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Protective Actions of PPAR-γ Activation in Renal Endothelium
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Renal endothelial damage is pivotal in the initiation and progression of renal disease. Damaged renal endothelium may be
regenerated through proliferation of local endothelium and circulation-derived endothelial progenitor cells. Activation of the
PPAR-γ-receptors present on endothelial cells affects their cellular behavior. Proliferation, apoptosis, migration, and angiogenesis
by endothelial cells are modulated, but may involve both stimulation and inhibition depending on the specific circumstances.
PPAR-γ-receptor activation stimulates the production of nitric oxide, C-type natriuretic peptide, and superoxide dismutase, while
endothelin-1 production is inhibited. Together, they augment endothelial function, resulting in blood pressure lowering and direct
renoprotective effects. The presentation of adhesion molecules and release of cytokines recruiting inflammatory cells are inhibited
by PPAR-γ-agonism. Finally, PPAR-γ-receptors are also found on endothelial progenitor cells and PPAR-γ-agonists stimulate
progenitor-mediated endothelial repair. Together, the stimulatory effects of PPAR-γ-agonism on endothelium make an important
contribution to the beneficial actions of PPAR-γ-agonists on renal disease.

Copyright © 2008 P. E. Westerweel and M. C. Verhaar. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

PPAR-γ-agonists are widely used for their insulin-sensitizing
actions in the treatment of type 2 diabetes mellitus, but
have additional therapeutic potential beyond the metabolic
effects. Currently, the clinically most used PPAR-γ-agonistic
drugs are the thiazolidinediones (TZDs). PPAR-γ-agonists
may favorably affect the course of renal disease in both
diabetic and nondiabetic conditions [1, 2]. In nondiabetic
animals, beneficial effects have been shown for anti-GBM
antibody-induced crescentic glomerulonephritis [3], passive
Heymann nephritis [4], the development of glomeruloscle-
rosis after 5/6 nephrectomy [5], renal ischemia-reperfusion
induced damage [6], and anti-Thy-1-glomerulonephritis [7].
One potential mechanism is the modulation of endothe-
lial cell function through activation of PPAR-γ receptors,
which are expressed on glomerular endothelium [8, 9]. In
response to injury, the endothelial expression of PPAR-γ-
receptors may be increased, for example, as transiently occurs
after ischemia- reperfusion [8, 9]. Treatment with PPAR-γ-
agonists also increases the expression of PPAR-γ-receptors on
renal endothelium in both the glomerulus and the capillary
endothelium of the medullary vasa recta [10]. The relevance

for renal disease of activating the PPAR-γ-receptors on renal
endothelium is becoming increasingly clear and is the focus
of this review.

2. THE ROLE OF ENDOTHELIUM IN RENAL DISEASE

Renal microvascular endothelial injury is a pivotal
pathogenic factor for various renal diseases. Renal disease
conditions involving prominent endothelial damage include
ischemic nephropathy, glomerulonephritis, interstitial neph-
ritis, and allograft rejection [11, 12]. Endothelial dysfunction
and attenuated angiogenesis contribute to declining renal
function with ageing [13] and the pathogenesis and progres-
sion of chronic kidney disease [11]. The microvascular
endothelium, by the release of endothelium-derived factors
such as nitric oxide (NO) and as a critical component of the
glomerular filtration barrier, exerts important protection
against progressive renal damage. Endothelial dysfunction
results in increased permeability causing passage of
macromolecules (microalbuminuria), which is considered
to be the earliest renal sign of vascular dysfunction
[14, 15]. Endothelial dysfunction has been shown to predict
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susceptibility to renal damage in a rat renal injury model
[16].

Progression of renal disease does not only depend
on the degree of microvascular endothelial injury, but
also on the effectiveness of endothelial repair. Impaired
glomerular capillary repair was found to be associated with
the development of glomerulosclerosis and renal failure
[17]. During experimental glomerulonephritis, angiogenic
factors such as VEGF and bFGF are released, which
stimulate endothelial regeneration [18–20]. Blocking the
VEGF-induced endothelial repair with a VEGF-antagonist
interferes with renal recovery and results in progressive renal
impairment [21]. Consistently, progressive renal disease is
associated with reduced expression of angiogenic growth
factors and enhanced expression of antiangiogenic factors
[22, 23]. The glomerular endothelium can recover from
injury by replacing lost or damaged endothelial cells, in part
through proliferation of local endothelium, stimulated by the
release of angiogenic growth factors [11, 12]. We [24–26] and
others [27] have observed in both human and experimental
animal studies that damaged glomerular endothelium may
also be regenerated from circulating bone marrow-derived
endothelial progenitor cells. Endothelial progenitor cells
incorporate into the damaged glomerulus, differentiate into
mature endothelial cells, and eventually fully integrate into
the resident endothelium [26].

Enhancing renal endothelial repair offers therapeutic
potential. Stimulating angiogenesis with VEGF-treatment
augments capillary repair and renal recovery after glomeru-
lonephritis [19]. Enhancing NO production by supplement-
ing the substrate L-arginine improves the clinical course
of anti-Thy-1-glomerulonephritis [28]. Infusion of unse-
lected bone marrow cells ameliorates experimental progres-
sive glomerulosclerosis [29]. Intrarenal administration of
endothelial progenitor cells attenuates endothelial injury and
mesangial activation in experimental glomerulonephritis
[30].

3. THE ROLE OF PPAR-γ-RECEPTORS IN
VASCULAR DEVELOPMENT AND REMODELING

Phenotypical studies in humans and animals with genetic
mutations in the PPAR-γ-receptor imply a role in the regu-
lation of vascular function and remodeling. In humans with
dominant-negative heterozygous mutations in the PPAR-γ-
receptor causing an impaired capacity for transcriptional
activation, diabetes and also hypertension occur at an
unusually young age [31]. Heterozygous knockout mice have
increased insulin sensitivity [32] and decreased fat mass
[33], but do not have a vascular phenotype [34]. However,
but PPAR-γ-null mice are embryonically lethal due to
placental dysfunction, characterized by defective trophoblast
differentiation and markedly impaired placental vascular-
ization [34]. A surviving PPAR-γ-knockout mouse that
was supplemented with a wild-type placenta developed an
apparently normal vascular system during further embryo-
genesis, but died some days after birth due to a combination
of pathologies, including severe lipodystrophic changes
and hemorrhages [34]. In a conditional knockout model

using a cre-lox system to save floxed PPAR-γ-knockout
mice from embryonic lethality by preserving PPAR-γ-
function in the trophoblast marked lipodystrophy was also
observed, together with insulin resistance. Surprisingly, these
mice were hypotensive and showed increased endothelium-
dependent relaxation in response to acetylcholine [35]. In the
latter study, PPAR-γ-function was deficient in all cell types.
Mice in which PPAR-γ-function was selectively knocked
out in endothelial cells only using again a cre-lox system
were found to be hypertensive when fed a high-fat diet
[36]. Also, in mice with a nonlethal-dominant negative
mutation in the PPAR-γ-receptor, endothelium-dependent
blood vessel dilatation is impaired, while the endothelium
is more sensitive to endothelin-1-induced vasoconstriction
[37]. Superoxide levels in these mice are elevated and
treatment with a superoxide scavenger can reverse the
impaired endothelial vasodilation, highlighting the pivotal
role of increased radical formation [37]. Cerebral arterioles
were hypertrophied with a decrease in luminal diameters,
indicative of adverse inward vascular remodeling [37]. Of
note, dominant negative PPAR-γ-mutations were found not
to be fully selective, therefore, it cannot be excluded that
some of the effects observed in the knockout systems are
attributable to PPAR-γ-receptor-independent signaling, in
particular through the alternative PPAR-receptors [38].

4. EFFECTS OF PPAR-γ-ACTIVATION ON
ENDOTHELIAL PROLIFERATION, MIGRATION,
ANGIOGENESIS, AND APOPTOSIS

Reports on the direct effects of PPAR-γ-agonist treatment on
proliferation, migration, and angiogenic network formation
of cultured endothelial cells showed variable results. Fuku-
naga et al. demonstrated increased proliferation with both
troglitazone and pioglitazone in four different endothelial
cell lines [39]. In contrast, two other studies found trogli-
tazone to inhibit proliferation of macrovascular endothelial
cells [40] and human umbilical vein endothelial cells [41].
Rosiglitazone was shown also to inhibit proliferation in one
study [42], while another study found no effect at all [40].

VEGF-induced endothelial migration was found to be
inhibited by PPAR-γ-agonists troglitazone and ciglitazone,
which was mediated by inhibition of Akt [43]. This is in
line with the reduced migration and inhibition of angiogenic
network formation by PPAR-γ-agonism observed by Xin et al
[44]. However, in the study by Fukunaga et al., troglitazone
stimulated both endothelial cell migration and proliferation,
resulting in accelerated coverage of a disrupted endothelial
monolayer in a wound healing assay [39]. Also, Biscetti et
al. found stimulation of endothelial network formation with
PPAR-γ activation using the GW1929 compound, mainly
through a VEGF-dependent mechanism [45].

In vitro effects of PPAR-γ-agonism on endothelial cell
apoptosis have been similarly variable. Both spontaneous
and TNF-alpha-induced endothelial apoptosis were shown
to be inhibited by various thiazolidinedione PPAR-γ-agonists
[46] and troglitazone was found to markedly reduce
apoptosis in serum-starved endothelial cells [47], while
another study observed induction of apoptosis using both
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ciglitazone and PPAR-γ-receptor overexpression [48]. In
several studies, the endogenous PPAR-γ ligand 15-deoxy-
delta12,14-prostaglandin J2 (15d-PGJ2)-induced endothelial
cell apoptosis [46, 48, 49], but it is important to note that
in vascular endothelial cells, the effects of 15d-PGJ2 may be
independent of PPAR-γ-receptor activation [49, 50].

Taken together, it is clear that PPAR-γ-agonists may
modulate endothelial proliferation, migration, angiogenesis,
and apoptosis in vitro, but that this may result in both stim-
ulation and inhibition. The factors that determine whether
treatment with a PPAR-γ-agonist results in a stimulatory or
inhibitory effect on endothelial cells remain largely unidenti-
fied. This may involve PPAR-γ-receptor-independent effects
as reported for 15d-PGJ2 [49, 50] and also with the various
TZDs [45]. Fukunaga et al. posed that a concentration
dependency may explain some of the observed discrepancies,
as they observed stimulation of DNA-synthesis at low PPAR-
γ-agonist dosages and inhibition at higher dosages [39].
However, this cannot explain all of the divergent findings.

In vivo studies in diabetic animals with impaired
angiogenesis in response to peripheral ischemia showed
that treatment with PPAR-γ-agonist pioglitazone augmented
the angiogenic response and increased blood flow recovery
[51]. In rats with experimental focal cerebral ischemia,
PPAR-γ-agonist treatment stimulated local angiogenesis and
improved functional neurological recovery [52]. In contrast,
PPAR-γ-agonist treatment inhibited pathological choroidial
and retinal neovascularization [53] and suppressed tumor
growth and metastasis by inhibiting tumor angiogenesis in
several primary tumors, in part through decreasing VEGF-
production by tumor cells and blocking the production
of angiogenic ELR+CXC-chemokines, mediated through
antagonizing NF-kappaB activation [54, 55]. These findings
suggest that PPAR-γ-agonism may differentially affect neo-
vascularization with inhibition of pathological neovascular-
ization and augmentation of physiological neovasculariza-
tion. This is in line with the in vitro observations of both
stimulatory and inhibitory actions.

5. EFFECTS OF PPAR-γ-ACTIVATION ON
ENDOTHELIAL DYSFUNCTION

Endothelial integrity does not only rely on the number of
cells, but also on their function. NO-production is a key
component of endothelial function. NO stimulates vasodi-
lation, inhibits inflammation, prevents platelet activation,
and scavenges radicals [56]. In vitro studies on the effect
of PPAR-γ-activation have consistently shown a stimulating
effect on NO production by endothelial cells [57–60]. The
observation that siRNA against PPAR-γ blocked the increase
in NO-production confirmed that this effect is PPAR-γ-
receptor mediated [59]. In both experimental animal studies
and in humans, PPAR-γ-activation has been shown to
augment systemic NO-production and endothelial function.
In diabetic rats, PPAR-γ-agonist treatment restored impaired
endothelium-dependent arterial relaxation by increasing
NO-production while reducing oxidative stress [61]. In
healthy human subjects, a single dose of troglitazone
increased NO-dependent endothelial function measured by

venous occlusion plethysmography of the forearm and nitrite
levels [62]. In nondiabetic patients with hypertension or
hypercholesterolemia, endothelial function was improved
with pioglitazone [63]. In type 2 diabetic patients, vascular
resistance was shown to be reduced with troglitazone
treatment [64, 65] and in type 2 diabetic patients with angina
pectoris, troglitazone reduced the frequency of angina pec-
toris with improving endothelial function [66]. Rosiglitazone
attenuated the detrimental effects of the presence of diabetes
on NO-production measured directly using an intravital
probe and by assessing blood flow in the peripheral skin
[67]. Long-term treatment with pioglitazone resulted in a
reduced pulse wave velocity, indicative of reduced vascular
stiffness [68]. In renal transplant recipients, PPAR-γ-agonist
treatment enhanced endothelial function [69].

Importantly, the observed beneficial effects on systemic
endothelial function were found to extend to improv-
ing intrarenal NO-production. In human type 2 diabetic
patients, rosiglitazone treatment increased intrarenal NO
levels, which was associated with improvement of renal
hemodynamics and reduction of proteinuria [70]. This is
in line with animal studies. In obese Zucker rats, PPAR-γ-
agonist treatment lowered blood pressure and ameliorated
abnormal pressure natriuresis in association with increased
renal NO-metabolite nitrite/nitrate production [71]. In
obese hypertensive Sprague-Dawley rats, PPAR-γ-agonist
treatment also reduced blood pressure, increased NO-
metabolite nitrite/nitrate excretion, and reduced excretion
of oxidative-stress associated urinary isoprostanes and lipid
peroxides [72]. In the kidneys of these rats, eNOS expression
was increased while the pathological increase in p47phox and
gp91phox associated with obesity was attenuated [72].

Differences have been observed between the various
PPAR-γ-activating compounds in the signaling level at
which NO-production is stimulated. The NO producing
enzyme endothelial nitric oxide synthase (eNOS) is not only
regulated at the level of transcription and translation, but
also has multiple phosphorylation sites for activation and
deactivation of the enzyme and requires translocation to
the caveolae to associate with its cofactors and effectively
produce NO [73, 74]. Troglitazone has been shown to
enhance NO-production by increasing eNOS transcription
and eNOS protein translation in isolated endothelial cells
[58], while no effect was found at the transcriptional level for
15d-PGJ2 [57, 58], pioglitazone [58], and ciglitazone [57].
15d-PGJ2 and rosiglitazone, but not ciglitazone, were found
to stimulate eNOS-phophorylation at activation site ser-
1177, thought to be mediated through increasing heat shock
protein (hsp)-90 association with eNOS [59]. Interestingly,
there is a cross-talk between NO and PPAR-γ pathways as NO
has been shown to rapidly and dose-dependently increase
PPAR-γ-binding, mediated by p38 MAPK activation [60].

In vivo, the stimulatory effect of PPAR-γ-agonists rosigli-
tazone and pioglitazone on endothelial NO-production
was associated with increased eNOS-phosphorylation, while
eNOS mRNA and total protein levels were not affected
[51, 75]. Rosiglitazone treatment has been shown to enhance
NO-production through enhancement of cellular transport
of arginine, the substrate for NO [76]. This is particularly
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relevant for renal disease, as arginine transport was found to
be markedly impaired in uremic conditions [77–79].

PPAR-γ-agonism favorably affects other endothelium-
derived factors that act in conjunction with NO to maintain
endothelial homeostasis. The release of C-type natriuretic
peptide, another vasodilatory peptide, by endothelial cells
is increased by PPAR-γ-agonist treatment [39]. In addi-
tion, PPAR-γ-agonist treatment increased Cu2+ and Zn2+-
superoxide dismutase expression in cultured endothelial
cells, thereby increasing their potential for oxygen radi-
cal scavenging [80, 81]. Also, PPAR-γ-agonist treatment
decreases the production of radical oxygen species in
endothelial cells [81, 82], in part through decreasing the
expression of subunits of NADPH-oxidase [80, 81].

6. ANTIHYPERTENSIVE EFFECTS
OF PPAR-γ-AGONISM MEDIATED BY
THE ENDOTHELIUM

Improving NO-availability is thought to be a major mech-
anism mediating the blood pressure lowering effect of
PPAR-γ-agonist treatment. Pioglitazone treatment prevented
hypertension and renal oxidative stress both by reduc-
ing free-radical production and by increasing nitric oxide
production [72]. No blood pressure reduction was seen
with PPAR-γ-agonist treatment in rats also receiving NO-
inhibitor L-NAME [83]. However, other mechanisms may
play a role in the anti-hypertensive effect of PPAR-γ-
agonist treatment, such as effects on the contractility and
proliferation of smooth muscle cells [84].

A naturally occurring antagonist of NO is the vasocon-
strictor endothelin-1, which is involved in atherosclerosis
and hypertension [85]. PPAR-γ-activation inhibits the pro-
duction of endothelin-1 from endothelial cells in vitro [39,
86–88]. In type 2 diabetic patients, pioglitazone treatment
reduced urinary endothelin-1 secretion, along with decreas-
ing microalbuminuria [89]. Interestingly, in this study,
serum endothelin-1 levels were not affected, suggesting a
specific pathogenic role for endothelin-1 secretion in the
kidney [89]. In DOCA-salt hypertensive rats, TZD treatment
reduced endothelin-1 production and blunted radical oxygen
species production with diminished hypertension progres-
sion and vascular remodeling [90]. Several studies show that
the inhibitory effect of PPAR-γ-activation on endothelin-
1 secretion takes place at the transcriptional level [86, 87]
and it was found to be NO-dependent [87]. Delerive et
al. demonstrated that PPAR-γ-activation negatively inter-
feres with the activator protein-1 signaling cascade, result-
ing in inhibition of thrombin-induced transcription of
endothelin-1 [88].

In hypertension, increased production and secondary
effects of angiotensin-II play a major role. In endothelial
cells, angiotensin-II is a strong inducer of NADPH-oxidase,
resulting in the production of radical oxygen species [91].
Interestingly, there is a cross-talk between the Angiotensin-
II and PPAR-γ signaling pathways. Infusion of angiotensin-
II downregulates PPAR-γ-receptor expression in the vascular
wall [92] and treatment with PPAR-γ-agonists abrogates
many of the angiotensin-II pathophysiological effects [93].

Of note, angiotensin-II-receptor-1 antagonists have been
shown to act as partial PPAR-γ-agonists [94].

7. EFFECTS OF PPAR-γ-ACTIVATION ON
INFLAMMATORY CELL RECRUITMENT TO
THE ENDOTHELIUM

Endothelial cells form an important barrier between the
blood and peripheral tissues and regulate homing, adhe-
sion, and transmigration of inflammatory cells. Upon
activation, endothelial cells may further release inflamma-
tory cytokines and express adhesion molecules to attract
inflammatory cells. PPAR-γ-agonist treatment inhibits the
increased expression of adhesion molecules such as VCAM-
1, ICAM-1, and E-selectin and release of inflammatory
cytokines upon stimulation of endothelial cells with PMA
[95, 96], TNF-α [95, 97], IFN-γ [98], IL-1β [99], LPS
[96], microparticles [100], and high glucose [101]. In vitro
studies confirmed that this resulted in decreased adhesion
of inflammatory cells to the endothelium [96, 97, 101,
102]. In addition, a recent study showed that in activated
primary human brain endothelial cells, PPAR-γ-activation
resulted in a marked reduction of monocyte adhesion and
in vitro transendothelial migration, mediated by inhibition
of Rac1 and RhoA GTPases [102]. In vivo, troglitazone
and 15d-PGJ2 reduced ICAM-1 and VCAM-1 expression on
endothelial cells and reduced inflammatory cell homing to
atherosclerotic plaques in a mouse model [103].

8. EFFECTS OF PPAR-γ-ACTIVATION ON
ENDOTHELIAL PROGENITOR CELLS

A recently uncovered effect of PPAR-γ-agonists is the
capacity to augment the level and function of endothe-
lial progenitor cells. PPAR-γ-agonist treatment increases
endothelial progenitor cell levels in mice [104, 105] and
humans [104, 106, 107]. A stimulatory effect on endothelial
progenitor cell outgrowth was also observed when cultured
peripheral blood mononuclear cells were exposed to PPAR-
γ-agonist treatment ex vivo [104, 105, 108, 109], suggesting
an effect on endothelial progenitor cell survival, adhesion, or
differentiation. PPAR-γ-agonist treatment largely prevented
apoptosis of endothelial progenitor cells induced by CRP
[109] and H2O2 [105]. Based on marker expression patterns,
the differentiation of endothelial progenitor cells toward the
endothelial lineage appears to be stimulated [104, 108], while
expression of smooth muscle cell markers is inhibited [104].
Pioglitazone inhibited detrimental effects of angiotensin-
II on endothelial progenitor cells, including inhibiting the
induction of cellular senescence of endothelial progenitor
cells via downregulation of the expression of angiotensin-II-
receptor-1 and limiting the angiotensin-II-induced increased
generation of peroxynitrate and superoxide by the NADPH-
oxidase subunit gp91phox [110].

Functionally, PPAR-γ-agonist treatment was shown to
stimulate angiogenic network formation by endothelial
progenitor cells in vitro [109] and in vivo [105]. The
adhesion capacity may be increased upon TZD-treatment
[108, 109]. In addition, endothelial progenitor cell-mediated
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reendothelialization of a denuded segment of the femoral
artery in mice was accelerated in PPAR-γ-agonist treated
animals [104]. As endothelial progenitor cells may also par-
ticipate in regeneration of damaged renal endothelium [26],
we investigated a potential role for enhanced endothelial
progenitor cell homing and glomerular incorporation by
PPAR-γ-agonist treatment [7]. However, using a rat allogenic
bone marrow transplantation model, we could not detect
an effect on the number of incorporated circulation-derived
glomerular endothelial cells in the recovering glomerulus
with rosiglitazone treatment, although rosiglitazone did
attenuate the clinical course of glomerulonephritis.

9. CONCLUSIONS AND PERSPECTIVES

Activation of the PPAR-γ-receptors present on renal
endothelial cells affects their cellular behavior. Proliferation,
apoptosis, migration, and angiogenesis by endothelial cells
are modulated, but may involve both stimulation and inhi-
bition depending on the specific circumstances. It remains
unclear how this bimodal potential of PPAR-γ-agonists is
regulated. An important consequence of PPAR-γ-receptor
activation is the enhanced production of nitric oxide and
C-type natriuretic peptide and superoxide dismutase, while
endothelin-1 production is inhibited. Together, this improves
the capacity of the endothelium to exert vasodilatory,
anti-inflammatory, and antioxidative actions, resulting in
blood pressure lowering and direct renoprotective effects.
In addition, the presentation of adhesion molecules and
release of cytokines aimed at recruiting inflammatory cells to
activated endothelium is inhibited by PPAR-γ-agonism. This
may also in part account for the anti-inflammatory effects
of PPAR-γ-agonists, supplementary to direct effects on the
inflammatory cells themselves. Finally, PPAR-γ-receptors
are also found on endothelial progenitor cells and PPAR-
γ-agonist stimulate progenitor-mediated endothelial repair,
although definitive evidence that this occurs in the kidney is
currently lacking.

Activation of other PPAR-receptors besides PPAR-γ may
also have beneficial effects on the endothelium. Recently,
selective agonists for PPAR-β/δ were developed [111]. PPAR-
β/δ receptors are present on endothelium and stimulation
with a pharmacological PPAR-β/δ-agonist was found to
increase endothelial cell proliferation and angiogenesis in
vitro and in vivo, mainly mediated through VEGF [112].
Like PPAR-γ-agonists, PPAR-β/δ-agonists increase circulat-
ing endothelial progenitor cell levels, augment endothelial
progenitor cell function in vitro, and improve endothelial
progenitor cell-mediated neovascularization of ischemic
tissue [113]. Also, much like PPAR-γ-agonists, PPAR-
β/δ-agonist treatment reduced the expression of adhesion
molecules and monocyte binding to activated endothelial
cells [114].

Currently, PPAR-γ-agonist treatment is not standard
clinical practice in nondiabetic renal patients. As shown in
this review, experimental studies indicate that stimulatory
effects of PPAR-γ-agonism on endothelium may provide
additional benefit in nondiabetic renal disease. Together
with other potentially therapeutic effects independent of

the insulin-sensitizing action such as the anti-inflammatory
actions, this provides a rationale for further clinical evalua-
tion in nondiabetic renal patients. For patients with diabetic
kidney disease, a pressing question is whether glycemic
control with a TZD is superior to other antidiabetic drugs
for preventing the decline of renal function. To date, only
retrospective studies, post hoc analyses, and pilot studies
are available to help answer this question. Trials designed to
specifically evaluate this question have yet to be performed.
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Weber, “Biphasic effect of pioglitazone on isolated human
endothelial progenitor cells: involvement of peroxisome
proliferator-activated receptor-γ and transforming growth
factor-β1,” Thrombosis and Haemostasis, vol. 97, no. 6, pp.
979–987, 2007.

[109] S. Verma, M. A. Kuliszewski, S.-H. Li, et al., “C-reactive
protein attenuates endothelial progenitor cell survival, dif-
ferentiation, and function: further evidence of a mechanistic
link between C-reactive protein and cardiovascular disease,”
Circulation, vol. 109, no. 17, pp. 2058–2067, 2004.

[110] T. Imanishi, K. Kobayashi, A. Kuroi, H. Ikejima, and
T. Akasaka, “Pioglitazone inhibits angiotensin II-induced
senescene of endothelial progenitor cell,” Hypertension
Research, vol. 31, no. 4, pp. 757–765, 2008.

[111] D. Bishop-Bailey, “Peroxisome proliferator-activated recep-
tor β/δ goes vascular,” Circulation Research, vol. 102, no. 2,
pp. 146–147, 2008.

[112] L. Piqueras, A. R. Reynolds, K. M. Hodivala-Dilke, et al.,
“Activation of PPARβ/δ induces endothelial cell proliferation
and angiogenesis,” Arteriosclerosis, Thrombosis, and Vascular
Biology, vol. 27, no. 1, pp. 63–69, 2007.

[113] J. K. Han, H. S. Lee, H. M. Yang, et al., “Peroxisome
proliferator-activated receptor-delta agonist enhances vascu-
logenesis by regulating endothelial progenitor cells through
genomic and nongenomic activations of the phosphatidyli-
nositol 3-kinase/Akt pathway,” Circulation, vol. 118, no. 10,
pp. 1021–1033, 2008.
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