of the kernel. We refer to this as the
Gaussian-type (or bell-shaped) reward kernel. For this
particular reward kernel, ŝ is simply the inflection point
of R0(s), i.e. R000ðŝÞ ¼ 0, and the population-dividing
threshold Ds�crit is simply 3

ffiffiffi
3
p

s=2 � 2:6s (see appendix
A for full derivation and electronic supplementary
material, movies S1 and S2). Our analysis suggests that
Ds*crit, if it exists, is simply proportional to a measure of
how wide the reward kernel is; this measure is typically
its standard deviation. This statement holds even for
those reward kernels whose variance (and standard
J. R. Soc. Interface (2012)
deviation) does not exist (e.g. the heavy-tailed
Cauchy-shape kernel; see table 1).

What real-world situation may be described by a
Gaussian-type reward kernel? An important character-
istic of the Gaussian-type reward kernel is that even for
strategies far away from the best strategy, the marginal
change in the reward approaches zero, i.e. the reward
kernel is bounded from below. In social contexts, this
may correspond to the situations in which there is limited
liability or some social safety net that protects against
catastrophic losses. Limited liability changes the curva-
ture of the reward function (generally assumed to be
concave in economics and finance) because rewards can
only fall minimally (or stay constant) below the level at
which limited liability binds [28–30].

We contrast this with an alternative situation in
which the reward continues to decline significantly for
strategies increasingly far away from the best strategy,
and agents can experience enormous losses; an example
includes financial markets with complex instruments.
To capture this reward structure, we consider an
inverted parabola reward kernel: R(s) ¼ A–B(s–s*2)

2.
In this case, it can be shown that the strategy distri-
bution p(s,t) maintains its initial Gaussian shape
throughout the transition with time-dependent mean
(s*1 þ 2BtD2s*2)/(1 þ 2BtD2) and variance D2/(1 þ
2BtD2) (see appendix C and electronic supplementary
material, movie S3); that is, the population never splits
into two under an inverted parabola R(s). Thus, there
exist reward kernels, such as strictly concave kernels,
that intrinsically do not induce population-dividing
transient responses (table 1).

The difference between the cohesive and population-
dividing transitions can also be seen in the dynamics of
the population-averaged reward Et[R] and the variance
of reward earned by the population Vt[R] (figure 3).
Here, we consider again the two shifts with Gaussian-
type reward kernels shown in figure 2. In the travelling
peak transition, Et[R] shows significant improvement
immediately after the shift (figures 2a and 3a). In con-
trast, in the population-dividing case, Et[R] remains low
for an extended period of time—as if the population is
still in shock due to the shift—and shows a dramatic
increase only after the new peak near s*2 starts to form
(figures 2b and 3a). This rapid improvement in Et[R],
however, is accompanied by a large spike of reward
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inequality, captured by Vt[R] (figure 3b). Note that, in
both cases, there is a temporary elevated level of reward
inequality; this result suggests that avoiding an increase
in inequality is more difficult than avoiding the division
of population. Interestingly, similar variance dynamics
has also been observed in some studies of long-term
response of traits to shifts in selection pressure in gen-
etics literature (see [31] and the references therein).
Furthermore, figure 3b also suggests that maximum
level of inequality would be considerably less and
arrive sooner in the cohesive transition than in the
population-dividing one.

Finally, we consider some evidence of these patterns
in real-world cases. While the empirical data may not
be readily available to examine these transient
dynamics quantitatively, some historical examples
exist that are indicative of the patterns discussed ear-
lier. A major example is the transition of centrally
planned economies to market-based economies. Two
widely debated aspects related to the design of reforms
to bring about this transition are particularly relevant
here. The first related to whether the reform process
should be carried out quickly in one big stroke (often
referred to as ‘shock therapy’ or ‘big-bang’ approach)
or in a gradual manner. Proponents of the shock
therapy [16,32] pointed to the complementarity of
reform measures and thus the need for carrying out
the reforms in one decisive stroke. Proponents of the
gradualist approach [17,33,34], on the other hand,
emphasized the importance of proper sequencing of
J. R. Soc. Interface (2012)
reform measures. The second major design aspect
related to whether safety nets should be introduced
given that the reform process was expected to be a
risky and highly painful process.

As discussed earlier, the introduction of safety nets
makes the reward kernel non-concave and more akin
to the Gaussian type. Our results show that while
such a reward kernel protects against catastrophic
losses, it also opens up the possibility of a division in
population. Accordingly, our model predicts that such
possibility would be higher under the big-bang
approach (owing to its larger magnitude of shift) than
the gradualist approach. This resonates with emerging
research on the reform processes in several countries.
Although the big-bang approach was advocated, in
part, on grounds of political expediency, almost
the exact opposite happened: political support for the
transition was found to be seriously deficient as
the reforms progressed. It was pointed out in the
study of Dewatripont & Roland [17, p. 1208] that ‘all
of the big-bang programs in Eastern Europe have
undergone substantial modifications, rejections, or
delays’ because of divisions within the population.
They cite, in particular, the case of Slovakia, which
broke away from Czechoslovakia, and that of Russia,
where there was a popular backlash against the reforms.
Lithuania and Poland saw the return of former com-
munists to power who seemed to accept the move
towards capitalism but at a more gradual pace. At
the other end of the spectrum, Hungary and China
are often cited as examples of a more gradual transition.
In both countries, population movement has been
more cohesive, economic performance has been higher
and there has been a slower rise in inequality than in
the big-bang countries that witnessed more divisive
population movements [33]. These features related to
the different paths towards reform are generally in
agreement with those related to the population-dividing
versus cohesive transitions predicted by the model
(figure 3).

It is interesting to note that proponents of the big-
bang approach drew their inspiration from the
experience of West Germany, which had succeeded in
rebuilding and reforming its economy following the
big-bang approach. However, West Germany reformed
under very different conditions following the Second
World War. At that time, the idea of safety nets
had not become institutionalized and it is probable
that the reward kernel for West Germany more closely
resembled the inverted parabolic form, for which,
according to our model, population movement would
be like a cohesive travelling peak.

These examples reinforce the importance of studying
transient dynamics. Population-dividing transition can
lead to an increase in inequality and violence, which
can threaten the viability of reforms or lead to a
policy reversal, as in the case of some of the big-bang
East European countries. Needless to say, these simple
examples do not capture the complexity of the reform
process nor the outcomes that followed from it. Our
objective in presenting these is to shed light on some
commonly observed patterns, and, in the process,
raise new questions and directions for future research.



0
ŝ
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arguments used to calculate the population-dividing threshold
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dividing scenario. See figure 2 and the electronic supplemen-
tary material, movies S1 and S2. (Online version in colour.)
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5. CONCLUSION

In sum, we have shown that for some types of exogenous
shifts, the population responds together as a cohesive
unit, while for others the population responds by divid-
ing into distinct groups. Our analysis suggests that (i)
the shape of the reward kernel exerts strong control
on the transition dynamics; (ii) the population-dividing
threshold Ds*crit, when it exists, is simply proportional to
a measure of how wide the reward kernel is; and (iii)
larger strategy diversity at the time of shift leads to
faster response. These results could contribute to a
better understanding of the transient dynamics under
a wide range of regime shifts observed in human and
natural systems, offering guidelines for anticipating
population responses to changes (e.g. ecosystem
responses to global climate change or social responses
to rapid political or economic change) and designing
policy to help manage such transitions in order to
avoid undesirable outcomes. For example, our analysis
shows that limited liability designed to protect against
catastrophic losses may induce population division. In
several real-world cases, such population divisions
have led to conflicts (as in the transition from centrally
planned to market economies), which, in turn, have
made the transition very costly to navigate and jeopar-
dized the very chances of actually reaching the new
equilibrium. We hope that this work will encourage
future empirical studies to explore these aspects in
greater detail.
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APPENDIX A. CALCULATION OF THE
‘POPULATION-DIVIDING THRESHOLD’
Ds*crit FOR A GAUSSIAN-TYPE REWARD
KERNEL

In this appendix, we demonstrate how equations (3.2)
and (3.3) are applied to a particular type of reward
kernel, namely the Gaussian type. Consider a Gaus-
sian-type reward kernel R(s) ¼ C exp[–(s–s*2)

2/2s2],
where C.0 probable is a constant, and assume that
s*1 , s*2. Assuming a Gaussian initial pdf of strategies
yields the following identity of sm,t (equation (3.2)):

� C
s2 ðsm;t � s�2Þexp �ðsm;t � s�2Þ

2

2s2

" #
¼ sm;t � s�1

tD2 ; ðA 1Þ

which is a transcendental equation that can be solved
either numerically or, in this case, graphically.
Figure 4 shows the plot of R0(s) and the straight line
that intersects and is tangent to R0(s) at ŝ, the inflec-
tion point of R0(s). At ŝ, the condition that
lims!ŝ�R

000ðsÞ . 0 and lims!ŝþR
000ðsÞ , 0 is satisfied.

This straight line passes through the abscissa at s*1 ¼
s*1c. It turns out that, if s*1 . s*1c, corresponding to a
relatively small shift, the straight line will cross the
curve of R0(s) at only one point for all t . 0. In contrast,
J. R. Soc. Interface (2012)
if s*1 , s*1c, corresponding to a relatively large shift, the
straight line may intersect with the curve of R0(s) at one
or three points depending on the value of time t . 0.
The number of intersections gives an indication of the
dynamics of the pdf of strategies at time t, p(s,t).

To calculate Ds*crit—the critical shift magnitude that
separates between cohesive and divisive transitions of
the population—we first determine ŝ, the inflection
point of R0(s). This implies that R000ðŝÞ ¼ 0, where
R000ðsÞ is the third derivative of R(s) (or the second
derivative of R0(s)). This results in

C
s4 ð̂s � s�2Þ 3� ð̂s � s�2Þ

2

s2

" #
exp � ð̂s � s�2Þ

2

2s2

" #
¼ 0; ðA 2Þ

which has three solutions: ŝ ¼ s�2 and s ¼ s�2 +
ffiffiffi
3
p

s.
As suggested by figure 4, ŝ ¼ s�2 �

ffiffiffi
3
p

s is the required
solution because it lies between s*1c and s*2. Therefore,
we obtain

Ds�crit ¼ js�2 � s�1cj
¼ js�2 � ŝj þ jŝ � s�1cj

¼ js�2 � ŝj þ R0ðŝÞ
R00ðŝÞ

����
����;

ðA 3Þ

as shown in equation (3.3). Substituting the values
of R0ðŝÞ ¼ ð

ffiffiffi
3
p

C=sÞexpð�3
2Þ and R00ðŝÞ ¼ ð2C=s2Þ

expð�3
2Þ in equation (A3), we obtain

Ds�crit ¼
3
ffiffiffi
3
p

2
s � 2:6s; ðA 4Þ

the population-dividing threshold for a Gaussian-type
reward kernel.
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Figure 5. Illustration of the time of formation of the new peak
(ta) and the time of disintegration of the old one (tb) for a
Gaussian reward kernel. The plot shows the first derivative
of the Gaussian reward kernel, R0(s), and the two straight
lines that intersect the curve at one point and are tangent
to it at another point. At t ¼ ta, a new peak of the strategy
distribution p(s,t), corresponding to the emergence of sub-
population using a new strategy, starts to form, but coexists
with the old peak which starts to shrink and disappears com-
pletely at t ¼ tb. This scenario is when the difference between
the two strategies is larger than the population-dividing
threshold Ds* . Ds*crit. (Online version in colour.)
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APPENDIX B. CALCULATION OF THE
TIME OF FORMATION OF THE NEW PEAK
AND THE TIME OF DISINTEGRATION
OF THE OLD ONE FOR A GAUSSIAN
REWARD KERNEL

Consider the population-dividing scenario where the
difference between the old (s*1) and the new (s*2) best
strategies is larger than the population-dividing
threshold, i.e. Ds* ¼ js*2–s*1j . Ds*crit. As illustrated in
figure 5, there are two instants of time, ta and tb,
where the straight line intersects R0(s) at one point
and is tangent to it at another. For any time t , ta,
there is only one intersection, corresponding to p(s,t)
having one peak centred around a strategy close to s*1.
On the other hand, for any time t . tb there is also
only one intersection, corresponding to p(s,t) having
one peak centred around a strategy close to s*2. For
ta , t , tb, the straight line intersects R0(s) at three
different points. During this time, p(s,t) is bimodal,
having one peak close to s*1 and the other close to s*2.
In sum, at t ¼ ta, the new peak starts to form, and at
t ¼ tb, the old one disappears.

To calculate the values of ta and tb, we assume two
corresponding points sa and sb, where the slope of the
tangent to R0(s) at these two points (i.e. R

0 0
(sa,b)) is

equal to that of the straight line (i.e. 1/D2ta,b),

R00ðsa;bÞ ¼
1

ta;bD2
or ta;b ¼

1
R00ðsa;bÞD2

: ðB 1Þ

Substituting for the Gaussian reward kernel
ðRðsÞ ¼ C exp½�ðs � s�2Þ

2=2s2�), we obtain

ta;b ¼
s4exp½ðsa;b � s�2Þ

2=2s2�
CD2½ðsa;b � s�2Þ

2 � s2�
: ðB 2Þ

To calculate the values of sa and sb, we notice from
figure 5 that

R00ðsa;bÞ ¼
R0ðsa;bÞ
sa;b � s�1

; ðB 3Þ

with R000ðsa;bÞ= 0 (i.e. sa,b are not the inflection point of
R0(s)). Substituting for R0(sa,b) and R00ðsa;bÞ in equation
(B 3), we obtain

ðsa;b � s�2Þ
2

s2 þ ðsa;b � s�2Þ
ðsa;b � s�1Þ

� 1 ¼ 0: ðB 4Þ

Let j ¼ ðsa;b � s�1Þ, Ds* ¼ s*2–s*1, and assuming that
s*2 . s*1 (as shown in figure 5), equation (B 4) can then
be written as follows:

jðj� Ds�Þ2 � s2Ds� ¼ 0: ðB 5Þ

Equation (B 5) has two real solutions of sa and sb

that correspond to ta, tb . 0, respectively, and one
(undesired) imaginary solution that corresponds to
some t , 0. Note that R000ðsaÞ , 0 and R000ðsbÞ . 0.
(Note also that it is possible to derive closed-form
expression of sa, sb, ta and tb, but they are too lengthy
and cumbersome to offer any useful insights, and thus
not shown here.)
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APPENDIX C: EXACT FORMULA OF THE
PROBABILITY DENSITY FUNCTION OF
STRATEGY, p(s,t), FOR AN INVERTED
PARABOLA REWARD KERNEL

Consider the inverted parabola reward function R(s) ¼
A–B(s–s*2)

2, where A;B [ R and B . 0. Applying
the sm,t identity in the main text, i.e. R0ðsm;t ; tÞ ¼
ðsm;t � s�1Þ=D2t, we obtain

� 2Bðsm;t � s�2Þ ¼
ðsm;t � s�1Þ

tD2 ðC 1Þ

which can be solved for sm,t to get

sm;t ¼
2BtD2s�2 þ s�1
2BtD2 þ 1

: ðC 2Þ

Equation (C 2) indicates that the probability distri-
bution function of strategy s at time t, p(s,t), has only
one maximum (i.e. unimodal) at all times, and hence
the travelling peak is the only scenario for an inverted
parabola reward kernel. Notice that at t ¼ 0, sm,t ¼ s*1
and as t ! 1, sm;t ! s�2, as expected. This result can
also be deduced graphically considering that the left-
hand side of equation (C 1) represents a straight line
of a negative slope while the right-hand side represents
a straight line of a positive slope. The two lines will
intersect only at one point.

To write the corresponding p(s,t), we first calculate
F(s,t), and Z(t) (as defined in the main text)

Fðs; tÞ ¼ t½A� Bðs � s�2Þ
2� ðC 3Þ
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Figure 6. The temporal evolution of strategy pdf, p(s,t), with an
inverted parabola reward kernel. The pdf of strategies s at time t,
i.e. p(s,t), in the case of an inverted parabola reward kernel with
B ¼ 20 and s*1 ¼ 0.5, and p0(s) being a Gaussian distribution
with standard deviation D ¼ 0.1 and mean m ¼ 0.5. As t ! 1;
the mean approaches s*2 ¼ 1.5 and the variance approaches
zero, i.e. pðs; tÞ ! dðs � s�2Þ. (Online version in colour.)
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and

ZðtÞ ¼ 1ffiffiffiffiffiffi
2p
p

D

ð
S

exp �ðs � s�1Þ
2

2D2

" #

� exp½tðA� Bðs � s�2Þ
2Þ�ds

¼ eAtffiffiffiffiffiffi
2p
p

D

ð
S

exp �ðs � s�1Þ
2 þ 2BtD2ðs � s�2Þ

2

2D2

" #
ds:

ðC 4Þ

Expanding the brackets and rearranging the terms,
equation (C 4) becomes

ZðtÞ ¼ eAtffiffiffiffiffiffi
2p
p

D

ð
S

� exp �

s2� 2ss�1 þ s�21 þ 2BtD2s2

�4BtD2ss�2 þ 2BtD2s�22

2D2

2
66664

3
77775ds

¼ exp½At�ðs�21 þ 2BtD2s�22 Þ=2D2�ffiffiffiffiffiffi
2p
p

D

�
ð

S
exp �ð1þ 2BtD2Þs2� 2ðs�1 þ 2BtD2s�2Þs

2D2

� �
ds:

ðC5Þ

With some changes of variables, equation (C 5)
becomes

ZðtÞ ¼ exp½At � ðs�21 þ 2BtD2s�22 Þ=2D2�ffiffiffiffiffiffi
2p
p

D

�
ð

S
exp � s2 � 2~ms

2 ~D
2

� �
ds;

ðC 6Þ

where ~m ¼ ~mðtÞ ¼ ðs�1 þ 2BtD2s�2Þ=ð1þ 2BtD2Þ and
~D

2 ¼ ~D
2ðtÞ ¼ D2=ð1þ 2BtD2Þ.

Completing the square of the exponential term in the
integral, equation (C 6) becomes

ZðtÞ ¼ exp½At þ ~m2 =2 ~D
2�ðs�21 þ 2BtD2s�22 Þ=2D2�ffiffiffiffiffiffi

2p
p

D

�
ð

S
exp �ðs � ~mÞ2

2 ~D
2

" #
ds

¼ exp½At þ ~m2 =2 ~D
2�ðs�21 þ 2BtD2s�22 Þ=2D2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2BtD2
p ;

ðC 7Þ

where we used the fact that
Ð

exp½�ðs � ~mÞ2=D2�
ds ¼

ffiffiffiffiffiffi
2p
p

~D. Substituting the obtained values of
F(s,t) and Z(t) in the solution of the replicator
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equation, i.e. pðs; tÞ ¼ p0ðsÞ exp½Fðs; tÞ�=ZðtÞ, we obtain

pðs; tÞ ¼ e� ~m2 =2 ~D
2ffiffiffiffiffiffi

2p
p

~D

� exp
�

ðs � s�1Þ
2 � ðs�21 þ 2BtD2s�22 Þ

þ2BtD2ðs � s�2Þ
2

2D2

2
64

3
75:
ðC8Þ

Expanding the brackets and rearranging the terms,
we obtain

pðs; tÞ ¼ e� ~m2 =2 ~D
2ffiffiffiffiffiffi

2p
p

~D

� exp �ð1þ 2BtD2Þs2 � 2ðs�1 þ 2BtD2s�2Þs
2D2

� �

¼ 1ffiffiffiffiffiffi
2p
p

~D
exp � s2 � 2~ms þ ~m2

2 ~D
2

� �

¼ 1ffiffiffiffiffiffi
2p
p

~D
exp �ðs � ~mÞ2

2 ~D
2

" #
:

ðC 9Þ

Therefore, we have shown that for an inverted
parabola reward kernel, p(s,t) is simply a Gaussian
distribution with time-dependent mean (~m) and var-
iance (~D

2
). Figure 6 illustrates the temporal evolution

of p(s,t) for an inverted parabola reward kernel.
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