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a b s t r a c t 

Bone marrow is pivotal for normal hematopoiesis and immune responses, yet it is often compromised by malig- 

nancies. The bone microenvironment (BME), composed of bone and immune cells, maintains skeletal integrity 

and blood production. The emergence of primary or metastatic tumors in the skeletal system results in severe 

complications and contributes significantly to cancer-related mortality. These tumors set off a series of interac- 

tions among cancer, bone, and immune cells, and disrupt the BME locally or distantly. However, the drivers, 

participants, and underlying molecules of these interactions are not fully understood. This review explores the 

crosstalk between bone metabolism and immune responses, synthesizing current knowledge on the intersection of 

cancer and osteoimmune biology. It outlines how bone marrow immune cells can either facilitate or hinder tumor 

progression by interacting with bone cells and pinpoints the molecules responsible for immunosuppression within 

bone tumors. Moreover, it discusses how primary tumors remotely alter the BME, leading to systemic immune 

suppression in cancer patients. This knowledge provides critical rationales for emerging immunotherapies in the 

treatment of bone-related tumors. Taken together, by summarizing the intricate relationship between tumor cells 

and the BME, this review aims to deepen the understanding of the diversity, complexity, and dynamics at play 

during bone tumor progression. Ultimately, it highlights the potential of targeting bone-tumor interactions to 

correct aberrant immune functions, thereby inhibiting tumor growth and metastasis. 
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. Introduction 

Cancer remains a major global health threat and the second lead-

ng cause of death. 1 In addition to genetic mechanisms, the interaction

etween cancer cells and their surrounding microenvironment is criti-

al for disease progression. 2 The tumoral microecosystem comprises an

malgamation of malignant and non-malignant cells, such as fibroblasts,

ndothelial cells, and immune cells. The immune compartment, notable

or its diverse composition and functional plasticity, can act as either a

fertilizer ” or “herbicide ” of tumor cells depending on the context. Ther-

pies leveraging the immune system have emerged as a revolutionary

dvancement for the clinical management of cancers. Yet, some patients

emain unresponsive or develop resistance, indicating the urgent need

o comprehend the intricacies of tumor-immune crosstalk. 

Hematopoietic stem cells (HSCs) sit at the apex of hematopoiesis,

iving rise to all the immune and blood cells in the human body.

ematopoiesis begins in the yolk sac during embryonic development
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nd transitions to the bone marrow after birth. In adults, bone marrow

ouses and sustains most HSCs, and therefore plays a crucial role in im-

une cell development and regulations ( Fig. 1 ). 3 Bone marrow HSCs oc-

upy specialized niches —endosteal or perivascular —that regulate HSC

unctions through various communication mechanisms. 4 , 5 Growing ev-

dence indicates that dynamic remodeling of these niches can signifi-

antly influence HSC behavior under both normal and stress conditions. 6 

urthermore, the interaction between bone and immune system is bidi-

ectional, with aberrant immune responses leading to pathological bone

emodeling. 3 , 7 Thus, the intertwining of bone and immune biology is

undamental in maintaining tissue homeostasis and influencing disease

rogression locally and systemically. 

Interestingly, skeletons are also susceptible to primary malignant

one neoplasms and metastatic disease. Primary malignant bone tumors

ainly affect adolescents and young adults, 1 , 8 accounting for about 1%

f all cancer cases worldwide. Though primary bone cancers are rela-

ively rare, tumors arising from breast, prostate, lung and kidney fre-
ptember 2024 
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Fig. 1. Schematic of bone marrow hematopoiesis at steady state. HSCs residing in the bone marrow’s specialized microenvironments, are influenced by various bone 

marrow cells. HSCs differentiate into CMPs and CLPs, marking the start of a differentiation cascade that forms diverse bone marrow cell types. CMPs develop into GMPs 

and MEPs, where GMPs differentiate into neutrophils, dendritic progenitors, and monocytes — the latter maturing into osteoclasts and macrophages. Meanwhile, 

CLPs evolve into NK cells, B lymphoblasts, and T lymphoblasts, with B lymphoblasts becoming B cells within the bone marrow. The lymphoid progenitors then 

migrate to the thymus for maturation into T cells, including effector, helper, and 𝛾𝛿 T cells, which subsequently recirculate to peripheral tissues, including the bone 

marrow. MSCs, precursors to osteogenic, adipogenic, and chondrogenic lineages, are found in the bone marrow ̓s perivascular stromal fraction. They play key roles in 

regulating HSCs and hematopoiesis. MSC-derived osteoblasts, alongside HSC-derived osteoclasts, maintain bone remodeling balance. This dynamic interplay between 

skeletal and immune systems underlines the critical aspects of bone immunology. CLPs, common lymphoid progenitor cells; CMPs, common myeloid progenitor cells; 

GMPs, granulocyte-macrophage progenitor cells; HSCs, hematopoietic stem cells; MEPs, megakaryocyte-erythroid progenitor cells; MSCs, mesenchymal stem cells; 

NK, natural killer. 
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uently spread to the bones, making them the most preferred site for

etastatic diseases. 9 , 10 Any bone can be susceptible to bone tumors,

oming with serious symptoms like bone pain and fractures, and re-

uire systemic treatments for optimal clinical management. 9 While the

ajority of patients with primary bone cancers can survive over five

ears with proper treatments, therapeutic approaches for bone metasta-

is have seen limited progress over the past few decades. 

Significant interconnections exist between bone biology, immunol-

gy, and cancer biology. Understanding how skeletal homeostasis and

athology influence the onset of bone tumors, including the spatial-

emporal changes in immune and bone cells during bone tumor de-

elopment and their impact on tumor growth, is crucial for devising

ffective treatments for bone-related tumors. In recent years, approx-

mately 4000 articles exploring the interaction between the bone and

mmune systems have been published annually, marking a fourfold in-

rease since the early 2000s ( Fig. 2 ). Similar trends are observed in

ublications on bone malignancies and studies of the bone microenvi-

onment. This surge indicates the growing interest and evolving nature

f these fields over the past decades. These studies provide critical in-

ights into how immune cells can either promote or inhibit tumor pro-

ression within the bone microenvironment. In this review, we aim to

ffer a concise overview of the immunoregulation of bone homeostasis
355
nd malignancy. We start by outlining the mutual regulatory mecha-

isms between bone and immune cells, followed by discussing the most

ecent laboratory and clinical efforts in investigating the roles of key

mmune populations in bone-related cancers. We especially emphasize

he remote crosstalk between bone and tumors of other tissues. Lastly,

e briefly explore current therapies and emerging strategies to leverage

he immune system in combating bone malignancies. 

. Bone-immune crosstalk at steady state 

The skeleton is an integral part of the human body, playing a pivotal

ole in movement support, organ protection, mineral homeostasis, and

he production of blood and immune cells. 11 Bone tissue comprises ex-

racellular matrix, mainly collagen and calcium hydroxyapatite, along

ith osteoblasts, osteoclasts, and osteocytes. Meanwhile, bone marrow

ithin bone cavities is filled by hematopoietic and stromal components.

he hematopoietic compartments include hematopoietic stem and pro-

enitor cells, as well as various mature immune cells. The bone marrow

troma consists of endothelial cells and cells derived from mesenchymal

rogenitor cells, including osteoblasts, adipocytes and chondrocytes.

iven the shared signaling networks of cytokines and chemokines be-

ween the bone and immune compartments, 12 close interactions exist



C. Song, T. Tong, B. Dai et al. Journal of the National Cancer Center 4 (2024) 354–368

Fig. 2. Annual number of articles including relevant terms 

published from 2003 to 2023. This graph illustrates the an- 

nual number of articles published on various bone-related 

research topics, including ‘bone metastasis’ or ‘bone tu- 

mor’, ‘bone’ and ‘immune’, and ‘bone microenvironment’, 

over the period from 2003 to 2023. Data were retrieved 

from PubMed ( https://www.ncbi.nlm.nih.gov/pubmed/ ). 
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etween two parts and shape a dynamic bone environment. 3 This con-

ept, known as ‘osteoimmunology’, was introduced in 2000 to describe

he immunoregulation of bone pathology 13 and has since expanded to

ncompass reciprocal influences between the bone and immune systems

n both health and disease. 

.1. Skeletal regulations of immune system 

A stable bone microenvironment is essential for immune system

unctions. Bone cells contribute to immune cell production, maturation,

rafficking, and the regulation of immune tolerance. On top of these

unctions, bone marrow microenvironments actively regulate HSCs. The

ematopoietic stem and progenitor cells (HSPCs) are not randomly dis-

ributed in the bone marrow but reside in specialized compartments,

uch as endosteal regions or areas adjacent to bone marrow vessels. En-

osteal niches, mainly composed of osteoblasts, and perivascular niches,

onsisting of endothelial cells and surrounding mesenchymal stem cells

MSCs), maintain HSCs through various molecules like BMPs, Jagged1,

CF1, and CXCL126 . Alterations in niche components directly or indi-

ectly influence the HSC pool size and have varying impacts on mature

lood cells. For example, selective blockade of BMP signal by inactiva-

ion of BMP receptor type IA in Mx1-cre labeled lineage significantly

ncreases osteoblast numbers in trabecular bone regions and doubles

-Kit+ HSPCs in bone marrow, while shows minimal effects on differ-

ntiated cell lineages. 14 In contrast, conditional ablation of developing

steoblasts by ganciclovir in Col2.3 ΔTK mouse models results in a no-

able loss of HSCs and their progeny cells. 15 , 16 

Bone cells can also directly regulate the proliferation and matura-

ion of distinct immune cell lineages. For instance, IL-19 is primar-

ly secreted by osteocytes in bone tissues, which is essential for gran-

lopoiesis and neutrophil development. Activation of mTORC1 selec-

ively in osteocytes significantly boosts IL-19 secretion, promoting neu-

rophil formation through IL-20R 𝛽/STAT3 signaling without impacting

ther hematopoietic lineages. 17 Interestingly, Yu et al. reported that

cn + osteoblasts are pivotal for lymphoid cell maturation by produc-

ng Notch ligand DLL4, which activates Notch signaling in T cell pre-

ursors that guide their thymic homing. 18 Selective depletion of DLL4

n Ocn + cells did not affect the normal thymic function but reduced the

umber of T cell precursors in the thymus and mature T cells in pe-

ipheral blood. B cell maturation has also been found to be impaired

n osteoblast-deficient bone marrow, 18 , 19 supporting the critical role of

one homeostasis in immune cell functions. 

Bone microenvironment also maintains physiological immune toler-

nce and restricts pathological immune responses. During infection or

nflammation, cytokines produced by stromal cells increase significantly

nd cause profound remodeling of the bone microenvironment, 20 lead-
356
ng to diseases such as osteoporosis. Regulatory T cells (Tregs), which

onstitute about 30% of bone marrow CD4 + T cells, protect the struc-

ural and functional integrity of the bone and bone marrow through con-

rolling inflammation and other non-immune functions. 21 Bone marrow

esident Tregs have been suggested to exhibit distinct phenotypic fea-

ures as compared to their counterparts in other tissues. They are marked

y expression of HSC marker CD150 and often found in close proximity

o HSCs in bone marrow. 22 The traffic of bone marrow Tregs relies on

he chemokine CXCL12, 23 secreted primarily by LepR + mesenchymal

tromal cells. 24 Intriguingly, IL-10 secreted by Tregs directly acts on the

L-10 receptor (IL-10R) on MSCs and alters their phenotypes to support

SPC expansion under stress conditions, 25 indicating a regulatory loop

etween Tregs and MSCs in the bone marrow. Acute immune reactions,

uch as those seen in systemic infections like sepsis, significantly de-

lete osteoblasts. 26 This depletion, driven by elevated G-CSF levels dur-

ng sepsis, diminishes IL-7 production and lymphoid progenitors in the

arrow, contributing to sepsis-induced lymphopenia and its associated

igh mortality rate. 26 However, treatment with osteoblast-stimulating

arathyroid hormone can replenish osteoblasts and IL-7 levels, amelio-

ating lymphopenia and extending survival in septic mice. These obser-

ations underscore the bone microenvironment’s critical role in ensuring

ffective immune responses during pathological conditions. 

.2. Immunoregulation of bone development and homeostasis 

Bones are continuously remodeled throughout life. This dynamic

rocess involves the removal of old or damaged bone and the formation

f new bone to maintain skeletal integrity and mineral homeostasis. Al-

hough there are debates on defining the exact steps of the bone remod-

ling cycle, it generally entails the resorption phase in which osteoclasts

reak down bones, followed by a formation phase in which osteogenic

ells deposit new bone on the resorbed surface. The osteoclastic and

steoblastic activities are tightly coupled by various local and systemic

actors during the bone remodeling cycle. Immune cells influence bone

ealth primarily through their involvement in this remodeling process. 

As the primary cells responsible for bone resorption, osteoclasts are

erived from the monocytic lineage of hematopoietic cells in the bone

arrow. 27 Therefore, they share common origins and regulatory signals

ith certain immune cells. For instance, pro-inflammatory cytokines

ike IL-1, IL-6, and TNF- 𝛼 from macrophages or other immune cells can

ctivate downstream signaling pathways like Akt, MAPK and JNK in os-

eoclast progenitor cells to promote osteoclast maturation. 4 In autoim-

une arthritis, engagement of antigen receptor in activated T cells also

nduces the secretion of receptor activator of nuclear factor kappa-B lig-

nd (RANKL), 28 which is a central molecule for osteoclast differentia-

ion and activation. Conversely, other immune cytokines like interferons

https://www.ncbi.nlm.nih.gov/pubmed/
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IFNs), IL-3, IL-4, and IL-12 inhibit osteoclastogenesis. 29 Interestingly,

ctivated T cells also secrete IFN- 𝛾 and IL-3, exerting a Janus-faced role

n bone remodeling regulation. 30 The lineage heterogeneity or dynamics

f immune cells may contribute to their diverse functions in regulating

one remodeling. For instance, in mouse model of palatal expansion,

n initial increase in type 1 helper T (Th1) cells and type 17 helper T

Th17) cells promotes osteoclastogenesis, followed by the recruitment of

regs, which inhibits Th1 and Th17 cells and indirectly down-regulates

steoclast activities. 31 

Osteogenic lineages originate from MSCs in the bone marrow. De-

pite ongoing debates regarding the specific markers of osteogenic

SCs, they are generally believed being enriched in the perivascular

tromal fraction. 32 , 33 Inside the bone remodeling compartment, an-

iogenesis actively occurs and enables the recruitment of these os-

eogenic progenitors, thereby creating a milieu for direct interactions

etween immune cells and osteogenic cells. Previous studies have

ighlighted the effects of cytokines released by immune cells on os-

eoblastic cells. For example, macrophages promote MSC differentia-

ion or osteoblast proliferation by releasing factors such as PGE2, on-

ostatin M, BMP2, BMP4 and TGF- 𝛽, and consequently enhance bone

ineralization. 34 , 35 

The balance of bone remodeling is disrupted by abnormal immune

ell activities in certain inflammatory conditions and infections. In

heumatoid arthritis (RA), cytokines from Th17 cells either directly tar-

et monocytes or induce the synovial fibroblasts to secrete RANKL, both

ctions promoting osteoclastogenesis and resulting in inflammation-

ssociated bone destruction. 36 , 37 Additionally, these cytokines stimu-

ate the formation of neutrophil extracellular traps (NETs) that further

ntensify the inflammatory response within RA tissues. 38 , 39 Thus, within

he bone marrow, the activities of immune cells and bone cells are

losely tied in most scenarios, which also holds true for cancers that

irectly impact the bones. 

. Osteoimmunomodulation of primary bone cancers 

Primary bone cancer is relatively rare, with osteosarcoma being the

ost prevalent form. This cancer typically arises from the bone-forming

ells and is most often found at the ends of long bones in children and

eenagers. 8 Tumor-infiltrating immune cells significantly impact the de-

elopment and progression of osteosarcoma and other primary bone tu-

ors. 40 In the following section, we will discuss the immunoregulatory

echanisms of primary bone cancer and focus particularly on osteosar-

oma due to its unique position among primary bone malignancies. 

The infiltration and activation of cytotoxic lymphocytes are pivotal

n anti-tumor immune responses. Accumulating evidence suggests that

 lymphocyte infiltration is higher in osteosarcoma samples than in nor-

al tissues. 41 In some patient cohorts, increased infiltration of cytotoxic

 cells is associated with improved clinical outcomes. 42 , 43 However, the

elationship between CD8+ T cell infiltration and clinical outcomes in

igh-risk osteosarcoma patients remains controversial, 44 pointing to po-

entially distinct functional states of tumor-infiltrating T cells in these

atients. Studies have shown that the infiltration of lymphocytes corre-

ates with the expression of exhaustion markers, such as PD1 and PD-L1,

s well as reduced T cell clonality within osteosarcoma microenviron-

ent. 41 , 45 In line with the exhausted phenotype, CD8+ T cells infiltrat-

ng osteosarcoma exhibit diminished cytotoxic cytokine secretion, 43 , 45 

upporting their defective cytotoxic response. Exhaustion signatures in

nfiltrating lymphocytes are significantly higher in recurrent chordoma,

 rare bone cancer, compared to primary tumors. 40 This suggests a pro-

ressively deteriorating adaptive immune response against tumor cells

s the disease advances. Meanwhile, the presence and suppressive func-

ions of Tregs are elevated in osteosarcomas. 46 , 47 Consequently, it has

een suggested that the decreased ratio of CD8+ T cells to Tregs, rather

han the infiltration of either population alone, may better predict clini-

al outcomes in osteosarcomas. 42 , 46 Exosomes from osteosarcoma cells

ontain higher levels of immunosuppressive proteins than those from
357
ormal bone-forming cells and are more potent in inhibiting the prolif-

ration of effector T cells and inducing regulatory T cell phenotypes, 48 

roviding a potential mechanistic explanation to the above clinical ob-

ervations. 

The importance of natural killer (NK) cells in controlling osteosar-

oma progression and metastasis is increasingly recognized. NK cells

re consistently present in osteosarcomas, and their infiltration cor-

elates with tumoral expression of PD-L1. 49 Unlike T lymphocytes,

he osteosarcoma-infiltrating NK cells appear to retain intact function,

aking them promising candidates for immunotherapy against os-

eosarcoma. 50 , 51 Nonetheless, osteosarcomas have developed various

trategies to evade NK cell-mediated immunosurveillance. For example,

GF- 𝛽 inhibits NK cell activity, 52 and osteosarcoma can secrete TGF- 𝛽

irectly 53 or release it from the bone matrix when tumors degrade

one. 54 Furthermore, osteosarcomas express higher level of a soluble

KG2D ligand, MHC class I chain-related molecule A (MICA), than

enign tumors or healthy bone tissues. 55 Soluble MICA decreases

KG2D expression on NK cells 56 and likely enables osteosarcoma

ells to escape NK cell-mediated killing. Restoring these compromised

ecognition mechanisms on NK cells could improve their therapeutic

otential against osteosarcoma. 

To date, research on the role of B cells in osteosarcoma is limited. In

atient samples, an increase in B cell infiltration has been unexpectedly

inked to osteosarcoma progression, 57 challenging the traditional belief

hat B cells primarily support T cell-mediated tumor cell killing. This as-

ociation is further supported by the correlation between expression of B

ell lineage marker MEF2C and poorer prognosis in TCGA osteosarcoma

atient cohort. 58 Interestingly, the same study also identified two other

 cell markers associated with improved clinical outcomes, indicating a

ultifaceted role of B cells within the osteosarcoma microenvironment.

ore in-depth investigations are needed to clarify the precise contribu-

ions of B cells to osteosarcoma pathogenesis. 

Macrophages are the most abundant immune cells in the osteosar-

oma microenvironment. Analogous to tumor associated macrophages

TAMs) in other cancers, osteosarcoma-infiltrating macrophages are

raditionally classified into two distinct polarization states: the anti-

umor M1 and the pro-tumor M2 phenotypes. Emille Buddingh and

olleagues noted an upregulation of macrophage-related genes in os-

eosarcoma patients without metastasis compared to those with, 59 in-

icating a potential anti-metastasis function of TAMs in osteosarcomas.

heir analysis indicated both M1 and M2 macrophages were present

n these samples, but surprisingly, the total count of TAMs was asso-

iated with the favorable clinical outcomes, challenging a universally

ro-metastatic role of TAMs across cancers. Conversely, other studies ar-

ue against the antimetastatic role of TAMs in osteosarcoma. Increased

AM infiltration has been observed in lung metastasis compared to

rimary osteosarcomas in both preclinical models and patient samples

nd demonstrated to promote osteosarcoma metastasis through multiple

odes of action. 60–62 Specifically, TAM secretome enhances the migra-

ion and invasion capacities of osteosarcoma cells by activating COX2

nd STAT3 pathways. 60 Additionally, osteosarcoma cells can induce a

etastasis-promoting M2-like phenotype in TAMs 61,62 which in turn en-

ance tumor angiogenesis and T cell suppression. Furthermore, adjuvant

hemotherapies may reprogram osteosarcoma-infiltrating macrophages

o secrete more IL18, facilitating immune evasion through the LAT2-

TORC1-CD47 axis. 63 These findings highlight the complex and diverse

unctions of TAMs in osteosarcoma. 

In addition to TAMs, myeloid-derived suppressor cells (MDSCs)

re critical in restricting anti-tumor immune responses in osteosar-

oma. MDSCs represent a heterogeneous population of immature

one marrow-derived myeloid cells that can give rise to monocytes,

acrophages, neutrophils, mast cells, and others. While differentiated

yeloid lineages have context-dependent roles in most cancers, MDSCs

niformly exert immunosuppressive effects by inhibiting T cell prolif-

ration and function, primarily by producing reactive oxygen species

ROS) or nitric oxide (NO) and increasing arginase activity. 64 MDSCs are
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ivided into two morphologically and phenotypically distinguishable

ubsets: monocytic (M-MDSCs) and polymorphonuclear (PMN-MDSCs),

ach utilizing distinct mechanisms to suppress effector T cell activity. 65 

n preclinical models and patient samples, osteosarcomas are highly

nfiltrated with MDSCs, and their infiltration is associated with worse

linical outcomes. 43 , 66 To date, the osteosarcoma-specific mechanisms

riving MDSC expansion and activity are insufficiently studied. Emerg-

ng research from preclinical models suggests that dysregulation of IL-1

amily cytokines, including IL1 𝛽 and IL-18, may underlie the accumula-

ion and suppressive properties of MDSCs in osteosarcomas. 67 , 68 

The involvement of other mature myeloid cells, including neu-

rophils, monocytes, dendritic cells, and mast cells, in osteosarcoma

evelopment is debated, with evidence for both pro-tumor and anti-

umor effects. On one hand, elevated neutrophil-to-lymphocyte ratio or

onocyte-to-lymphocyte ratio is generally predictive of worse clinical

utcomes in osteosarcoma patients, 69 , 70 implying these cells may favor

umor progression. Similarly, regulatory dendritic cells are enriched in

steosarcoma and associated with decreased survival rates, 49 suggest-

ng their pro-tumoral function. On the other hand, innate immune cells

re known to possess anti-tumor capabilities. The antitumor function of

eutrophils is well-documented in various cancer types. 71 , 72 However,

heir role in osteosarcomas remains less clear. Dendritic cells, known

or their effectiveness in antigen presentation, are being actively eval-

ated for developing osteosarcomas vaccines. 73 , 74 Resolving these con-

roversies requires further studies into the dynamics and interactions of

mmune cells within the osteosarcoma microenvironment. 

. Immunoregulation of bone metastasis 

The skeleton is a common site for metastasis in multiple types of can-

ers. 75 , 76 Bone metastasis is particularly prevalent in breast and prostate

ancers, accounting for about 60% and 90% of metastatic cases, 77 re-

pectively, and thus surpassing metastasis to any other organ. Despite

linical progress, bone metastasis is still incurable and represents a

eading cause of mortality in patients, causing severe skeletal-related

vents like fractures, bone pain, and hypercalcemia. 77 Moreover, bone

etastasis is linked to an increased risk of subsequent metastasis to vis-

eral organs. 77 , 78 Our recent studies indicate that the bone microenvi-

onment reprograms disseminated tumor cells (DTCs) to enhance their

etastatic potential and resistance to therapies, and promote further

pread to other tissues. 79 , 80 Therefore, delineating the crosstalk between

etastatic tumor cells and bone microenvironment is imperative, which

ill lay the foundation for developing new therapies for bone metastasis.

Like metastasis to other organs, metastasis to bones involves a

equence of biological processes: tumor invasion and intravasation

nto the bloodstream, circulation, extravasation into the bone marrow

arenchyma, and secondary tumor outgrowth within the bone. 76 Once

isseminated tumor cells seed in the bone, they must adapt to diverse

icroenvironmental challenges to survive and colonize in bones, some-

imes entering a dormant state or remaining as micrometastases for

rolonged periods before evolving into clinically detectable metastases.

arly-stage bone metastases are influenced by various bone marrow

omponents, including endothelial cells, perivascular MSCs, osteoblasts,

one matrix, etc. 81–86 In the advanced stage, a forward loop is estab-

ished between tumor cells, osteoblasts, and osteoclasts, known as the

icious cycle of bone metastasis, which fuels the tumor growth and dis-

upts bone homeostasis. 87 Emerging evidence pinpoints a critical role of

mmune cells in modulating bone metastasis, which will be summarized

n the subsequent sections. 

.1. Lymphocytes 

Lymphocytes exhibit a dual-faced role in the development of bone

etastasis. In breast cancer patients, analysis of bone marrow immune

ells reveals a decrease in total T cells but an increase in activated T cells
358
nd NK cells as well as their memory fractions in metastatic cancer pa-

ients. 88 This suggests a dynamic shift in the composition and function of

one marrow lymphocyte as bone metastasis progresses. The anti-bone

etastasis functions of lymphoid cells primarily involve direct elimi-

ation of tumor cells and can be influenced by other bone microenvi-

onment components. An excellent example is that osteoclasts release

GF- 𝛽 from the bone matrix, which can suppress the proliferation and

unction of T and NK cells. 52 , 89 In ER positive breast cancer, tumor-

erived SCUBE2 promotes the formation of osteoblastic niches and

rotects tumor cells from NK cell-mediated cytotoxic activities by en-

ancing collagen deposition. 90 Thus, targeting these non-immune com-

onents could theoretically potentiate lymphocytes to eradicate bone

etastases. However, the pro-bone metastasis role of lymphocytes has

lso been implicated in previous studies, mainly through their effects

n bone remodeling. For example, T cell activation in arthritis is known

o increase its production of RANKL that directly binds RANK on os-

eoclast precursors to activate osteoclast differentiation and cause bone

oss. 91 This T cell-dependent osteoclastogenesis has also been reported

n bone metastasis. 92 , 93 Yet, cytokines secreted by activated T cells like

FN- 𝛾 inhibit osteoclast differentiation and prevent bone loss caused

y metastatic tumors. 94 , 95 Intriguingly, a recent report by Danna Arel-

ano et al. suggests that suppressed T cells, rather than activated ones,

romote osteoclast formation and bone metastasis. 96 Further studies

re needed to clarify the precise roles of bone metastases-infiltrating

 cells. 

Regulatory T cells contribute to the pro-metastatic functions of lym-

hocytes in bone metastasis. Although they represent a small fraction of

D4+ T cells, Tregs are significantly increased in bone metastases from

rostate and breast cancer. 97 , 98 Beyond their established immunosup-

ressive effects, Tregs also secrete large amounts of RANKL to enhance

he metastatic potential of breast cancer cells. 99 Given the potent effect

f RANKL in osteoclastogenesis, it is perceivable that increased Treg

nfiltration in bone metastasis might support the osteoclast-driven

icious cycle by secreting RANKL. However, a previous study proposed

hat Tregs can inhibit T-cell-driven osteoclastogenesis and contribute

nstead to the osteoblastic phenotype of prostate bone metastasis. 97 

hether these seemingly contradictory findings is due to differences

n experimental models or specific Treg subpopulations remains to be

etermined. 

Other T cell subsets also take part in creating the immunosuppressive

ilieu within bone metastases. For example, Th17 subsets are prevalent

n bone metastases of castration-resistant prostate cancers (CRPC). 100 In

oft tissues, immune checkpoint therapies expand Th1 cells to achieve

n optimal response. However, in CRPC bone metastases, Th1 cells are

bsent and the numbers of Th17 cells increase further upon such ther-

py, leading to diminished clinical responses. 100 Correspondingly, ele-

ated levels of IL-17, mainly produced by Th17 cells, have been detected

n the bone marrow and are associated with increased bone metas-

asis in arthritis mouse models with mammary carcinoma. 101 Tumor-

erived factors and other tumor-infiltrating cells promote IL17 and Th17

ell proliferation, 102 which counteracts the effects of IFN- 𝛾 and stim-

lates osteoclastogenesis, 103 indicating Th17-IL17 axis is a promising

mmunotherapeutic target for bone metastasis treatment. 

.2. MDSCs 

Immunosuppressive mechanisms mediated through MDSCs are in-

trumental in cancer metastasis. Their accumulation has been observed

n bone metastases of breast cancer, prostate cancer, and multiple

yeloma. 104–108 Soluble factors released by bone metastatic tumor cells,

uch as G-CSF, VEGF, IL6, and TNF 𝛼, are known to attract and ex-

and MDSC populations. Specifically, tumors with a propensity for bone

etastasis secret higher levels of G-CSF and thus recruit more MDSCs

ompared to non-bone metastatic tumors. 109 Additionally, the activi-

ies of other non-tumoral cells within bone microenvironment influence

DSC expansion. For instance, CXCL5 from bone marrow macrophages
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d  
nd DKK1 from osteoblastic cells have been shown to enhance MDSC

ecruitment or accumulation in bone metastases. 108 , 110 

MDSCs exert their pro-bone metastasis functions through mul-

iple mechanisms. They suppress both innate and adaptive im-

une responses, which has been excellently reviewed by many

ther groups. 111–113 For sake of brevity, we will not elaborate

his topic herein. Evidence from previous studies using immune-

eficient models shows that the growth of xenograft tumors includ-

ng bone metastasis is reduced following MDSC depletion, highlighting

he immunosuppression-independent, pro-metastatic functions in MD-

Cs. 114 , 115 Further evidence found that secreted factors from MDSCs

irectly promote bone metastasis, as the proliferation of tumor cells is

nhanced in vitro when co-cultured with MDSCs. 104 , 116 Additionally,

DSCs enhance osteolytic activity, which is crucial for sustaining the vi-

ious cycle of bone metastasis. For example, bone metastasis-infiltrating

DSCs produce two-fold more levels of TGF- 𝛽 than their counterparts

n healthy subjects, which upregulates the expression levels of PTHrP

nd Gli2 in tumor cells to drive osteoclastogenesis and the osteolytic

ycle. 115 Additionally, lineage tracing and in vitro differentiation assays

ave demonstrated that MDSCs can differentiate into mature osteoclasts

ithin bone metastases and hence directly support the degradation of

ones. 106 , 117 

.3. Macrophages 

Macrophages exhibit remarkable phenotypic plasticity in different

icroenvironments, and their complexity is further compounded by

heir origins. 118 , 119 They can be classified based on their location

nto bone marrow macrophages, which resemble monocyte-derived

acrophages found in other organs, and bone resident macrophages,

r osteomacs, which are identified by specific markers such as CD166

nd M-CSFR alongside canonical markers. 120 , 121 So far, it is still unclear

bout the developmental origins of osteomacs, but they are known to in-

eract with osteoclasts, megakaryocytes, and osteoblasts within the bone

nd form a niche complex that regulates HSC functions. 120 , 122 , 123 De-

pite the shared monocytic lineage, osteomacs differ morphologically

rom osteoclasts and do not express osteoclast markers. Yet, there are

resumptions that osteomacs may link to osteoclastogenesis and conse-

uently promote bone metastasis. Importantly, osteomacs are found in

roximity to mature osteoclasts and can differentiate into osteoclast-like

ells in vitro , suggesting they may be osteoclast precursors in vivo . 124 , 125 

steomacs also support the mineralization deposition of osteoblasts, and

heir depletion significantly delays bone healing, mirroring the coordi-

ated behaviors of osteoclasts in bone homeostasis. 126–128 However, a

ecent study reports that depleting CD169+ macrophages, which specif-

cally marks osteomacs in mice, impairs bone repair without affecting

he number of monocytes or osteoclasts, 127 indicating an osteoclast-

ndependent function of osteomacs in bone remodeling and pathology. 

The role of bone marrow macrophages in bone metastasis is

oorly understood, characterized by both scant research and con-

radictory findings. These macrophages are found in greater num-

er in bone metastases than in primary tumors in both murine mod-

ls and human patients. 129 , 130 Genetic ablation of bone metastasis-

nfiltrating macrophages but not CD169+ osteomacs significantly re-

uces metastatic growth in mice, supporting their role in promoting

one metastasis. 130 In prostate cancer, these infiltrating macrophages

nduce a wound-healing-like response in cancer cells, thereby render-

ng tumor cells resistant to androgen deprivation therapies. 129 Fur-

hermore, these macrophages are reported to display a distinct ac-

ivation state that is characterized by increased expression of IL4R

nd CD204. 130 Macrophage-specific deletion of IL4R significantly re-

uces bone metastasis in murine models. 130 In addition, the CCL2-CCR2

hemokine axis is another key regulator of bone metastasis-associated

acrophages. 131 , 132 Bone metastatic tumor cells highly express CCL2,

nhancing the infiltration of macrophages in a CCR2-dependent man-

er. 132 , 133 Neutralizing antibodies against CCL2 or CCR2 have demon-
359
trated effectiveness in slowing bone metastasis progression in both

ice 130 and human trials, 134 suggesting a viable therapeutic avenue for

one metastasis treatment. 

The polarization of bone metastasis-associated macrophages, par-

icularly into the M2-like phenotype, has also been reported. 107 , 130 

or example, in prostate cancer bone metastases, the infiltrating

acrophages express anti-inflammatory cytokines as the M2-like

acrophages do. 107 This M2-like polarization is triggered by tumor-

erived cytokines, including CSF-1 and M-CSF, 135 as well as through

he efferocytosis of apoptotic cells. Ingesting apoptotic cancer cells or

eutrophils by macrophages enhances their secretion of M2-related

actors like MFG-E8, CXCL5, TGF- 𝛽, PGE2, and PAF2. 108 , 136–138 These

ytokines and growth factors amplify M2-like phenotypes and acceler-

te bone metastasis progression. Yet, it remains unclear whether such

olarization is elicited by the efferocytotic activity itself or by specific

poptotic components. Blocking these activities could offer a strategy

o reverse macrophages’ immunosuppressive phenotypes and mitigate

one metastasis. 

.4. Other immune cells 

Neutrophils serve diverse functions in bone metastasis, shifting be-

ween tumor-inhibitory N1 and tumor-promoting N2 phenotypes. TGF- 𝛽

s known to promote the N2 phenotype of tumor-associated neutrophils

TANs). 139 , 140 Blocking TGF- 𝛽 enhances the expression of proinflamma-

ory cytokines and cytotoxic activity of TANs, thereby inhibiting tumor

rowth. 139 Recent evidence suggests that TANs promote cancer metas-

asis through the formation of NETs, or NETosis. NETs are reported

o contribute to multiple critical metastatic steps, such as enhancing

ngiogenesis, 141 facilitating cancer cell migration and invasion, 142 at-

racting tumor cells to distant organs, 143 aiding the initial seeding of

TCs, 144 protecting tumor cells from adjuvant therapies, 145 breaking

own growth-inhibitory proteins, 146 and remodeling ECM to awaken

ormant tumor cells. 147 Such extensive involvement of NETs substan-

ially supports their functional role in bone metastasis, even though most

f NET functions are studied only in lung or liver metastasis models. 

Emerging evidence highlights the involvement of dendritic cells in

one metastasis. In early-stage breast cancer, the presence of CD1a+ and

D83+ dendritic cells within the stroma is associated with a lower risk

f bone metastasis and improved disease-free survival. 148 Interestingly,

hile CD83 is a known marker of DC activation, CD1a expression varies

mong DC subsets. CD1a+ and CD83+ DCs show low concordance in pa-

ient samples, suggesting the existence of distinct DC populations within

one metastases. 148 The specific functions of these DC subsets remain

nexplored. In breast cancer murine models, an increased infiltration

f B220+ CD11c+ plasmacytoid DC (pDCs) was observed in bone metas-

ases. 149 These pDCs promote an immunosuppressive Th2 response that

s accompanied with secretion of osteolytic cytokines, yet their deple-

ion reversed these effects and effectively eliminated bone metastasis

nd associated bone damage. 149 Additionally, it is reported that splenic

D11c+ DCs exposed to the tumor secretome can transform into multi-

ucleated giant cells with osteoclastic activity. 150 These DC-derived os-

eoclasts migrate to pre-metastatic bone marrow and collaborate with

ANKL-secreting Th17 cells to intensify osteolytic damage prior to tu-

or cell arrival, a phenomenon that will be discussed in the following

ection. 

In summary, the discussed content summurizes the immunoregula-

ory mechanisms involved in bone-related tumors and highlights the

ritical interactions with immune cells that orchestrate disease progres-

ion ( Fig. 3 ). 

. Remote remodeling of osteo-immune crosstalk by distant 

umors 

It is well established that primary tumors can exert influence over

istant organs. Consequently, the osteo-immune microenvironment can
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Fig. 3. Immunoregulators of bone-related tumors. The microenvironment in bone cancers, both primary and metastatic tumors, is defined by the intricate interactions 

between immune cells, tumor cells, and bone cells. These interactions significantly impact tumor progression. Immune cells, displaying dual roles, can promote or 

inhibit tumor growth. In osteosarcoma, TAMs and M2-like macrophages release cytokines like IL-18 and hinder CD8+ T cells, facilitating tumor progression. Tumor 

cells contribute by secreting exosomes that impair CD8+ T cell function, while MDSCs and MEF2C+ B cells promote tumor growth through cytokine secretion and 

immune suppression. Infiltration of DCs subsets is linked to poorer outcomes, whereas NK cells offer anti-tumor activity that tumors can suppress. In the context 

of bone metastasis, the regulatory roles of osteoblasts and osteoclasts are emphasized. Osteoclasts, by enhancing osteolytic damage and releasing TGF- 𝛽, inhibit 

the anti-tumor functions of T and NK cells. Activated T cells and Tregs influence osteoclast differentiation through RANKL secretion, with Tregs also capable of 

suppressing osteoclastogenesis. MDSCs promote osteolysis and osteoclastogenesis, while both MDSCs and osteomacs can differentiate into osteoclasts. Osteoblasts 

affect metastasis progression; for example, tumor-derived SCUBE2 inhibits NK cell activity, and DKK1 secretion by osteoblasts enhances MDSC ̓s tumor-promoting 

functions. Neutrophils also facilitate metastasis via the formation of neutrophil extracellular traps. DCs, dendritic cells; MDSCs, myeloid-derived suppressor cells; 

NK, natural killer; TAMs, tumor-associated macrophages; TAN, tumor-associated neutrophil; Tregs, regulatory T cells. 
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e remotely remodeled by tumor-derived factors. In a pioneering work,

osandra Kaplan and colleagues reported that tumor-derived factors can

obilize bone marrow hematopoietic progenitor cells to predetermined

ites, thereby creating supportive niches for impending metastatic tu-

or cells. 151 This groundbreaking finding led to the introduction of

he concept of ‘premetastatic niche’ (PMN). Further studies have elu-

idated how primary tumors remotely prepare the ground for future

etastases by orchestrating the formation of PMNs across various or-

ans, including bones. 152–154 As a specialized microenvironment con-

ucive to cancer cell colonization and proliferation, PMNs consist of

umor-derived factors, an accumulation of immune cells, and modified

xtracellular matrix. Importantly, PMNs are not merely static receivers

ut are actively shaped to prime them for the arrival of metastatic

ells. 

Among various mechanisms, bone marrow acts as the primary re-

ponder for many tumors to regulate PMN formation. Primary tumors

elease soluble factors, including growth factors and exosomes, to mo-
360
ilize immunosuppressive cells from the bone marrow to target or-

ans and thus alter the distant ‘soil’ to support cancer cells. Notably,

EGFR1 + bone marrow derived cells (BMDCs) that express integrin

4 𝛽1 are instrumental in metastasis-promoting functions of PMNs. Their

nteraction with fibronectin on resident fibroblasts enhances MMP9

nd CXCL12 production, facilitating tumor cell adherence and prolif-

ration in PMNs152 . The augmented presence of BMDCs and MMP9 at

remetastatic sites, such as lungs, promotes metastatic outgrowth by

timulating neoangiogenesis or recruiting MDSCs. 155–157 MDSCs accu-

ulated in PMNs can suppress the cytotoxic activity of CD8+ T cells

nd NK cells, aiding in the immune evasion of metastasizing cells. 158 In

ontrast, neutrophils drawn to premetastatic organs by tumor-secreted

CL2 are reported to impede metastatic outgrowth. 159 However, as pre-

iously discussed, neutrophil recruitment and subsequent NETosis in

remetastatic tissues have also been linked to pro-metastatic functions,

aising questions about the precise role of neutrophils in metastasis

rogression. One possible explanation for this ambiguity is the varied
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C  
omenclature and surface markers for immune cells involved in PMNs,

hich may have complicated data interpretation. 

Alteration in bone remodeling are early indicators of impending

one metastasis, with both osteogenic and osteolytic phenotypes being

bserved in cancer patients and mouse models. 90 , 160–162 In mouse

odels, exposure to breast cancer cell-derived condition media leads

o increased collagen deposition by osteoblasts in metaphyseal bones,

here are also susceptible to bone metastasis. 163 Similarly, activation

f osteoblasts is noted in patients and animal models with localized lung

ancer. 164 Our research, along with others, has shown that early-stage

one metastasis benefits from such osteogenic microenvironment for

ell proliferation and survival upon adjuvant therapies. 82 , 85 , 165 , 166 Fur-

hermore, increased collagen deposition creates an immunosuppressive

ilieu by engaging the LAIR1 inhibitory receptor on NK cells. 90 Acti-

ated osteoblasts have also been reported to promote the expansion of

iglecFhigh neutrophils in the bone marrow, which circulate to the lung

nd enhance the growth of primary lung cancers. 160 Conversely, breast

ancer cells are known to induce osteolytic bone lesions via exosome

nd RANKL secretion, acting as skeletal PMNs. 161 , 162 , 167 Specifically,

xosomes containing miR-21 from bone-metastatic cells enhance

steoclast differentiation and activity by downregulating PDCD4,

nd thereby establish osteolytic regions for colonizing tumors. 161 

dditionally, the activation of T cells by tumor antigens, together

ith the involvement of splenic cDCs and bone marrow B cells, may

ause premetastatic bone loss by releasing cytokines that promote

steoclatogenesis. 150 , 168 These seemingly contradictory osteogenic or

steolytic PMNs may reflect the dynamic and heterogeneous nature of

he premetastatic bone microenvironment. 

The crosstalk between primary tumors and bones underpins the

mergence of systemic immunosuppression observed in cancer patients.

 key mechanism involves the accumulation of MDSCs, resulted from

he skewed myeloid differentiation of bone marrow progenitor cells. 169 

ranulocyte–monocyte progenitors (GMPs) in the bone marrow that

ive rise to most MDSCs have been implicated in this process. Pre-

ious studies have noted the increase of circulating GMPs and its

ssociation to shorter progression-free survival and higher metasta-

is rates in cancer patients. 170 , 171 Throughout tumor progression, the

uantity and frequency of GMPs in the bone marrow rise, accompa-

ied by increased levels of cytokines such as GM-CSF, G-CSF and IL-

. 171–173 These cytokines are critical in promoting the proliferation

nd differentiation of MDSC progenitors into monocytic and granu-

ocytic lineages, thereby augmenting MDSC production in the bone

arrow. 

Primary tumors also modify osteoimmune interactions to perpetu-

te the biased myeloid hematopoiesis. Our recent research has shown

hat extracellular vesicles from distant tumors carry HTRA1 to the bone

arrow and trigger osteoprogenitor (OP) expansion through MMP13

pregulation, 174 aligning with the osteogenic bone phenotype seen in

arly-stage cancers. 90 , 160 This OP cell expansion displaces HSCs and

trengthens their interactions with GMPs, and consequently bone mar-

ow GMPs are steered towards granulocytic differentiation. Remark-

bly, these tumor-induced bone marrow alterations persist even after re-

oval of primary tumors, highlighting their long-lasting impact. Coun-

eracting these changes with genetic or pharmacological interventions

argeting OPs or MMP13 may mitigate systemic immunosuppression

nd enhance antitumor immunity. 174 In supporting our findings, Yohan

erber-Ferder and colleagues also reported the link between increased

steogenic differentiation of MSCs and altered myelopoiesis in tumor-

earing mice. 175 Intriguingly, they further found that the myeloid-

rimed state conferred by remote tumors is retained in hematopoi-

tic progenitor cells after multiple rounds of bone marrow transfers

o the irradiated, tumor-free hosts. 175 These observations indicate a

urable imprint of the primary tumor on bone marrow microenviron-

ent, potentially due to a self-reinforcing loop between OP expansion

nd myelopoiesis in the bone. 
361
. Immunotherapies in treating bone-related tumors 

Clinical treatment of bone-related tumors often ends up with poor

rognosis. In addition to standard chemotherapies, patients with bone

umors are often treated with adjuvant bisphosphonates (BPs) and anti-

ANKL monoclonal antibodies like Denosumab to prevent skeletal-

elated events. However, these treatments typically fail to eliminate

ll tumor cells, leaving behind residual cells in the bone marrow that

an cause disease relapse. Moreover, these approaches often do not re-

erse suppressed anti-tumor immunity and may, in many cases, fur-

her dampen the immune response. 169 Not surprisingly, conventional

herapies profoundly impact not only tumor cells but also the bone

nd immune cells. For example, traditional chemotherapeutic agents,

uch as alkylating agents and anthracyclines, are known for their

yelosuppressive effects and hematopoietic toxicity. Bone marrow cells

re particularly vulnerable to chemotherapy-induced genotoxic dam-

ge. 176 The bone marrow niches stressed by high-dose chemother-

py fail to support normal hematopoiesis and inadvertently protect

esidue tumor cells. 177–180 On the other hand, transplantation of bone

arrow MSCs has been reported to mitigate the adverse effects of

hemo/radiotherapies by enhancing the recovery of the hematopoi-

tic system. 181 , 182 Recently, the immunostimulatory effects of spe-

ific chemotherapeutic regimens have gained attention. For instance,

ocetaxel-based adjuvant therapy significantly boosts lymphocyte infil-

ration in prostate cancer models by activating the cCAS-STING and IFN

athways. 183 Docetaxel can also directly stimulate T cells to release cy-

otoxic vesicles and thereby enhance their anti-tumor effects in vivo . 184 

imilarly, in multiple myeloma, low-dose cyclophosphamide primarily

xerts its tumor-controlling effects by selectively depleting Tregs, shift-

ng the balance towards anti-tumor immunity. 185 Additionally, low-dose

yclophosphamide affects other immune subsets, such as CD8+ den-

ritic cells, tumor-associated macrophages, and B cells, in peripheral

ymph organs or triple-negative breast cancer tumors. 186 , 187 The im-

acts of these chemotherapies on the immune compartment of bone tu-

ors likely mirrors the above-mentioned observations. They influence

ematopoiesis and the overall immune response, which should be taken

nto consideration in bone tumor treatment. 

Immunotherapies have revolutionized the clinical management of

ancers in recent years. Currently, approved and experimental strate-

ies include targeting T cells, MDSCs, macrophages, neutrophils, NK

ells, and more ( Fig. 4 ). Among these, immune checkpoint inhibitors

ICIs) targeting T cells are particularly promising, especially for cancers

ith high mutation burdens. 188 However, their effectiveness in treat-

ng osteosarcomas and bone metastases remains limited. Retrospective

nalyses indicate that bone metastatic TNBC patients show less favor-

ble responses to PD-L1 inhibitors like atezolizumab combined with nab-

aclitaxel, despite significant overall response rates in TNBC patients. 189 

imilarly, only about 5% and 16% of patients with locally advanced or

etastatic sarcomas respond to PD1 inhibitor nivolumab alone or in

ombination with CTLA-4 inhibitor ipilimumab, respectively. 190 In ad-

ition to their limited efficacy in bone-related tumors, ICI treatments

ay also cause bone loss and approximately double the risk of bone

ractures, 191 likely due to the pro-osteoclastogenesis effects of activated

 cells. Improving efficacy while minimizing immune-related adverse

ffects represents the new frontier of immunotherapies in bone tumor

reatment. 

To overcome ICI resistance in bone-related tumors, recent strate-

ies focus on amplifying the anti-tumor immune response by simulta-

eously targeting inhibitory checkpoint molecules and co-stimulatory

olecules. TGF- 𝛽 is a promising target, given its pivotal role in

oth bone remodeling and immune regulation. In castration-resistant

rostate bone metastasis, bone matrix degradation releases active TGF-

, prompting a shift of helper T cells towards the Th17 lineage over

he Th1 lineage, and consequently diminishing ICI responsiveness. 100 

ombining TGF- 𝛽 neutralizing antibodies with ICIs enhances the infil-
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Fig. 4. Immunotherapies for bone-related malignancies. Immunotherapies in the bone tumor microenvironment target T cells, MDSCs, macrophages, and NK cells, 

aiming to boost anti-tumor immunity through ICIs and co-stimulatory molecules. Blocking TGF- 𝛽 shifts CD4+ T cell differentiation from Th17 and Treg cells to 

the Th1 lineage, enhancing CD8+ T and NK cell activation and ICI efficacy. Additionally, TGF- 𝛽 blockade reduces MDSC-mediated suppression of CD8+ T cells and 

limits Treg proliferation. Targeting CSF-1 and CCL2 disrupts macrophage differentiation and hinders immunosuppressive cell chemotaxis and migration, thereby 

counteracting immunosuppressive environments within bone tumors. BPs complement ICIs by multiple ways, reducing MDSC immunosuppression and enhancing 𝛾𝛿

T and 𝛾𝛿 CAR-T cell cytotoxicity. CAR-T cells target diverse bone tumors expressing specific cancer-associated antigens. CAT-T cells engineered to express dominant 

negative TGF 𝛽RII counteracts TGF- 𝛽-mediated immunosuppression, significantly decreasing bone metastasis. BPs, bisphosphonates; CAR, chimeric antigen receptor; 

ICIs, immune checkpoint inhibitors; MDSCs, myeloid-derived suppressor cells; OB, osteoblast; OC, osteoclast. 
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ration of Th1 cells and effector T cell clones in tumors and thereby sig-

ificantly delays the progression of bone metastasis. 100 Following this

ationale, osteoclast-inhibiting reagents like BPs or RANKL neutraliz-

ng antibodies, which prevent bone degradation and consequent TGF- 𝛽

elease, may work synergistically with ICIs in bone tumor treatment.

owever, a preliminary study found that combining bone-targeted

herapies with ICIs shows discrete efficacy in bone metastasis patients

cross different cancers, 192 potentially due to the pleiotropic effects of

one-targeted reagents. BPs, for example, not only inhibit osteoclast ac-

ivity but also possess direct antitumor properties and can modulate the

mmune system in a context-dependent manner. 164 , 193 Therefore, the

utcome of combining ICIs with bone-targeted therapies may hinge on

he genetic and immunological characteristics of the bone tumors. In ad-

ition to TGF- 𝛽, approaches targeting myeloid cells to mitigate MDSC-

ediated immunosuppression and boost ICI efficacy are under investi-

ation (discussed above). Yet, translating these strategies into clinical

ractice poses substantial challenges. Further research into the inter-

ctions between ICIs and adjunctive therapies is necessary to identify

atients who could benefit from these combinational therapies and im-

rove therapeutic outcomes. 

Cell-based immunotherapies are being actively evaluated for treat-

ng bone tumors. Chimeric antigen receptor-engineered T (CAR-T) ther-

py has shown a substantial successful rate in treating hematological

alignancies like leukemia, multiple myeloma, and non-Hodgkin B-cell
362
ymphoma. 194 , 195 However, CAR-T therapies face challenges in solid tu-

ors due to factors such as the lack of universal antigens, limited infil-

ration, rapid exhaustion, and severe adverse effects. 196 Yet, promising

esults have emerged from targeting specific antigens with CAR-T cells

n bone-related tumors, including PSCA, PSMA, and STEAP2 for prostate

ancer, as well as GD2 and Her2 for osteosarcomas. 197–201 To overcome

he immunosuppressive microenvironment and enhance T cell activa-

ion, engineered T cells can be further modified to adapt specifically

or bone tumor treatment. A notable modification involves equipping

AR-T cells with a dominant-negative TGF- 𝛽 type II receptor (TGF 𝛽RII),

hich has been demonstrated to effectively counteract TGF- 𝛽-mediated

mmunosuppression and significantly reduce CRPC bone metastasis in

oth research and clinical settings. 199 , 201 

𝛾𝛿 T cells have been shown to exert direct anti-tumor effects in

steosarcomas and other metastatic diseases. 202 , 203 Bone-targeting BPs

otently expand 𝛾𝛿 T cells and therefore enhance their cytotoxicity.

eremy S. Frieling and colleagues recently developed a 𝛾𝛿 T cell-based

AR-T therapy targeting PSCA for metastatic CRPCs. 197 They found

hat pre-treatment with the BP zoledronate enhances the efficacy of

𝛿-enriched CAR-T cell, resulting in notable regression of established

one metastases and reduction of tumor-induced bone damage in

ouse models. 197 This suggests that combining 𝛾𝛿 T cell therapies

ith BPs could offer a promising approach for treating bone-related

umors. 
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CAR-NK therapies are emerging as attractive alternatives to CAR-T

herapies, especially for solid tumors. 204–206 These NK cell-based ther-

pies possess inherent advantages for cancer treatment, including non-

HC restricted recognition and reduced alloreactivity. Multiple clinical

rials are currently underway to evaluate the efficacy of CAR-NK cells

argeting various tumor antigens. For example, there trials include CAR-

Ks targeting ROBO1 in broad-spectrum solid tumors (NCT03940820),

SMA for prostate cancer (NCT03692663), ERBB2 for advanced or

etastatic HER2+ solid tumors (NCT04319757, NCT03383978), MSLN

or ovarian cancer (NCT03692637), Claudin-6 for gynecologic and geni-

ourinary cancers (NCT05410717), CCCR for non-small cell lung cancer

NCT03656705), and MUC-1 for recurrent or treatment-resistant solid

umors (NCT02839954). Notably, MUC1-specific CAR-NK cells have

hown safety and preliminary effectiveness in preventing tumor recur-

ence and graft-versus-host disease. 207 Furthermore, a phase II clini-

al trial (NCT02100891) reported that early infusion of donor NK cells

howed promising preliminary results in improving overall survival with

anageable side effects in patients with high-risk bone tumors, includ-

ng Ewing’s sarcoma, rhabdomyosarcoma, and osteosarcomas. 208 

However, CAR-T and CAR-NK therapies encounter several common

hallenges, such as the immunosuppressive tumor milieu that hampers

heir infiltration and cytotoxicity. In contrast, macrophages are more

bundant in many tumors compared to T and NK cells. As a result,

AR macrophage (CAR-M) therapy, which integrates CAR structures

ith macrophage functions, offers a complementary approach for tu-

or treatment. These engineered macrophages can infiltrate the tu-

or microenvironment more effectively and, when polarized towards

 M1-like phenotype, exhibit enhanced anti-tumor efficacy. 209 , 210 For

xample, M1-poloarized CAR-Ms, induced by LPS/IFN- 𝛾 treatment or by

dding the TIR domain of the TLR4 protein, have demonstrated superior

hagocytic and cytotoxic abilities against tumor cells both in vitro and

n vivo . A phase I trial is currently assessing CAR-M therapy targeting

ER2-overexpressing solid tumors (NCT04660929). 211 Although CAR-

 therapies show potential advantages over traditional CAR-T thera-

ies, they are still in the early stages of development. Further valida-

ion is needed to fully establish their clinical efficacy in treating bone

umors. 

In addition to the previously discussed immunotherapies, cancer-

ssociated vaccines represent another promising approach for cancer

reatment. These vaccines train T cells to recognize and attack cancer

ells more effectively through activating antigen presenting cells (APCs),

rimarily DCs. Provenge® (Sipuleucel-T), the first FDA-approved can-

er vaccine, activates the immune system in prostate cancer patients

hrough the autologous transfer of APCs exposed to a fusion protein of

rostatic acid phosphatase (PAP) and GM-CSF. 212 Various forms of anti-

ens, such as DNA, RNA, synthetic peptides, and recombinant proteins,

ave been developed to activate APCs using different delivery meth-

ds. 213 Provenge® has shown durable effects in controlling bone metas-

ases in some CRPC patients. 214 , 215 More cancer vaccines are currently

nder development for the treatment of bone metastasis or primary bone

umors. 216 The bone marrow-homing properties of DCs make them ideal

or delivering tumor-associated antigens into the bone marrow. 21 How-

ver, DC-based vaccines often fail to induce durable immunity against

umors in most patients. 215 Studies have indicated that only a small

ohort of bone tumor patients achieve a satisfactory immune response

hen receiving DC-based vaccines. 217 , 218 This may be due to the inef-

ciency of infused DCs in triggering sustained activation of T lympho-

ytes within the disordered microenvironment of bone tumors, a phe-

omenon that remains poorly understood. Investigating the interplay

etween these cancer-associated vaccines and other components of the

one microenvironment may provide clues on this perspective. 

Significant challenges remain in the clinical application of im-

unotherapies for bone-related malignancies. Immunosuppressive cy-

okines are enriched in bone, and the dense bone matrix along with

ssociated stromal cells create additional barriers for effective immune

esponses. Therefore, bone-specific immunotherapies may be needed to
363
urther improve the outcomes and quality of life in patients with bone

umors. 

. Conclusion and perspectives 

The interactions between bone and immune cells are concentrated

ithin the bone marrow and create a symbiotic system and function

uch like a symphony orchestra. The bone microenvironment is vi-

al for supporting immune cell maturation and maintaining the bal-

nce of bone remodeling. Disruptions in these processes can lead to

one-related diseases. This review focuses on one of the most signifi-

ant pathological conditions affecting this system: bone tumors, includ-

ng both primary and metastatic forms. Besides its cellular components,

one is also unique with many physiochemical properties, including a

igid and dense mineral matrix, specific microstructural organization,

nd compartmentalized oxygen tensions within the bone marrow cav-

ty. While accumulating evidence has linked these physicochemical fea-

ures to bone development and pathologies, 219 less is known about their

nfluence on immune cells within bone tumors. Understanding these in-

uences and the underlying mechanisms will aid the development of

ew therapeutic approaches to combat bone-related cancers. 

Tumor cells exploit and reconfigure bone-immune communications

o facilitate their development. Consequently, the emergence of bone

umors disturbs the equilibrium between bone destruction and forma-

ion, resulting in osteoblastic, osteolytic, or mixed lesions, depending

n the type of cancer. For instance, prostate bone metastases and os-

eosarcomas usually cause osteoblastic lesions, whereas bone metas-

ases from breast cancer and multiple myeloma tend to be osteolytic.

he determinants of these distinct bone phenotypes are not fully un-

erstood but likely involve both the genetic trait of the cancer cells

nd the host’s biological environment. For example, wild-type MDA-MB-

31 breast cancer cells typically form osteolytic bone metastases; how-

ver, when engineered to overexpress PDGF-BB, they produce mixed

one lesions. 220 Likewise, ER+ MCF-7 breast cancer cells can generate

steoblastic metastases in the absence of estrogen supplementation, 220 

hich is a stark contrast to their well-known osteolytic behavior when

strogen is present, demonstrating how internal and external factors in-

uence the nature of bone lesions. 

The discrepancy in bone tumor histology prompts questions into how

iverse bone phenotypes correlate with specific immune landscapes, and

he contribution of the immune system in the shift of these bone pheno-

ypes. Studies have demonstrated that specific cancer cell phenotypes

an selectively attract neutrophils or macrophages, forming distinct im-

une compartments that influence treatment outcomes. 221 This sug-

ests that the genetic trait of tumor cells may dictate a specific immune

cotype. Moreover, the host’s genetic background plays a role in bone

umor progression via the immune system. For example, a recent study

as shown that a specific GRM4 polymorphism drives the development

f osteosarcomas predominantly through myeloid cells, rather than di-

ectly through tumor cells. 207 These insights support a co-evolutionary

odel of cancer cells and their surrounding microenvironments in tu-

or progression. Unlocking the spatial-temporal dynamics of bone tu-

ors and harnessing the underlying mechanisms for better therapies

ecessitates the use of advanced technologies, such as single-cell omics,

longside clinically relevant models. 

The clinical treatment of bone-related cancers often yields disap-

ointing results, partly due to the bone marrow’s susceptibility to con-

entional anti-tumor therapies. Exploiting immunoregulatory mecha-

isms within standard treatment modalities could expand the therapeu-

ic landscape in these patients. The unique and evolving bone microenvi-

onment necessitates tailored approaches that can effectively leverage

he immune system to manage bone tumors. Preclinical models have

emonstrated the synergistic effects of combining immunotherapies

ith specific bone-targeted treatments. For example, immune check-

oint blockade has shown favorable results in some bone cancer pa-

ients when used alongside with Denosumab. 178 Additionally, novel ap-
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roaches targeting the bone stromal compartment, rather than immune

ells, are being actively pursued for other bone-related diseases. 222 In-

estigating the impact of these approaches on bone tumor immune cells

ill likely inform the prediction of patient responses, identifying those

ho may benefit from combination therapies and ultimately refining

he clinical management. 

In summary, understanding the intricate interactions between tumor

ells, immune cells, and bone cells enables the development of more

ffective treatments that not only inhibit tumor growth but also pre-

ent metastasis and recurrence. Insights into the immunosuppressive

echanisms within the bone marrow will guide the creation of novel

mmunotherapies designed to overcome bone-specific barriers, thereby

mproving overall response and patient survival. 
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