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Common neurodegenerative diseases are thought to arise from a combination of environmental and genetic exposures. Mendelian

randomization is a powerful way to leverage existing genetic data to investigate causal relationships between risk factors and dis-

ease. In recent years, Mendelian randomization has gathered considerable traction in neurodegenerative disease research, providing

valuable insights into the aetiology of these conditions. This review aims to evaluate the impact of Mendelian randomization

studies on translational medicine for neurodegenerative diseases, highlighting the advances made and challenges faced. We will first

describe the fundamental principles and limitations of Mendelian randomization and then discuss the lessons from Mendelian ran-

domization studies of environmental risk factors for neurodegeneration. We will illustrate how Mendelian randomization projects

have used novel resources to study molecular pathways of neurodegenerative disease and discuss the emerging role of Mendelian

randomization in drug development. Finally, we will conclude with our view of the future of Mendelian randomization in these

conditions, underscoring unanswered questions in this field.
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Introduction
Constructing a thorough understanding of neurodegenera-

tive disease aetiology is a multidisciplinary enterprise.

Observational studies have uncovered many environmen-

tal risk factors, yet spurious associations may arise if

confounding variables influence both exposure and dis-

ease. There may also be reverse causation, where the dis-

ease causes the exposure. Randomized controlled trials

(RCTs) are less affected by such issues; however, large-

scale RCTs are prohibitively expensive.

The genetic determinants of neurodegenerative disease

have been explored in genome-wide association studies

(GWASs) (IMSGC and WTCCC2, 2011; IMSGC, 2013,

2019; GeM-HD Consortium, 2015; van Rheenen et al.,

2016; Chang et al., 2017; Jansen et al., 2019; Nalls

et al., 2019). GWASs are a tremendous resource for

studying molecular pathways and drug targets, and

medications with genetic support may be twice as likely

to proceed from Phase I to approval (Nelson et al.,
2015).

Mendelian randomization (MR) is a powerful method

to investigate the interplay between genetic and environ-

mental disease risks, enabling a more robust understand-

ing of pathogenesis. MR has recently gathered

considerable traction in neurodegenerative disease re-

search, and this review aims to evaluate the impact of

MR studies on translational medicine for these condi-

tions. We will

i. explain the principles and limitations of MR,

ii. discuss lessons from MR studies of environmental risk

factors for neurodegeneration,

iii. describe how MR can provide insight about molecular

disease pathways,

iv. address the emerging role of MR in drug development

and

v. conclude with the future directions and limitations of

MR in neurodegenerative diseases.

Search strategy
The PubMed and EMBASE databases were searched for

key words such as ‘Mendelian randomization’, ‘neuro*’,

‘Parkinson*’, ‘Alzheimer*’, ‘dementia’, ‘Huntington*’ and

‘multiple sclerosis’ to identify MR studies published be-

fore 23 July 2019, with no language restrictions. Further

articles were located through the references of these

articles. Studies were assessed for relevance based on

titles, abstracts and full texts.

Graphical Abstract
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What is Mendelian
randomization?
MR builds on the principle that genetic variants mimic

exposure to environmental risk factors (Katan, 1986;

Davey Smith and Ebrahim, 2003). Since GWASs have

identified single-nucleotide polymorphisms (SNPs) associ-

ated with many phenotypic traits, MR can be used to in-

terrogate questions such as: is higher education protective

against Alzheimer’s disease?

Methodologically, SNPs that are associated with an ex-

posure of interest (e.g. education) are used as the so-called

‘instrumental variable’ or ‘genetic instrument’. The associ-

ation between the same genetic variants and an outcome

(e.g. Alzheimer’s disease) is then calculated (Fig. 1). The

SNP-exposure and SNP-outcome associations are combined

to infer whether the exposure causes the outcome.

MR overcomes many limitations of observational stud-

ies and RCTs. Since the inheritance of a genetic variant

is independent of other traits (Mendel’s law of independ-

ent assortment), any confounders should be equally com-

mon in people with different genotypes. MR is less

susceptible to reverse causation, because genotypes are

determined at conception and not modifiable by disease.

Thanks to openly available GWAS data, MR is much

cheaper and quicker than a large-scale observational

study or RCT. There are nonetheless key limitations of

MR, which are explained in Box 1.

Lessons from MR studies of
environmental risk factors
for neurodegeneration

Confirming findings from
epidemiology—Alzheimer’s disease
and education

Observational data suggest that one in five Alzheimer’s

disease cases may be attributable to low educational at-

tainment (Norton et al., 2014). This association may be

confounded by, e.g. socioeconomic status (Raghavan

et al., 2019), providing an opportunity for MR studies to

shed light.

An MR study by Østergaard et al. found no link between

genetically predicted university completion or more years of

education and Alzheimer’s disease risk (Østergaard et al.,

2015), whereas another MR project suggested that these risk

factors may be protective (Larsson et al., 2017). These con-

flicting findings can be explained by understanding that the

power of an MR study depends on how well the genetic var-

iants predict the exposure. The SNP used by Østergaard and

colleagues explained 0.022% of variation in years in educa-

tion (Rietveld et al., 2013), and recent GWASs capture up to

13% and 5.2% of variability in educational attainment and

intelligence, respectively (Lee et al., 2018; Savage et al.,

2018).

Using the most recent GWASs, an MR study found a

decreased Alzheimer’s disease risk with more years in

education (Raghavan et al., 2019). There was a small

population overlap between the GWASs for education

and Alzheimer’s disease, which can bias the MR result

(Pierce and Burgess, 2013). Nevertheless, three similarly

powered MR analyses found similar results (Anderson

et al., 2020; Savage et al., 2018; Jansen et al., 2019).

Taken together, genetic evidence indicates that low educa-

tional attainment plays a causal role in Alzheimer’s

disease.

Relationships between
diseases—Alzheimer’s disease,
Parkinson’s disease and rheumatoid
arthritis

Alzheimer’s disease and Parkinson’s disease share clinical

and pathological features (Hamilton, 2000; Hanagasi and

Emre, 2005; Kalia and Lang, 2015); however, there is little

overlap in their genetic risk (The Brainstorm Consortium,

2018). An MR study has provided further evidence, show-

ing that genetically predicted Parkinson’s disease does not

affect Alzheimer’s disease risk (Han et al., 2018). The

authors suggested that an SNP in the alpha-synuclein gene

SNCA (a risk locus for Parkinson’s Disease) was protective

for Alzheimer’s disease, but only when using one statistical

method. There are many methods to calculate the MR ef-

fect, and it is advised to use several approaches with differ-

ent assumptions to assess the robustness of results

(Haycock et al., 2016; Burgess et al., 2017; Slob and

Burgess, 2020). If only one method yields a significant re-

sult, this should be interpreted with caution.

Furthermore, observational studies suggest that rheuma-

toid arthritis (an auto-immune inflammatory condition of

Figure 1 Mendelian randomization as a concept. Mendelian

randomization investigates if an exposure causes an outcome by

using genetic variants that are strongly associated with the risk

factor of interest. For example, genetic variants linked to education

can be used to infer whether education has an effect Alzheimer’s

disease risk.
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joints) is inversely associated with Alzheimer’s disease

(Smolen et al., 2016). A 2017 MR study found no causal

link between these conditions (Policicchio et al., 2017). A

different MR study directly probed reverse causation,

showing that genetic risk of Alzheimer’s disease does not

affect rheumatoid arthritis risk either (Cai et al., 2018).

A third MR study found that genetically predicted

rheumatoid arthritis raised Alzheimer’s disease risk (Bae

and Lee, 2018), but the result lost significance when one

SNP was removed from the analysis. This suggests that

the MR result is driven or biased by this SNP and that

this outlier may affect disease risk through an alternative

mechanism, rather than through rheumatoid arthritis

(Burgess et al., 2017).

Challenges to interpreting MR
studies—Parkinson’s disease and
body mass index

The clinical implications of MR results are not always

straightforward, as is illustrated by an MR study about

body mass index (BMI) and Parkinson’s disease.

Observational evidence has been conflicting (Wang et al.,

2015; Wills et al., 2016; Roos et al., 2018), and an MR

study found that genetically higher BMI is protective

against Parkinson’s disease (Noyce et al., 2017). Current

MR methods detect whether there is a causal relationship,

rather than the magnitude thereof, so it is not clear how

much of a BMI change would be needed to influence

Parkinson’s disease risk. Given that a raised BMI is a well-

established risk factor for cardiovascular disease (Benjamin

et al., 2019), promoting a raised BMI for the sake of

Parkinson’s disease protection produces a challenge.

Environmental risk factors and
ethnicity—amyotrophic lateral
sclerosis and blood lipids

MR can also be used to explore how disease aetiology

differs between ethnic groups. The incidence of amyo-

trophic lateral sclerosis (ALS) varies between continents

such as Europe and Asia but seems homogenous between

Europe, North America and New Zealand (Marin et al.,

2017). Such patterns may reflect differences in genetic

and/or environmental risks.

Reviews suggest that hyperlipidaemia may be protective

for ALS prognosis and risk (Jawaid et al., 2018). An MR

study assessed whether low-density lipoprotein choles-

terol, high-density lipoprotein cholesterol, total cholesterol

and triglyceride levels affect ALS risk, using different

GWAS data for Europeans and East Asians (Zeng and

Zhou, 2018). The authors found that raised low-density

lipoprotein cholesterol was significantly associated with

increased ALS risk in Europeans, which is in line with

another MR study in Europeans (Bandres-Ciga et al.,

2019a).

Zeng and Zhou found similar results in an East Asian

cohort, but at nominal significance only (Zeng and Zhou,

Box 1 MR considerations and limitations

MR operates under three core assumptions, stating that

i. the genetic variant(s) must be associated with the exposure;

ii. the genetic variant(s) must ‘not’ be associated with any confounders; and

iii. the genetic variant(s) must ‘not’ be associated directly with the outcome.

The first assumption can be addressed by selecting genetic variants strongly associated with the exposure, e.g. at genome-wide significance (P< 5

� 10�8). Nevertheless, GWAS-identified SNPs typically have small effect sizes; for example 97 genetic loci account for �2.7% of variability in BMI

(Locke et al., 2015). Weak instruments limit statistical power of an MR study and can bias the final result (Pierce and Burgess, 2013).

Several SNPs can be combined to mimic one exposure (Haycock et al., 2016; Hemani et al., 2018); e.g. two SNPs represent 2.7% of plasma urate,

whereas 26 SNPs explain 7% of urate variance (Kia et al., 2018; Kobylecki et al., 2018). Large study population sizes can also improve statistical

power (Haycock et al., 2016), and the exposure and outcome do not have to be measured in the same population. Data from two independent

GWASs can therefore be combined using ‘two-sample MR’, as long as the two populations are of the same ancestry.

The latter two core assumptions are violated by genetic pleiotropy, where a genetic locus influences more than one trait. This means that an SNP

may affect the outcome through a pathway that does not involve the exposure. Many different methods have been developed to allow for some

pleiotropy (Burgess et al., 2015, 2019; Holmes et al., 2017; Hemani et al., 2018).

Some limitations particularly apply to MR in drug development. Most GWASs pertain to disease risk, rather than progression, and MR instruments

mimic lifelong, low-dose exposure to a risk factor or drug. This is useful when studying preventative interventions or public health policies, but

perhaps less so when predicting the outcome of clinical trials, which typically last a few years only and measure progression. Indeed, there is evi-

dence that MR may overestimate the effect seen in clinical trials (Burgess et al., 2012; Ference et al., 2012).

In addition, there may not be genetic data available to represent a drug. One could use a proxy measure, such as blood lipids to mimic statins ra-

ther than levels of the molecular target (Walker et al., 2017). Such proxies cannot detect effects through unknown mechanisms, and SNPs associ-

ated with specific gene expression or protein levels may be more suitable (Gamazon et al., 2018; Sun et al., 2018; V~osa et al., 2018; Yao et al.,

2018; Zhernakova et al., 2018).

For further reading on MR methods and limitations, we direct readers to the references (Evans and Davey Smith, 2015; Holmes et al., 2017;

Davies et al., 2018, Bandres-Ciga et al., 2019b).
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2018). This population was smaller than the European

cohort, so it is unclear whether there is a true biological

difference or a lack of power in the East Asian group.

Moreover, it has been proposed that observational studies

may be confounded by raised BMI, which has been

linked to slower ALS progression (Jawaid et al., 2018).

Using MR, Zeng et al. showed that genetically predicted

BMI is not causally associated with ALS in Europeans

nor East Asians (Zeng et al., 2019).

Well-powered GWASs are key to a successful MR, and

large GWASs remain mostly limited to European popula-

tions (Popejoy and Fullerton, 2016; Sirugo et al., 2019).

As such, ethnically diverse GWASs and MR studies are

crucial before we can generalize MR results to people of

different ancestries.

Using MR to study
molecular mechanisms of
neurodegenerative disease
MR has recently been extended to molecular disease

mechanisms using ‘summary-based MR’, which combines

GWAS and gene expression data (Zhu et al., 2016). This

is the same as classical MR, except the exposure is the

expression of a gene. Expression quantitative trait loci

(QTL) are used, which are genetic variants associated

with different expression levels of a gene. SNPs associated

with gene methylation QTL or protein QTL levels can

also be studied using this method.

This approach can identify new genes that may be rele-

vant to disease aetiology. One summary-based MR study

used expression QTL associated with the expression of

5366 genes in peripheral blood and data from an ALS

GWAS, finding five genes whose expression levels predict

ALS risk, none of which were detected by the GWAS (Du

et al., 2018). Summary-based MR can also be used to in-

terrogate disease pathways. One study used genes related to

endosomal membrane trafficking pathways and showed

that expression and methylation of these genes predicted

Parkinson’s disease risk (Bandres-Ciga et al., 2019c).

By using the MR approach, these studies provide in-

sight into the ‘causal’ molecular biology of neurodegener-

ation, and summary-based MR and a derivative thereof

(Zhu et al., 2018) have now formed part of several

GWASs for neurodegenerative disease (Benyamin et al.,

2017; Jansen et al., 2019; Nalls et al., 2019).

MR in drug
development—nature’s
randomized controlled trial
It currently takes approximately a decade and $2.6 bil-

lion for one drug to proceed from initial testing in

humans to licencing (DiMasi et al., 2016), and �90% of

drugs in Phase I clinical trials are never launched, mostly

due to insufficient efficacy and safety (Harrison, 2016;

Smietana et al., 2016).

MR provides an exciting opportunity, because it can

imitate an RCT. The underlying principle is that genetic

variants associated with different concentrations of a

drug target act in the same way the corresponding drug

does (Evans and Davey Smith, 2015). The SNPs essential-

ly mimic lifelong exposure to low levels of a drug, and

the random allocation of genes at birth is similar to ran-

domization in an RCT. In addition, patients do not typic-

ally know their genotype, so MR studies are effectively

blinded. Figure 2 visualizes the analogy between MR and

an RCT, using serum urate and Parkinson’s disease as an

example.

MR offers a chance to prioritize drug targets using

human evidence early in the drug development pipeline.

We can also explore repurposing opportunities for al-

ready-licenced drugs, which have passed safety assessment

and could reach patients sooner and at a lower cost

(Evans and Davey Smith, 2015). MR has already been

applied in drug development for neurodegenerative dis-

ease, and below we discuss several promising examples.

Parkinson’s disease and urate

Epidemiological evidence indicates that higher serum

urate may lower Parkinson’s disease risk (Gao et al.,

2016; Wen et al., 2017). Four small MR studies have

found a protective role of raised serum urate on

Parkinson’s disease risk (Gao et al., 2013; González-

Aramburu et al., 2013), age of onset (Facheris et al.,
2011) and progression to disability requiring dopamin-

ergic treatment at 1 year (Simon et al., 2014). More re-

cently, two considerably larger MR studies found no

significant association between plasma urate and

Parkinson’s disease risk (Kia et al., 2018; Kobylecki

et al., 2018).

This discrepancy may lie in the chosen instrumental

variable and sample sizes. Genetically determined urate

levels are largely defined by variation in SLC2A9 and

ABCG2, which together explain �3.4% of serum urate

concentration (Köttgen et al., 2013). Most of the early

MR studies of urate used SNPs in SLC2A9 only

(Facheris et al., 2011; Gao et al., 2013, Simon et al.,

2014). Kia et al. used GWAS-identified SNPs that explain

7% of urate variability and a two-sample MR design

combining two large-scale GWAS studies, both of which

improve statistical power (Kia et al., 2018).

In 2018, a clinical trial studying the urate-raising drug

inosine as a treatment for Parkinson’s disease was termi-

nated early, because it was deemed ‘unable to show that

inosine slows Parkinson’s progression’ (https://www.mi-

chaeljfox.org/news/parkinsons-inosine-trial-ending-early,

last accessed 9 April 2020). This potently shows how
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well-powered MR studies can predict the likely efficacy

of a drug.

Alzheimer’s disease and blood
pressure

Observational studies suggest that hypertension is a risk

factor for Alzheimer’s disease (Norton et al., 2014;

Livingston et al., 2017) and that antihypertensive use

may be protective (Larsson and Markus, 2018), creating

a potential drug repurposing opportunity.

One MR study opposed this evidence, finding that gen-

etically predicted higher systolic blood pressure may de-

crease Alzheimer’s disease risk (Østergaard et al., 2015).

A more recent MR study used SNPs associated with the

expression of 12 antihypertensive drug targets and systol-

ic blood pressure (Walker et al., 2019). Only the proxy

for angiotensin-converting enzyme inhibitors was associ-

ated with Alzheimer’s disease risk.

Furthermore, another MR study has shown that

acetylcholinesterase expression may be causally associ-

ated with raised blood pressure (Richardson et al.,
2020). ACHE encodes the target for acetylcholinesterase

inhibitors such as donepezil and galantamine, which are

licenced treatments for Alzheimer’s disease (Lane et al.,
2018).

MR can also be used to untangle on-target and off-tar-

get drug effects. Walker et al. postulated that angiotensin

converting enzyme inhibitors may act through a different

mechanism, since no link was found between Alzheimer’s

disease risk and systolic blood pressure or other antihy-

pertensives (Walker et al., 2019). This principle has been

illustrated in cardiometabolic disease, building on

observations that statin therapy is associated with an

increased risk of type 2 diabetes mellitus (Sattar et al.,

2009). Using SNPs in the HMG-CoA reductase gene

HMGCR, which encodes the target for statins, an MR

study showed that the raised diabetes risk is an on-target

effect (Swerdlow et al., 2015). Likewise, if MR evidence

suggests that a side effect is an off-target effect, this could

encourage the development of a drug with more specifi-

city (Evans and Davey Smith, 2015).

Multiple sclerosis and vitamin D

Multiple sclerosis prevalence rises with latitude on both

sides of the equator (Ascherio and Schwarzschild, 2016;

Sintzel et al., 2018), and migration studies suggest that

multiple sclerosis risk is heavily influenced by environ-

mental factors (Berg-Hansen and Celius, 2015; Ascherio

and Munger, 2016; Dobson and Giovannoni, 2019). This

is thought to occur because ultraviolet light stimulates

vitamin D production in the skin, and vitamin D levels

are inversely correlated with multiple sclerosis risk

(Sintzel et al., 2018).

MR studies show that genetically predicted lower vita-

min D may increase the risk of multiple sclerosis (Mokry

et al., 2015; Rhead et al., 2016) and paediatric-onset

multiple sclerosis (Gianfrancesco et al., 2017). The paedi-

atric study used SNPs from a GWAS in adults, so these

SNPs may not reflect vitamin D status in children. In

addition, most control subjects were adults. Control sub-

jects are traditionally age-matched, yet it is possible that

paediatric controls may develop multiple sclerosis later in

life, whereas adult controls are definite ‘negatives’ for

paediatric multiple sclerosis. Furthermore, present-day

MR assumes a linear relationship, so it is unclear if

Figure 2 Mendelian randomization is analogous to a placebo-controlled randomized controlled trial. For example, genetic

variants associated with higher serum urate levels mimic lifelong exposure to a urate-raising drug.
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vitamin D is always protective, or for example only in

clinically deficient individuals.

Disease risk as an
outcome—Huntington’s disease and
telomeres

An important limitation of MR in drug development is

that most GWAS datasets pertain to disease risk rather

than progression. In other words, most MR studies to

date predict whether an intervention could prevent dis-

ease, rather than slow or hinder its progression. For ex-

ample, although MR studies show an inverse relationship

between vitamin D levels and multiple sclerosis risk, no

significant association has been found with multiple scler-

osis severity nor age at onset (Rhead et al., 2016).

An exception to this trend pertains to Huntington’s dis-

ease, a neurodegenerative condition caused by a trinu-

cleotide (cytosine-adenine-guanine) repeat expansion in

the huntingtin gene (Ross et al., 2014). The trinucleotide

repeat length determines some but not all variability in

age at motor symptom onset (GeM-HD Consortium,

2015), and an MR study suggests that longer telomeres

(repetitive DNA sequences at the end of chromosomes)

may delay Huntington’s disease onset (Aziz and Weydt,

2018). These SNPs are associated with telomere length in

leukocytes, which are correlated with that in neurons

(Zhan et al., 2015; Aziz and Weydt, 2018). Generally, an

MR instrument and exposure do not have to be function-

ally linked and they must only be strongly correlated, so

that the SNP(s) reliably represents the exposure.

Future directions and
outstanding questions
The expanding popularity of MR has facilitated its critic-

al evaluation and steady improvement (Burgess et al.,
2015, 2018; Holmes et al., 2017; Hemani et al., 2018),

and initiatives such as the UK Biobank, Million Veterans

Program and 23andMe (https://research.23andme.com/,

last accessed 9 April 2020) provide genetic data for a

wealth of phenotypic traits (Gaziano et al., 2016; Bycroft

et al., 2018). In addition, guidelines have been produced

to standardize the reporting quality of MR studies

(Burgess et al., 2019, Davey Smith et al., 2019).

These developments make MR increasingly accessible,

enabling ‘high-throughput’ projects such as an online

platform collating over 5000 GWASs to facilitate MR for

Parkinson’s disease (Noyce et al., 2019). Nonetheless, it

remains crucial to perform MR studies with a reasoned

approach, carefully tailored to the research question

(Burgess and Davey Smith, 2019). Together with ethnical-

ly diverse data and GWASs for progression

(Blauwendraat et al., 2019; Iwaki et al., 2019), these

resources will expedite MR for neurodegenerative disease

prevention and drug development.

With regard to molecular-level MR, it remains unclear

whether eQTLs are the best tool. Since most drugs act

on proteins, it is perhaps more suitable to use pQTLs,

i.e. SNPs associated with different protein levels rather

than gene expression. pQTL studies to date have meas-

ured protein levels in blood only (Emilsson et al., 2018;

Sun et al., 2018; Yao et al., 2018), which may differ

from the central nervous system. On the other hand, if

MR evidence shows that blood protein levels affect neu-

rodegenerative disease, a corresponding drug may not

need to cross the blood–brain barrier to exert a thera-

peutic effect.

Tissue diversity has been more thoroughly explored for

eQTL data (Gamazon et al., 2018; Taylor et al., 2019;

Richardson et al., 2020). For example, an MR study

found that FBN2 expression in heart tissue was linked to

diastolic blood pressure, whereas FBN2 expression in

lung tissue was linked to forced vital capacity

(Richardson et al., 2020). Such evidence suggests that

biologically relevant tissues may be crucial for molecular-

level MR projects. The sample sizes of tissue-diverse stud-

ies are small (Gamazon et al., 2018; V~osa et al., 2018),

so the importance of tissue specificity remains uncertain.

Finally, QTL data are notably not functional and these

SNPs may not accurately reflect protein activity.

Conclusion
If we view disease aetiology as a combination of genetics

and environment, MR provides an invaluable meeting

point. MR has yielded many fruitful results and lessons

for neurodegeneration, propelling our understanding

about environmental risk factors and molecular patho-

physiology. This engenders an advantageous evidence

base for public health interventions to prevent disease.

We eagerly anticipate further GWASs with progression

outcomes and ethnically diverse populations, as well as

tissue-specific QTL data, which may mitigate the chal-

lenges to translating MR results to the clinic. As these

resources continue to grow, MR becomes an ideal tool

for drug development, able to prioritize medications at

an early stage and ascertain molecular mechanisms of ac-

tion. We encourage carefully designed, standardized use

of this exciting technique, boosting the number of success

stories.
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