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Abstract

Background: The switch from oxidative phosphorylation to glycolysis in proliferating cancer cells, even under aerobic
conditions, has been shown first in 1926 by Otto Warburg. Today this phenomenon is known as the “Warburg effect” and
recognized as
a hallmark of cancer. The metabolic shift to glycolysis is associated with the alterations in signaling pathways involved
in energy metabolism, including glucose uptake and fermentation, and regulation of mitochondrial functions.
Hexokinases (HKs), which catalyze the first step of glycolysis, have been identified to play a role in tumorigenesis of
human colorectal cancer (CRC) and melanoma. However, the mechanism of action of HKs in the promotion of tumor
growth remains unclear.

Results: The purpose of the present study was to investigate the effect of silencing of hexokinase genes (HK1, HK2, and
HK3) in colorectal cancer (HT-29, SW 480, HCT-15, RKO, and HCT 116) and melanoma (MDA-MB-435S and SK-MEL-28) cell
lines using short hairpin RNA (shRNA) lentiviral vectors. shRNA lentiviral plasmid vectors pLSLP-HK1, pLSLP-HK2, and
pLSLP-HK3 were constructed and then transfected separately or co-transfected into the cells. HK2 inactivation was
associated with increased expression of HK1 in colorectal cancer cell lines pointing to the compensation effect.
Simultaneous attenuation of HK1 and HK2 levels led to decreased cell viability. Co-transfection with shRNA vectors against
HK1, HK2, and HK3 mRNAs resulted in a rapid cell death via apoptosis.

Conclusions: We have demonstrated that simultaneous inactivation of HK1 and HK2 was sufficient to decrease
proliferation and viability of melanoma and colorectal cancer cells. Our results suggest that HK1 and HK2 could be the key
therapeutic targets for reducing aerobic glycolysis in examined cancers.
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Background
In the beginning of the 20th century, Otto Warburg with
his colleagues observed that cancer cells used glycolysis
and produced lactate instead of mitochondrial respir-
ation, even in the presence of oxygen and could die
through hypoxia if glucose is lacking. Nowadays, this
phenomenon is known as “Warburg effect” [1, 2]. Many
cancers are characterized by increased aerobic glycolysis
[2–5]. In the hypoxic microenvironment, it confers sev-
eral advantages to cancer cells. Firstly, high rate of gly-
colysis provides sufficient ATP for tumor cells under
reduced mitochondrial function [6–8]. Secondly, glycoly-
sis is a source of the metabolic intermediates (e.g., ribose
sugars, glycerol, citrate, nonessential amino acids and
NADPH) that are needed for biosynthetic pathways [9].
Finally, tumor cells produce large amount of lactic acid
during glucose metabolism that promotes activation of
metalloproteinases and matrix remodeling enzymes in-
volved in invasion and metastasis [10]. So, the Warburg
effect benefits for the adaptation, proliferation and sur-
vival of cancer cells.
Hexokinases (HKs) catalyze the crucial step in glycoly-

sis in which the glucose is phosphorylated to produce
glucose-6-phosphate [11]. Four isozymes of hexokinase
were found in mammalian tissues: HK1, HK2, HK3 and
HK4 (glucokinase) [12, 13]. The alterations in the
expression of hexokinase isoenzymes play a role in
the tumor initiation and promotion. It has been ob-
served that the tumor cells adapted metabolically pri-
marily by increasing the expression of HK2 [14, 15].
The elevated expression of HK1 was also detected in
several tumors, but at lower extent compared to the
HK2 isozyme [16–18]. The increased expression of
HK3 was shown in colorectal, lung, gastrointestinal,
and breast cancers [11, 19]. For liver tumors, a shift
in expression from HK4 to HK1 and HK2 was ob-
served [11, 20]. In has been shown that in tumor
cells cytosolic HK1 and HK2 were tightly associated
to the voltage-dependent anion channel (VDAC) in
the mitochondrial membrane [15, 21]. Its interaction
has dual function: (1) prevention of mitochondrial
outer membrane permeabilization and evasion of sub-
sequent apoptosis, and (2) inhibition of VDAC to fa-
cilitate shuttling of ATP from mitochondria into the
cytosol [22, 23]. This is also the evidence that HK1
and HK2 are responsible for the accelerated glucose
flux in tumor cells. Thus, altered expression of HKs
in tumors is a potential target for cancer therapy.
Colorectal cancer (CRC) and malignant melanoma

(MM) are very aggressive and deadly cancers with high
metastatic rates [24]. The risk of both tumors increases
with age [25–28]. Most cases of CRC and melanoma are
sporadic and driven by genetic and epigenetic alterations
involved in the activation of oncogenes and inactivation

of tumor suppressor genes [29–32]. However, around
10-30% of all CRC and 3-15% of MM cases have a her-
editary nature [33–35]. CRC and melanoma usually de-
velop without any symptoms for a long time. Many
cases of CRC and MM are diagnosed in advanced stages
[36–38]. At present, there are few treatment options for
patients with CRC or melanoma, but the classical ther-
apies have limited efficiency whereas global incidence of
the diseases is increasing very fast [39, 40]. It is import-
ant to uncover the molecular mechanisms of the devel-
opment and progression of CRC and MM for better
prevention, diagnosis, and clinical management.
In the present study, to understand the mechanism of

aerobic glycolysis in CRC and MM, we investigated the
effect of silencing of hexokinase genes in colorectal can-
cer and melanoma cells using short hairpin RNA
(shRNA) lentiviral vectors. Our results suggest HK1 and
HK2 as key enzymes for glucose metabolism associated
with survival of tumor cells. We determined the signifi-
cance of HK gene expression in colorectal cancer and
melanoma cells and proposed a promising strategy for
therapy of the diseases.

Methods
Cell cultures
Colorectal adenocarcinoma (HT-29, SW 480, HCT-15,
RKO, and HCT 116) and melanoma (MDA-MB-435S
and SK-MEL-28) cells were obtained from N.N. Blokhin
Russian Cancer Research Center (Moscow, Russia). They
were maintained in Dulbecco's modified Eagle's medium
(DMEM) (Thermo Fisher Scientific, USA) supple-
mented with 10% FBS (Harlan Sera-Lab, UK), penicil-
lin (100 U/ml), and streptomycin (100 μg/ml)
(Thermo Fisher Scientific, USA). The cells were cul-
tured at 37 °C in a 5% CO2 atmosphere and passaged
every 2–3 days by dissociation with trypsin (Thermo
Fisher Scientific, USA).

Constructs and production of lentivirus
Nine hairpin RNAs were constructed to specifically target
HK1, HK2, and HK3 mRNA (3 interference sequences per
each gene) by shRNA design tools (http://rnaidesig
ner.thermofisher.com/rnaiexpress/). Using BLAST (http://
blast.ncbi.nlm.nih.gov/Blast.cgi) we have seen that the
designed shRNAs targeted only the selected genes.
ShRNAs were synthesized by Evrogen (Russia) (Table 1).
Their sequences were annealed and cloned between EcoRI
and BamHI restriction sites in the pLSLP lentiviral vector
and checked by Sanger sequencing on ABI Prism 3100
Genetic Analyzer (Thermo Fisher Scientific, USA).

Cell transfection
The constructed vectors were transfected into the cells
using Lipofectamin 2000 (Thermo Fisher Scientific,
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USA) according to manufacturer's instructions. The
transfected cells were then selected by puromycin
(10 mg/ml) for 5 days. The puromycin-resistant colonies
were then picked and expanded. HK expression levels in
selected clones were determined by quantitative PCR
(qPCR) and Western blot analysis.

RNA extraction and cDNA synthesis
The total RNA was isolated using RNeasy Mini kit
(Qiagen, Germany) according to manufacturer's proto-
col. RNA quality was monitored with absorbance
spectra (NanoDrop Technologies Inc., USA) and the
RNA integrity number (RIN; Agilent Technologies,
USA). The RNA samples were treated with DNase I
(Thermo Fisher Scientific, USA). cDNA was synthe-
sized using M-MLV Reverse Transcriptase (Thermo
Fisher Scientific, USA) and random primers.

Quantification of gene expression by qPCR
Gene expression was analyzed using qPCR with TaqMan
Gene Expression Assays (Thermo Fisher Scientific, USA)
and TaqMan Universal Master Mix (Thermo Fisher Sci-
entific, USA) according to the manufacturer’s recom-
mendations. The reactions were performed using AB
7500 Real-Time PCR System (Thermo Fisher Scientific,
USA) with RQ (Relative Quantitation) software (Thermo
Fisher Scientific, USA). PCR program was as follow:
10 min at 95 °C, then 50 two-step cycles 15 s at 95 °C
and 60 s at 60 °C. Total reaction volume was 20 μl in

triplicate. PCR products were analyzed in 2% agarose
gels and nucleotide sequences of the amplicons were
verified by Sanger sequencing on ABI Prism 3100 Gen-
etic Analyzer (Thermo Fisher Scientific, USA).

Western blot analysis
Proteins were extracted using radioimmunoprecipita-
tion assay lysis buffer (RIPA buffer). The concentra-
tion and purity of proteins were analyzed on Agilent
Bioanalyzer 2100 (Agilent Technologies, USA). Subse-
quently, proteins (20 μg) were separated by electro-
phoresis on a SDS-PAGE gel and transferred onto a
polyvinylidene fluoride membrane. The membrane
was blocked in 3% BSA in Tris-buffered saline in
0.1% Tween 20 (TBST) at room temperature for 1 h
and then incubated overnight in the primary antibody
solution (MA5-14789, MA5-14849, and PA5-29304)
(Thermo Fisher Scientific, USA) at 4 °C. Next, the
samples were washed three times with TBST, and the
membrane was incubated with secondary antibody so-
lution (A-11008) (Thermo Fisher Scientific, USA) for
1 h at room temperature. After incubation, the sam-
ples were washed five times and the bands were de-
tected using Pierce ECL Western Blotting Substrate
(Thermo Fisher Scientific, USA) on a Gel Doc XR+
System (Bio-Rad, USA) and analyzed with Image Lab
Software (Bio-Rad, USA). β-actin was used for
normalization.

Table 1 shRNA sequences

Primer name shRNA sequences

HK1_sh1_t gatccgGGAACTGAGGCACATTGATCTCACGTGAGATCAATGTGCCTCAGTTCCtttttg

HK1_sh1_b aattcaaaaaGGAACTGAGGCACATTGATCTCACGTGAGATCAATGTGCCTCAGTTCCcg

HK1_sh2_t gatccgGCCTTTGGAGACGATGGATCACACGTGTGATCCATCGTCTCCAAAGGCtttttg

HK1_sh2_b aattcaaaaaGCCTTTGGAGACGATGGATCACACGTGTGATCCATCGTCTCCAAAGGCcg

HK1_sh3_t gatccgGGAAGCAGACGCACAACAATGCACGTGCATTGTTGTGCGTCTGCTTCCtttttg

HK1_sh3_b aattcaaaaaGGAAGCAGACGCACAACAATGCACGTGCATTGTTGTGCGTCTGCTTCCcg

HK2_sh1_t gatccgGGGTGAAAGTAACGGACAATGCACGTGCATTGTCCGTTACTTTCACCCtttttg

HK2_sh1_b aattcaaaaaGGGTGAAAGTAACGGACAATGCACGTGCATTGTCCGTTACTTTCACCCcg

HK2_sh2_t gatccgGCAGAAGGTTGACCAGTATCTCACGTGAGATACTGGTCAACCTTCTGCtttttg

HK2_sh2_b aattcaaaaaGCAGAAGGTTGACCAGTATCTCACGTGAGATACTGGTCAACCTTCTGCcg

HK2_sh3_t gatccgGGGACTTTGATATCGACATTGCACGTGCAATGTCGATATCAAAGTCCCtttttg

HK2_sh3_b aattcaaaaaGGGACTTTGATATCGACATTGCACGTGCAATGTCGATATCAAAGTCCCcg

HK3_sh1_t gatccgGGGTGACTCTAACTGGCATTGCACGTGCAATGCCAGTTAGAGTCACCCtttttg

HK3_sh1_b aattcaaaaaGGGTGACTCTAACTGGCATTGCACGTGCAATGCCAGTTAGAGTCACCCcg

HK3_sh2_t gatccgGCTGAATGTGGTTGCCATTGTCACGTGACAATGGCAACCACATTCAGCtttttg

HK3_sh2_b aattcaaaaaGCTGAATGTGGTTGCCATTGTCACGTGACAATGGCAACCACATTCAGCcg

HK3_sh3_t gatccgGGCTTCGGATGTTGAGCTTGTCACGTGACAAGCTCAACATCCGAAGCCtttttg

HK3_sh3_b aattcaaaaaGGCTTCGGATGTTGAGCTTGTCACGTGACAAGCTCAACATCCGAAGCCcg
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Cell proliferation and viability assay
Cell proliferation and viability were measured by MTT
assay (Promega, USA) according to the manufacturer’s in-
structions. The transfected cells were incubated with
tetrazolium dye solution. The formazan absorbance was
then recorded at 570 nm using a multi-mode microplate
reader CHAMELEON V (Hidex, Turkey).

Analysis of DNA fragmentation
The apoptosis in transfected cells was determined using
Apoptotic DNA-Ladder Kit (Roche, Switzerland) accord-
ing to the manufacturer’s protocol. The DNA samples
were electrophoresed on a 2% agarose gels containing
1 μL/10 mL GelGreen nucleic acid gel stain (Biotium,
USA). The gels were examined by an ultraviolet gel
documentation system Gel Doc XR+ System (Bio-Rad,
USA). Apoptosis was visualized as a ladder pattern of
180–200 bp due to DNA cleavage by the activation of a
nuclear endonuclease.

Statistical analysis
We applied the nonparametric Wilcoxon/Mann–Whitney
U–test to measure statistical significance between the two
groups. We used Kruskal-Wallis test for multiple compar-
isons. Data were considered significant at P < 0.05. The

statistical procedures were performed with a BioStat 2009
professional software (AnalystSoft Inc., USA).

Results
Expression of HK mRNA in cell lines is silenced by shRNA
In order to silence the expression of HK mRNA in colo-
rectal cancer and melanoma cells, the cell lines were
transfected with HK1, HK2, and HK3 shRNA (three
shRNAs per each gene: sh#1, sh#2, and sh#3). qPCR and
Western blot analysis showed that HK1 sh#1, HK2 sh#3,
and HK3 sh#3 significantly repressed the expression of
target genes in cells to be tested (Fig. 1). Therefore, these
shRNAs were used in the following experiments.

HK mRNA expression levels in cells transfected separately
with three lentiviral vectors pLSLP-HK1, pLSLP-HK2, and
pLSLP-HK3
Expression levels of HKs in cell lines that were separ-
ately transfected with three lentiviral vectors against
HK1, HK2, and HK3 genes were determined using qPCR
and Western blot analysis. The expression levels of HK1
and HK2 were not significantly changed in both colorec-
tal cancer and melanoma cells with HK3 knockdown.
We observed increased expression of HK1 in colorectal
cancer cells transfected by vector pLSLP-HK2, but not

Fig. 1 The expression levels of HK1, HK2, and HK3 in negative control (NC) and shRNA transfected cells
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in melanoma ones; the mRNA and protein levels of
HK3 were not altered in all cases. Expression differ-
ences of HK2 and HK3 between pLSLP-HK1 trans-
fected cells and control were not significant.
Generally, we showed the absence of compensatory

expression between the HK genes in melanoma cells.
These data suggest that the increased expression of
HK1 gene may play a role in maintaining of high
rates of glycolysis in colorectal cancer cells when
HK2 is suppressed (Fig. 2).

Fig. 2 The relative protein level of three genes (HK1, HK2, and HK3) in colorectal cancer (HT-29, SW 480, HCT-15, RKO, and HCT 116) and
melanoma (MDA-MB-435S and SK-MEL-28) cell lines with a HK1, b HK2, and c HK3 knockdown
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Simultaneous down-regulation of HK expression induces
apoptosis and inhibits tumor growth in vitro
As shown in Fig. 3, cells transfected by different combi-
nations of lentiviral vectors against hexokinases showed
decreased viability and time-dependent inhibition of
proliferation. This effect is stronger in cells with simul-
taneous knockdown of HK1, HK2 and HK3 genes. Both
colorectal cancer and melanoma cells are more sensitive
to HK1 and HK2 deficiency. Viability of the cells trans-
fected by lentiviral vectors pLSLP-HK1 and pLSLP-HK2
was lower than cells transfected by other double com-
bination of ones (pLSLP-HK1 and pLSLP-HK3 or
pLSLP-HK2 and pLSLP-HK3).
Formation of fragmented DNA is one of the typical apop-

totic features. We performed DNA fragmentation assay to
reveal whether apoptosis plays an important role in cell
death. Multiple DNA fragments were detected in the cells
co-transfected by pLSLP-HK1, pLSLP-HK2, and pLSLP-
HK3. These data suggest that simultaneous down-
regulation of HK1, HK2, and HK3 gene expression could
induce apoptosis in colorectal cancer and melanoma cells.

Discussion
Activation of aerobic glycolysis occurs in almost all
cancer cells. The process has a very strong regulatory
system, because in addition to ATP production gly-
colysis supplies actively proliferating tumor cells with
building blocks [41, 42]. Hexokinases, as the key
glycolytic enzymes, may be regulated more extensively

in glycolysis process [43]. We have previously shown
deregulation in the expression of HK genes in colo-
rectal cancer [19]. In this study, using shRNA-based
gene knockdown we have checked the compensatory
expression between the HK genes, and analyzed the
viability of colorectal cancer and melanoma cells
when various hexokinase isoenzymes were inactive.
We have shown that shRNA-mediated attenuation of
HK1 and HK2 together led to decreased cell viability.
HK2 gene inactivation was associated with increased
expression of HK1 in colorectal cancer cells. The
compensatory expression between the HK genes was
not detected in melanoma cells. Co-transfection by
shRNA vectors against mRNA of HK1, HK2, and HK3
genes resulted in a rapid cell death by apoptosis.
HK1 and HK2 play an important role in glycolysis

[41]. They are associated with the outer mitochondrial
membrane via VDAC and implicated in cell survival [13,
44–49]. HK2 expression is limited in most normal tis-
sues, but frequently up-regulated in cancer [48, 50–52].
It is known that HK2 is a target for several oncogenic
transcription factors (HIF-1, Myc, and p53) [42], and is
involved in Akt signaling pathway [43]. The overexpres-
sion of HK2 provides tumor cells with a growth advan-
tage due to increased glycolytic activity, prevents from
apoptosis, and increases their possibility for metastasis
[53]. High HK2 expression in lung, ovarian, pancreatic,
breast cancers and hepatocellular carcinoma was shown
to be associated with poor patient prognosis [50, 54–58].

Fig. 3 Inhibitory effect of HK1, HK2 and HK3 knockdown on cell growth and proliferation. Viability of colorectal cancer HT-29 (black), SW 480 (blue),
HCT-15 (light blue), RKO (purple), HCT 116 (brown) and melanoma MDA-MB-435S (green), SK-MEL-28 (red) cell lines transfected by lentiviral vectors
pLSLP-HK1 plus pLSLP-HK2 (a), pLSLP-HK1 plus pLSLP-HK3 (b), pLSLP-HK2 plus pLSLP-HK3 (c), and pLSLP-HK1, pLSLP-HK2 plus pLSLP-HK3 (d)
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Bryson and colleagues have demonstrated that pri-
mary increase in HK1 activity reduced susceptibility
of renal epithelial cells to oxidant-induced cell death
[59]. The series of studies have shown up-regulation
of HK1 in several tumors, including colorectal, gas-
tric, and thyroid cancer, and supposed it as an un-
favorable prognostic factor [60–62]. We observed
increased expression of HK1 in colorectal cancer cells
with HK2 gene silencing, but not in melanoma cells.
In cells with HK1 or HK3 knockdown, change in
HK1 expression was insignificant. Simultaneous
down-regulation of HK1 and HK2 genes led to reduc-
tion of cell proliferation and viability compared to
double knockdown of HK1/HK3 or HK2/HK3 genes.
Noteworthy, Patra et al. have demonstrated that
oncogenic HK2 expression and activity cannot be
compensated by HK1 in mouse embryonic fibroblasts
[54]. Our results confirm that HK1 and HK2 are in-
volved in tumor growth maintenance. However, we
can assume that despite the increase in the expression
of HK1 in colorectal cancer it may be insufficient to
maintain high level of aerobic glycolysis. Overexpres-
sion of HK1 in tumors seems to be the mechanism
for the protection of cancer cells against oxidative
stress and apoptosis, as well.
HK3 activity is regulated by HIF-dependent pathway

and glucose level. Overexpression of HK3 results in
increased cellular ATP and reduced ROS production,
and promotes the expression of genes involved in
mitochondrial biogenesis. These processes can medi-
ate the cytoprotective effect of HK3 [43]. In the
study, the expression levels of HK1 and HK2 were
not significantly changed in cells with HK3 knock-
down that indicate its lower importance in the regula-
tion of glycolysis rate.

Conclusion
We have demonstrated that simultaneous HK1 and
HK2 deficiency results in decreased cell survival
whereas inactivation of HK1, HK2, and HK3 led to
rapid cell death via apoptosis. Inactivation of HK2
was followed with up-regulation of HK1 expression in
colorectal cancer, but not in melanoma cells. Taken
together, our results suggest HK1 and HK2 genes as
the potential molecular targets for colorectal cancer
and melanoma therapy.
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