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Coronavirus disease identified in 2019 (COVID-19) can be complicated by the Th17 cell-
mediated IL-17 proinflammatory response. We tested if thiamine can effectively lower the
Th17 response in a clinical study [Proinflammatory state in alcohol use disorder patients
termed as disease controls (DC)] and corroborated the results using an in vitro study. We
developed an effective dose range and model for key pharmacokinetic measures with the
potential of targeting the cytokine storm and neurological symptoms of COVID-19. Three-
week 200mg dose of thiamine was administered to sixteen DC patients. Eight healthy
volunteers (HV) were also included in this investigation. A subsequent in vitro study was
performed to validate the effectiveness of thiamine [100 mg/day equivalent (0.01 μg/ml)]
treatment in lowering the Th17 proinflammatory response in a mouse macrophage cell line
(RAW264.7) treated with ethanol. Based on recent publications, we compared the results
of the IL-17 response from our clinical and in vitro study to those found in other
proinflammatory disease conditions (metabolic conditions, septic shock, viral infections
and COVID-19) and effective and safe dose ranges of thiamine. We developed a
pharmacokinetic profile for thiamine dose range as a novel intervention strategy in
COVID-19. DC group showed significantly elevated proinflammatory cytokines
compared to HV. Thiamine-treated DC patients showed significant lowering in IL-17
and increase in the IL-22 levels. In humans, a range of 79–474mg daily of thiamine was
estimated to be effective and safe as an intervention for the COVID-19 cytokine storm. A
literature review showed that several neurological symptoms of COVID-19 (∼45.5% of the
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severe cases) occur in other viral infections and neuroinflammatory states that may also
respond to thiamine treatment. Thiamine, a very safe drug even at very high doses, could
be repurposed for treating the Th17 mediated IL-17 immune storm, and the subsequent
neurological symptoms observed in COVID-19. Further studies using thiamine as an
intervention/prevention strategy in COVID-19 patients could identify its precise anti-
inflammatory role.

Keywords: cytokine storm, COVID-19, IL-17, pandemic, thiamine

INTRODUCTION

Viral diseases and wide-spread outbreaks have adverse health-
related consequences worldwide. Emerging infectious diseases
(EID) include viral pathogens that have shown higher incidence
of human infection in the past several decades and raise concerns
regarding increased ongoing/future prevalence (Hassell et al.,
2017). Coronavirus is recognized as an EID that has become a
challenging and aggressive infection with high morbidity and
mortality in humans (Poon and Peiris, 2020). SARS-CoV-2
[severe acute respiratory syndrome coronavirus 2; causes
coronavirus disease (COVID-19)] was identified in 2019, has
become a pandemic, and is a priority healthcare concern in the
year 2020 (HuiDS et al., 2020).

In viral infections, tissue inflammation is driven by multiple
proinflammatory and immunoregulatory signals (Glass et al.,
2003; Tay et al., 2020). The pathological progression of
COVID-19 has multiple clinical stages and may present with
the cytokine storm syndrome (Pedersen and Ho, 2020) and
immunosuppression (Mehta et al., 2020). Interleukin-17 (IL-
17) is a cytokine (Aggarwal and Gurney, 2002) that is often
involved in a proinflammatory response in the cytokine storm of
viral infections in humans (Yuan et al., 2010; Jain et al., 2013;
Reed et al., 2015) and experimental mice model (Zhang et al.,
2009). It can also promote respiratory viral infections (Mukherjee
et al., 2011), tissue pathology (Klatt et al., 2012; Li et al., 2012; Du
et al., 2013), and neurological manifestations (Ye et al., 2020).
Th17 cells also produce Interleukin-22 (IL-22), which plays a
protective/anti-inflammatory role, and it is dysregulated in
several proinflammatory conditions (Eyerich et al., 2017).
Thus, a therapy that could alleviate the Th17 mediated pro-
inflammatory response (Pacha et al., 2020) might be effective in
attenuating the cytokine storm observed in COVID-19 patients.

Thiamine, a vitamin and dietary supplement (Cooper and
Pincus, 1979), has anti-oxidant properties (Cooper and Pincus,
1979; Thornalley, 2005). High levels of cytokines (for example,
IL-1β and IL-6) may occur in thiamine deficient subjects and
can be associated with oxidative stress and inflammation
(Neri et al., 2011; de Andrade et al., 2014). Importantly,
thiamine administration could inhibit production of these
cytokines, increase anti-inflammatory activity (Shahmiri et al.,
2013; Menezes et al., 2017), and potentially alleviate
neuroinflammatory symptoms of viral origin (Protheroe and
Mellor, 1991; Brechtelsbauer et al., 1997).

We tested the efficacy of a three-week thiamine treatment in
modulating the Th17 proinflammatory response in a human

disease control model of conditions associated with inflammation.
To validate the effectiveness of thiamine in treating the
proinflammatory response from the human study, we conducted
an in vitro experiment to test the effects of thiamine treatment in
alleviating ethanol mediated immune dysregulation in a mouse
macrophage cell line, RAW264.7. We investigated the Th17 cells
proinflammatory cytokine response (namely IL-17) in both healthy
controls and individuals with high inflammatory response. This was
done to estimate the effects of various doses of thiamine that have
shown efficacy in alleviating the Th17 associated cytokine response.
We assessed the pharmacokinetics of the oral thiamine dosing.
Lastly, we also examined the neurological symptoms of COVID-
19 that could possibly be treated with thiamine.

MATERIALS AND METHODS

Study Participants
This investigation was approved under two large clinical
investigations that were conducted at the University of
Louisville (NCT#01809132, HV cohort), and the National
Institute on Alcohol Abuse and Alcoholism (NIAAA)
(NCT#00106106, DC cohort) at the National Institutes of
Health (NIH), Bethesda MD. The studies were approved by
the NIH Institutional Review Board (IRB) committee and the
UofL IRB (IRB # 12.0427). Sixteen age- and sex-matched male
and female alcohol use disorder (AUD) patients [Termed as
disease controls (DC) in this investigation] between 21 and
65 years of age with both present and past heavy drinking
profile participated as the DC for thiamine administration. All
study patients were diagnosed with AUD based on DSM-IV TR
criteria. All study patients received daily doses of open label
thiamine (100 mg twice daily � 200 mg per day) (Thomson, 2000)
for 3-weeks after completion of the consenting process. All
patients also received standard clinical inpatient care as part of
the medical management for their AUD, including counseling.
Detailed information on subject recruitment and management
can be obtained from several of our previous publications
(Vatsalya et al., 2016; Vatsalya et al., 2018; Vatsalya et al.,
2019; Vatsalya et al., 2020). We also included eight healthy
controls in this study for comparison with DC. Demographic
data were collected from all the participants. Baseline (HV and
DC) and post-treatment (DC only) blood (after the completion of
3-weeks of thiamine dosing) were collected, processed (for
plasma extraction), frozen at −80°C. They were subsequently
thawed and assayed.
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Laboratory Assays and Therapeutic Model
on Th17 Inflammation Axis
(1) Cytokine assays

Plasma levels of proinflammatory cytokines, IL-1β, IL-6, and IL-10
were obtained by multianalyte chemiluminescent detection using
Multiplex kits (Millipore, Billerica, MA) on the Luminex platform
(Luminex, Austin, TX), according to manufacturers’ instructions.

(2) Analysis of IL-17 and IL-22 in a set of AUD patients for
designing proof-of-concept experimental model

We performed analyses for IL-17 and IL-22 on human plasma
samples to estimate the Th17 inflammatory response, with the goal of
developing an in vitro mechanistic experimental model to test the
efficacy of thiamine. The plasma levels of IL-17 and IL-22 in eight
healthy volunteers were also included in this study for comparison. IL-
17 and IL-22 were detected in plasma using Human IL-17A (now
called IL-17) High Sensitivity ELISA Kits (BMS2017HS, Invitrogen)
and Human IL-22 ELISA Kits (BMS2047, Invitrogen) per the
manufacturer’s instructions. Results were read on a Spectra Max
Plus 384 plate reader and modeled using their SoftMax Pro software
(Molecular Devices, San Jose, CA).

(3) Cell culture

RAW 264.7 cells (mouse macrophage cell line) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen),
supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin. Cells were seeded in a 24-well culture plate
and maintained at 37°C in a 5% CO2 incubator for 3 days. The
0.02 μg/ml treatment dose was equivalent to the 200mg/day thiamine
dose [approximate blood AUC � 204 nmol/L (Smithline et al., 2012)]
given to the patients. Cells were then treated with thiamine (Vit B1
[VB1] as shown in Supplementary Figure S1) at a concentration of
(0.01 μg/ml) for 2 h (in a preventive paradigm), followed by 80mM
ethanol treatment for 22 h, for a total of 24 h of treatment to
determine the minimum effective level of thiamine to reduce the
Th17 response. Cells were then washed with PBS and collected with
Trizol reagent for the isolation of RNA. RNA samples were reverse
transcribed to cDNA and used for qRT PCR analysis of cytokine
expression (IL-17, IL-22). Cell viabilitywas not affected by thiamine or
EtOH treatment at the doses used in the experiments.

(4) RNA isolation and real-time RT-PCR

Total RNA was extracted from the cells using Trizol reagent
(500 µL/well) according to manufacturer’s instruction (Life
Technologies, Carlsbad, CA) and reverse-transcribed using
cDNA Supermix (QuantaBio, Beverly, MA). Quantitative
real-time PCR was performed on an ABI 7500 real-time
PCR thermocycler and SYBR green PCR Master Mix
(Applied Biosystems, Foster City, CA) was used for
quantitative real-time PCR analysis. The relative quantities
of target transcripts were calculated from duplicate samples
after normalization of the data against the housekeeping gene,

mouse 18S. Relative mRNA expression was calculated using
comparative Ct method. Test was conducted thrice (training,
test and validation steps) and the results from the second tests
were used. The following primer pairs were used:

Results are available in the supplement section.

Development of the PharmacokineticModel
for Dose Titration of Thiamine
Weused dosing guidelines for thiamine asmentioned at theMedline
Plus (https://medlineplus.gov/druginfo/natural/965.html#Safety, last
reviewed as of August 5, 2020), and from peer reviewed publications
from PubMed (https://pubmed.ncbi.nlm.nih.gov/; [searched and
collected until August 5, 2020]). We used available dosing
guidelines from Medline Plus for healthy individuals both for
dietary supplementation and vitamin deficiency status. We also
reviewed and incorporated thiamine dose levels (lower and
higher range) from other disease conditions; namely metabolic
conditions (Mandel et al., 1984; Riaz et al., 2011), septic shock
(Marik et al., 2017; Moskowitz et al., 2017), viral diseases (Mouly,
1996; Arici et al., 2001; Margolis et al., 2014) and Leigh’s disease (Di
Rocco et al., 2000) (Medline Plus: Thiamine). We also included the
recorded thiamine dose levels from the DC group (AUD with
Wernicke Korsakoff Syndrome, WKS (Day et al., 2013); from our
clinical study) as one of the pro-inflammatory conditions.

We compared the reference range of levels of the Th17
cytokine (IL-17) response in disease/health conditions in
humans as published in the recent findings concerning COVID-
19’s cytokine storm data (Liu et al., 2020a; Huang et al., 2020; Wu
and Yang, 2020). A Th17 proinflammatory response for the
potential range of IL-17 levels was also developed for healthy
volunteers (HV, from our study cohort), metabolic conditions
(Kotake et al., 1999; Pirowska et al., 2018), DC (or alcohol use
disorder patients from our study cohort), septic shock (Brunialti
et al., 2012; Li et al., 2015), and viral infections (Crowe et al., 2009;
Mukherjee et al., 2011). IL-17 data on severe COVID-19 patients
(as mentioned above) were collected from the recently peer-
reviewed published articles found in PubMed (searched until
August 5, 2020). Doses administered to our DC study cohort,
and data from healthy individuals (HV) were also used in the
development of the dose profile. All these data were incorporated
in the predictive regression model for identifying a tentative
effective dose range of thiamine (Figure 2).

The pharmacokinetic response of thiamine was calculated at
both the low and high ends of the dose range described above. The
area under the curve and maximum concentration (Cmax) were
established for both blood and plasma for a 10-h trajectory
(Figure 3) using the indices of thiamine’s in vivo blood
pharmacokinetics (Smithline et al., 2012). For the derived 79mg
thiamine dosing (low end), the slopes used to identify AUC in
blood were 2.14, and 1.76 in plasma. For the 474 mg thiamine
dosing (upper end), the slope used to derive AUC in blood was
1.02, while in plasma it was 1.09. Similarly, for the 79 mg thiamine
dosing, the slope used to derive Cmax in blood was 0.40, and in
plasma it was 0.39. For the 474 mg thiamine dose, the slope used to
derive AUC in blood was 0.14, and in plasma it was 0.18.
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Statistical Analysis
Data are expressed as Mean ± standard deviation (M ± SD) in
Supplementary Table S1 as well as in Figures 1, and
Supplementary Figure S1. Two-sided Student’s t-test was
used to examine the difference between disease controls and
healthy volunteers at baseline (see Figure 1), and two-sided
paired t-test was used to examine the changes at baseline vs.
3 weeks for disease controls (Figure 3).

Post-hoc one-sided t-tests were performed for the IL-17 and IL-
22 mRNA expression analyses for the RAW264.7 cells testing
(Supplementary Figure S1). A pharmacokinetic model for
anticipated therapeutic dosing range of thiamine based on IL-17
ranges in different inflammatory conditions was constructed using
predictive regression computation (Figures 2). Factorial between-
group ANOVA was used to evaluate demographic and cytokine
profiles (Supplementary Table S1). Statistical significance was
established at p < 0.05. SPSS 26.0 (IBM Chicago, IL) and
Microsoft Excel 365 (MS Corp, Redmond WA), statistical
software R (https://www.r-project.org/), and Prism GraphPad
(GraphPad Software, San Diego, CA) were used for statistical
analysis, data computation, and plotting the figures.

Neurological Assessments
We conducted a review on the neurological presentation in
COVID-19 and other relevant viral occurrences of encephalitis
(Table 1). We identified and tabulated the neurological
symptoms of COVID-19 and viral encephalitis from the
recently published findings. We also described the neurological
symptoms, that are generally treated effectively with thiamine
(Table 1). We used PubMed and Medline Plus for disease
references (searched until August 5, 2020).

RESULTS

Demographics and Candidate
Proinflammatory Cytokine Profile
DC group individuals in this study had significantly higher age
than the healthy controls (HV) (Supplementary Table S1).
However, there was no significant difference in the mean
BMIs between the two groups, and the sex-distribution was
also similar between the two groups. DC group individuals
drank 1,096.58 ± 505.71 drinks in the past 90 days (around 12
drinks daily). Both IL-6 (∼6 fold) and IL-1β (∼3 fold) cytokines
were significantly higher in the DC group (AUD patients)
compared to the healthy controls/volunteers (HV) group. IL-
10 was also numerically higher in the DC group.

Clinical Findings on the Immune Response of
Th17 Derived IL-17 and IL-22 Axis Response,
and Thiamine Efficacy and Safety
To develop a model for thiamine effects on inflammation, we
assessed IL-17 and IL-22 cytokine expression (showing
proinflammatory and anti-inflammatory effects, respectively).
Both cytokines are produced by the Th17 cells (Qu et al.,
2013). IL-17 concentrations were below the level of detection
in the HV group but were elevated in the DC group (Figure 1A).
An approximate four-fold decrease was observed in the IL-17
concentration levels (0.09 pg/ml to 0.023 pg/ml) with a treatment
dose of 200mg thiamine daily (Estimated AUC � 204 nmol/L x hour
approximately in the 10-h window) by the end of week 3. IL-22 was
significantly decreased in DC group compared to healthy volunteers
and thiamine therapy did not significantly improve levels in treated

FIGURE 1 | Efficacy of thiamine treatment on Th17 cell derived response for IL-17, and IL-22 cytokines. Levels of IL-17 and IL-22 in healthy volunteers (HV) at baseline;
and Disease Controls [DCor (alcohol use disorder, AUD)] patients exhibiting a proinflammatory response (n � 16) at baseline; and anti-inflammatory normalization of cytokines
tested after the completion of three-week (W3) thiamine treatment. A drop in IL-17 (A) coupledwith amild increase in IL-22 (B) atW3was observed compared to the baseline
levels. BL: baseline, W3: three-week of thiamine treatment. Data are presented as M ± SD. Statistical significance was set as p < 0.05.

Gene name Forward sequence 59->39 Reverse sequence 59->39

ms IL-17 ATCCCTCAAAGCTCAGCGTGTC GGGTCTTCATTGCGGTGGAGAG
ms IL-22 GTCAACCGCACCTTTATGCT CATGTAGGGCTGGAACCTGT
ms 18S GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG
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DC group individuals (Figure 1B). No patients reported any kind of
drug related adverse events; therefore, the safety profile of thiamine
administration was excellent at 200mg daily in this small pilot group.

IL-17 Dependent Dose and
Pharmacokinetic Model of Thiamine
An IL-17 response dependent dose and pharmacokinetic model of
thiamine administration was developed, based on responses from the
pro-inflammatory disease cohorts and the corresponding thiamine
dosing (controlled for by the corresponding values in healthy
volunteers, as a point of reference). This model supported a tentative
range of thiamine dosing forCOVID-19 (Figures 2A,B), since the IL-17
levels are much higher in COVID-19 than in the reports from many
other proinflammatory disease conditions. Using regression analysis, a
range of 79mg/day (lower end of dose range)−474mg/day (higher end

of dose range) for thiamine administrationwas found to correspond to a
range of 15–40 ng/ml level of IL-17 used in vitro.

The pharmacokinetic parameters were: Area Under the Curve
(AUC) (Figure 3A), and Maximum (or peak) Concentration of a
drug (Cmax) (Figure 3B). These gave a very close estimation of the
specific oral thiamine dose (Figure 2). As expected, plasma values
were higher for both AUC and Cmax at higher doses and were
lower at lower doses (Supplementary Table S2).

Assessment of Neurological Presentation of
COVID-19, Viral Encephalitis and
Therapeutic Efficacy of Thiamine
Administration
We tabulated the neurological symptoms from the recently
published findings on COVID-19 (Table 1). Severely ill

FIGURE 2 | PRIMARY: A dose titration by disease and proinflammatory Th17 statusmodel of thiamine administrationwith parallel representationof Th17 proinflammatory
response in various groups including healthy volunteers and disease groups with pro-inflammatory response. (A) Linear regression model is predictive for the relation between
the lowdose thiamine (Vit B1) range vs. low IL-17 ranges based onknownobserved pairs fromdifferent patients; lower range of vit B1 dose (79 mg/daily) corresponding to lower
range of IL-17 (15 ng/ml) in the COVID-19 patients. Dark grey shade depicts higher IL-17 response and lighter grey shade shows lower IL-17 response in various
proinflammatory conditions. (B) Linear regression shows the predictive model for the relation between a higher range of Vit B1 dose vs. a higher range of IL-17 levels, derived
from the known observed pairs from different patients; higher range of Vit B1 dose (474 mg/daily) corresponding to higher range of IL-17 (40 ng/ml) reported in COVID-19
patients. High Range Thiamine Dose: Left Y-axis (primary). Low Range Thiamine Dose, Low Range IL-17 levels, and High range IL-17 levels: Right Y-axis (Secondary).
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TABLE 1 | Neurological symptoms in COVID-19, Viral Encephalitis (Grouped/assorted by the neurological spectrum observed in COVID-19), showing their proximity in
presentation.

Neurological symptoms Corresponding
clinical Indications

COVID-19 Viral encephalitis Therapeutic effects of
thiamine on WKS

and other neurological
conditions

Altered mental status
(Mao et al., 2020; Wang et al., 2020) Disorientation (Chaudhuri and Kennedy, 2002) Mental Confusion (Reuler et al., 1985; Sechi and

Serra, 2007), impaired Memory (Sechi and
Serra, 2007)

Confusion: WKS
classic triad

Epiphora, conjunctival congestion, or chemosis (swollen
conjunctiva) (Wu et al., 2020); ophthalmoplegia(Lantos et
al., 2020) (part of MFS)

Ocular Paralysis (Keane, 2007), internuclear
Ophthalmoplegia (Hedges III, 1994; Keane,
2005; Sanjay et al., 2009)

Ophthalmoplegia (nystagmus) (Sechi and Serra,
2007)

Ocular: WKS classic
triad

Ataxia (Yeh et al., 2004; Mao et al., 2020) (part of MFS):
movement (Lantos et al., 2020), and unstable walking
(Wang et al., 2020)

Ataxia (Brechtelsbauer et al., 1997; Chaudhuri
and Kennedy, 2002)

Gait Ataxia (Sechi and Serra, 2007) Ataxia: WKS classic
triad

Fatigue (Wang et al., 2020), dizziness and languidness
(Mao et al., 2020; Wang et al., 2020), malaise(Wang et al.,
2020), headache (Mao et al., 2020; Wang et al., 2020)

Weakness and Somnolence (Brechtelsbauer
et al., 1997), Nausea (Whitley and Gnann, 2002)

Lack of energy/Fatigue, drowsiness, fainting,
Sluggishness (Sechi and Serra, 2007); Apathy
(Sechi and Serra, 2007)

Generalized features

Cerebral hemorrhage (Wang et al., 2020), cerebral
infarction (Wang et al., 2020)

Cerebral Hemorrhage (Kabakus et al., 2005),
intracranial Pressure (Kumar et al., 2009)

Hemorrhages (Sechi and Serra, 2007) Cerebrovascular

Epilepsy (Hao et al., 2020; Mao et al., 2020) Epilepsy (Aguilar and Rasmussen, 1960; Misra
et al., 2008)

Seizures (AlcoholWithdrawal) (Nguyen and Lam,
2020)

Pathophysiological

Encephalomyelitis: demyelinating (Steardo et al., 2020;
Wang et al., 2020), disseminated (Reichard et al., 2020)

Encephalomyelitis (Whitley, 1990; Dale, 2003) Demyelination (Rao and Topiwala, 2020) within
periventricular structures

Pathomorphological

Hypogeusia (low ability to taste)
(Finsterer and Stollberger, 2020; Gautier and Ravussin,
2020; Lechien et al., 2020; Mao et al., 2020)

Hypogeusia (low ability to taste) (Henkin et al.,
1975)

Efficacy not well-established Sensory

Hyposmia (low ability to smell) (Bénézit et al., 2020;
Finsterer and Stollberger, 2020; Lechien et al., 2020; Mao
et al., 2020)

Hyposmia (low ability to smell) (Henkin et al.,
1975)

Efficacy not well-established Sensory

Nerve pain (Azhideh, 2020) (also in the head and face
region (Mao et al., 2020))

Neuralgia (Johnson et al., 2010; Tang et al.,
2013)

Neuralgia (Rose and Jacobson, 1940; Eckert
and Schejbal, 1992)

Neuralgia

Tachycardia (He et al., 2020; Kochi et al., 2020) Tachycardia (Chua et al., 1999; Chaudhuri and
Kennedy, 2002)

Racing of heart (faster heartbeat), low blood
pressure (Sechi and Serra, 2007), Tachycardia
(Sechi and Serra, 2007)

Cardiovascular

Muscle injury
(Cascella et al., 2020; Mao et al., 2020) Dysarthria (Brechtelsbauer et al., 1997), nerve

Impairment (Ripamonti et al., 2020)
Motor impairment (Pitel et al., 2011), motor
cortex Excitability (Nardone et al., 2010)

Motor
Areflexia (part of MFS) (Lantos et al., 2020)

Therapeutic effects of thiamine on the corresponding neurological symptoms of pro-inflammatory origin that are also observed in viral infection.
WKS: Wernicke Korsakoff Syndrome (Blass and Gibson, 1977); MFS: Miller Fisher Syndrome (Mori et al., 2001).

FIGURE 3 | Pharmacokinetics parameters of oral thiamine over 10 h (Projected) in whole blood and plasma. (A) Predicted course of Area Under the Curve (AUC) for
low values (79 mg/day) and high values (474 mg/day) of the range of oral thiamine dose in blood and plasma over the 10 h. (B) Predicted maximum concentration of low
values (79 mg/day) and high values (474 mg/day) of the range of oral thiamine dose in blood and plasma over the first 10 h. Errors bars show a 5% variability in the
pharmacokinetic measures at each dose.
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COVID-19 patients presented with various neurologic symptoms
that could be grouped together as: acute cerebrovascular disease;
altered mental status; and musculoskeletal symptoms (Mao et al.,
2020). We also included the neurological presentation commonly
observed in viral encephalitis of non-COVID-19 origin, grouped
corresponding to the presentation of the symptoms of COVID-19.

Lastly, we also tabulated the neurological symptoms that are
commonly treated with thiamine. Several neurological symptoms
of COVID-19 and viral encephalitis corresponded well with the
neurological spectrum that is known to be managed effectively
with thiamine.

DISCUSSION

We evaluated individuals with significantly altered IL-17 and
IL-22 responses associated with Th17 cells and found a
significant role for a 3-weeks 200 mg/daily thiamine
treatment regimen in improving the Th17 response in the
AUD disease control patient cohort whose members
exhibited a high pro-inflammatory status at baseline. SARS
CoV-2 viral challenge causes induction of IL-6 leading to
altered Th17 responses (Hotez et al., 2020). IL-17
synthesized by Th17 cells can markedly stimulate neutrophil
chemotaxis and may lead to a skewed Th2 immune response
(Song and Qian, 2013; Veldhoen, 2017). Results from our AUD
control group show the increases in candidate proinflammatory
(IL-1β and IL-17), and anti-inflammatory (IL-6, IL-10, and IL-
22) cytokines. Changes in IL-17 and IL-22 with alcohol abuse
(pro-inflammatory), and thiamine as an anti-inflammatory
therapy in our experiment provided potential proof of
concept. IL-1β is a key cytokine initiating Th17 cells to
synthesize IL-17 (Lasiglie et al., 2011), whereas IL-10
suppresses Th17 proinflammatory cytokine production (Gu
et al., 2008). High IL-6 levels also are associated with Th17
cell proinflammatory activity (Hotez et al., 2020). Thus, under
inflammatory conditions, there is a complex interaction of
proinflammatory/anti-inflammatory responses from Th17
cells. An intervention or prevention that could attenuate the
Th17 proinflammatory activity could help ameliorate the
consequences of a cytokine storm.

Thiamine deficiency has been reported to promote a
proinflammatory response in Th1 and Th17 cells (Ji et al.,
2014). To examine the role of thiamine in treating
inflammation, in vitro testing was used to mechanistically
examine the clinical outcomes. Our invitro model hinted that
thiamine could lower IL-17 and increase IL-22 mRNA expression
in macrophages. Our clinical data suggest that thiamine could
play a potential role in attenuating the cytokine storm in patients
who have a strong proinflammatory response.

A study using a mouse model showed that IL-17 augments
respiratory syncytial virus (RSV)-induced lung inflammation
(Mebratu and Tesfaigzi, 2018). In that study, immunodepletion
of IL-17 before viral infection resulted in diminished RSV-
driven mucous cell hyperplasia and airspace enlargement,

suggesting IL-17 as a potential therapeutic target.
Proinflammatory IL-17 production could also initiate
pulmonary eosinophilic response, by promoting proliferation
of eosinophils in the bone marrow, followed by recruitment and
extravasation into the lungs (Murdock et al., 2012). In MERS-
CoV, SARS-CoV and SARS-CoV-2, disease severity showed
positive correlations with the levels of IL-17 and other T
helper 17 (Th17) cell-related pro-inflammatory cytokines,
such as IL-1, IL-6, IL-15, TNF and IFNγ (Mahallawi et al.,
2018; Liu et al., 2020b). Dysregulated Th17 cells and IL-17
synthesis in the skin, synovial space and endothelium promote
synthesis of pro-inflammatory cytokines namely IL-1β, TNF
and IL-6 and neutrophil chemoattractants such as IL-8, CCL20
and CCL2 as observed in psoriasis (Gaspari and Tyring, 2015;
Silfvast-Kaiser et al., 2019) and psoriatic arthritis (Blauvelt and
Chiricozzi, 2018; Pacha et al., 2020). A similar response is
also observed in ARDS, with IL-17 involvement of lung
parenchyma damage, stimulatory synthesis of the
proinflammatory mediators, and by the inhibition of
apoptosis due to the enhanced expression of the colony-
stimulating factor (Muir et al., 2016). IL-17 related viral
myocarditis (Guzik et al., 2020) is also exhibited in COVID-
19 (Zeng et al., 2020). A dominant Th17 phenotype response
could drive more severe viral myocarditis (Myers et al., 2016)
thus leading to the multi-organ effects of Th17 proinflammatory
response (Siripanthong et al., 2020). These recent findings
suggest that suppression of IL-17 may be vital to managing
viral infections, including COVID-19 and their harmful
consequences. Thus, targeting IL-17 immunologically can be
an effective strategy to prevent acute respiratory distress
syndrome (ARDS) in coronavirus disease 2019 (COVID-19)
(Pacha et al., 2020). There are treatment for IL-17 such as IL17
inhibitors (Hohenberger et al., 2018) that are used as standard of
care for certain inflammatory conditions (Ly et al., 2019); and
further drug repurposing investigation are underway
(Hohenberger et al., 2018) including for the viral infection
(de Almeida Nagata et al., 2014) and COVID-19 (Bulat et al.,
2020). However, there are some limitations as adverse
events that limit its scope for SOC and repurposing such as
likelihood of nasopharyngitis, infections (Loft et al., 2020),
major adverse cardiovascular events (MACE) (Zeng et al.,
2020), inflammatory bowel disease (IBD) are some of the
prominent AEs (Loft et al., 2020).

We derived an effective dose range of thiamine that could be
administered for alleviating the Th17 cell proinflammatory
response by using the IL-17 concentrations that we obtained
from our AUD patients (termed as DC), levels found in the
literature, and levels in the healthy control (HV) group.
Thiamine has been administered as a treatment in other viral
infections (Butterworth et al., 1991; Shoji et al., 1994), and has
proven effective for some inflammatory conditions and symptoms
(Wallace and Weeks, 2001; Kim et al., 2018). A well-structured
treatment profile of thiamine based on the results of proof of
concept in vitro experiments, and analyses of proinflammatory
response-relevant disease conditions support the potential efficacy
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of thiamine in ameliorating the proinflammatory Th17 response in
severe COVID-19 patients. Use of preventive as well as
interventional dosages show potential in the management of
COVID-19. Thiamine Ctrough is reached generally in 10–12 h;
thus, the total dose prescribed can be divided into two doses per
day. This may lead to fewer AEs or other side effects. Thiamine has
now been included in the standard of care protocol for treating
cytokine storm in severe COVID-19 patients (Group, 2020). Unlike
the IL-17 inhibitors as mentioned above, Thiamine has no side
effects. It also can be formulated easily in high dose and delivery has
convenient oral and IV routes.

One recent report identified that 36.4% of the COVID-19
diagnosed patients have neurologic symptoms, and this proportion
was higher (45.5%) among those COVID-19 patients with more
severe symptoms (Mao et al., 2020). Patients with other viral diseases
have also shown clinical symptoms of beriberi (Coates et al., 2010),
or Wernicke–Korsakoff syndrome (autopsies of 380 people with
AIDS showed Wernicke’s encephalopathy in 10% of the cases)
(Boldorini et al., 1992), and these conditions are associated with
thiamine deficiency. It is possible that patients with viral infection
could have an increased risk of thiamine deficiency, but this
information has remained largely unexplained in viral diseases
(Larsen et al., 2013), including COVID-19. A potential reason
could be that a deficiency in thiamine could be related to the
thiamine transport protein, which can have a general preference
for multiple membrane transport molecules which can function as
receptors for candidate viruses (Mendoza et al., 2006). The Th17
proinflammatory response has also been reported in the
experimental encephalomyelitis model (Ji et al., 2014). Thus,
thiamine could be a therapeutic agent to alleviate neurological
symptoms of COVID-19.

Adverse effects (AE) of thiamine are minimal and generally
mild. Possible AEs include nausea, diarrhea, and abdominal pain.
Rarely, individuals also suffer serious allergic reactions. There are
no reported drug related symptoms at the 200 mg thiamine dose
used in our study, and there are no reported AEs. A landmark
pharmacokinetic study utilizing a 1,500 mg maximum oral dose
of thiamine in healthy subjects showed rapid absorption
(Smithline et al., 2012). Moreover, 4,000 mg thiamine
administration showed no to mild AEs when used in children
(Leigh’s disease). Thus, higher doses of thiamine for treatment of
COVID-19’s cytokine storm could be considered a safe therapy.

Our study has several limitations. This is a small study; thus,
the outcomes have limited analytical and derivation scope.
However, both clinical and in vitro evidence collectively
support the potential of thiamine as a therapeutic agent in
attenuating the Th17 proinflammatory response. We did not
test the invitro/in vivo efficacy of Thiamine in the treatment of
COVID-19 or its derivative stimulated Th17 proinflammatory
response directly. We anticipate conducting such invitro
experiments for COVID-19 as a continuation of this project,
where we will test the effective dose in the exvivo and invitro
model. Moreover, plasma thiamine levels have not been assessed
in COVID-19. The healthy volunteer group was mostly younger

and did not have older individuals. Our study did not have
sufficiently large numbers of males and females; thus,
identifying sex-differences was not within the scope of this
study. This is a proof of concept study on one therapeutic
agent, thus results from COVID-19 patients on the
involvement of immune response is not in the scope of this
study. We intend to conduct the pre-clinical investigation with
the specimens from the COVID-19 patients; and experimental
design involving COVID-19 treated cell response for the IL-17
expression changes, respectively.

In summary, Thiamine has been approved by the Food and
Drug Administration (FDA) of the USA as a prescription product
and is considered very safe even at higher doses since it is water
soluble and can be excreted via urine, if in excess (Plaut, 1961).
Given its robust safety record, we suggest that thiamine should be
considered for COVID-19 treatment studies.
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