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The mapping between biological genotypes and phenotypes is central to the

study of biological evolution. Here, we introduce a rich, intuitive and bio-

logically realistic genotype–phenotype (GP) map that serves as a model of

self-assembling biological structures, such as protein complexes, and remains

computationally and analytically tractable. Our GP map arises naturally from

the self-assembly of polyomino structures on a two-dimensional lattice and

exhibits a number of properties: redundancy (genotypes vastly outnumber

phenotypes), phenotype bias (genotypic redundancy varies greatly between phe-

notypes), genotype component disconnectivity (phenotypes consist of disconnected

mutational networks) and shape space covering (most phenotypes can be reached

in a small number of mutations). We also show that the mutational robustness of

phenotypes scales very roughly logarithmically with phenotype redundancy

and is positively correlated with phenotypic evolvability. Although our GP

map describes the assembly of disconnected objects, it shares many properties

with other popular GP maps for connected units, such as models for RNA

secondary structure or the hydrophobic-polar (HP) lattice model for protein

tertiary structure. The remarkable fact that these important properties similarly

emerge from such different models suggests the possibility that universal

features underlie a much wider class of biologically realistic GP maps.
1. Introduction
Evolution is one of the most fundamental principles in biology. While organis-

mal genotypes are becoming accessible owing to rapid advances in sequencing

technology, further understanding of the complicated mapping from sequence

to phenotype is necessary for a richer understanding of evolutionary dynamics

[1–4]. While the terms genotype and phenotype can be flexibly assigned in a

biological system, genotypes are generally defined as the genetic material

upon which mutations act and phenotypes capture the properties of the organ-

ism on which selection can differentiate. As such, the mapping from genotype

to phenotype—the GP map—links mutations to potentially selectable variation

and is therefore of critical importance in understanding evolutionary systems.

GP maps also provide a basis for understanding important biological concepts

such as mutational robustness and evolvability, which may profoundly affect

evolutionary dynamics, and help determine the fundamental topologies of

the landscapes upon which evolutionary processes occur [5].

In general, it is intractable to directly model the details of even small parts of a

whole organismal GP map, owing to both the very large numbers of genotypes,

and a lack of knowledge of all possible phenotypes. Advances have been made

in recent years, however, with the use of simplified models. Three particular sys-

tems have been modelled with notable success. Firstly, genetic regulatory

networks have been approximated using a variety of abstract models, including

Boolean networks [6,7]. Despite their simplicity, Boolean networks have demon-

strated a remarkable ability to produce biologically realistic results. For example,
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they have been shown to reproduce key aspects of the yeast cell

cycle [7]. Secondly, RNA secondary structure can be routinely

and accurately predicted via a host of different methods [8], as

a result of which it has become one of the best-known GP maps

[4,9], particularly for the study of evolutionary dynamics

[9,10]. Finally, the complex problem of a protein folding into

a well-defined tertiary structure has been investigated using

various models including the highly simplified HP lattice

model, where folds are represented as self-avoiding walks on

a lattice, and the full sequence is reduced to binary alphabet

(H stands for hydrophobic and P for polar amino acids) [11].

Despite its heavily coarse-grained nature, this model has pro-

duced important biological insights [12] and has been shown

to accurately model known features of protein tertiary structure

[13]. While these models have been successful for specific

biological examples, another very important advantage of

their tractability is the potential for extracting more general

underlying principles of GP maps, thus increasing our

understanding of how evolution shapes the natural world [2,4].

In this paper, we extend this family of coarse-grained

models for biological structure, exploring a very recently intro-

duced model for tile self-assembly [14,15] which can be viewed

as a highly coarse-grained GP map for protein quaternary struc-

ture (protein complexes). Understanding the formation of

protein complexes is important as demonstrated by the fact

that most proteins form complexes in the cell (around 80% in

yeast [16]) and the function of these complexes is often strongly

linked to their physical form. Protein complexes are formed by

the interaction of multiple individual protein chains to form

larger structures. The interaction between two chains is predo-

minantly mediated by hydrophobic forces acting to pack

together non-polar amino acids to provide fewer energetically

unfavourable interactions with water [17]. Invaluable resources

for the study of protein complexes are the Protein Data Bank,

providing a database containing experimentally known protein

quaternary structures [18], and the three-dimensional complex

database [16] categorizing PDB structures with a graph rep-

resentation of the interactions between different subunits and

a characterization of the symmetry in a complex.

The relationship between the topology of a protein com-

plex and the individual amino acids that make up its protein

chains is highly complex owing to the multiple functionalities

encoded in the protein sequence. For example, correct tertiary

structure, folding pathways and other inter-protein inter-

actions are all potential requirements for a single protein

chain. Given these complexities, a direct and complete GP

map of protein quaternary structure is intractable as including

all required functionality would be unfeasible. Instead, in the

spirit of the highly simplified HP model for protein tertiary

structure, we represent the proteins as square tiles on a lattice

[14,15]. Interactions between tiles model the protein–protein

interactions that lead to self-assembly. In proteins, these

patches can be made up of a number of different amino

acids; therefore, our model provides a coarse-grained represen-

tation of the key interactions between proteins. In the model, a

genotype is a sequence of characters describing interactions

on the edges of the tiles, which, when combined with a self-

assembly process on a two-dimensional square lattice, leads

to the formation of phenotypes comprising different square

tile building blocks conjoined along interacting edges. These

square tile structures are known as polyominoes and thus,

we refer to the model as the Polyomino model and the resulting

GP map as the Polyomino GP map. They are closely related to a
wider class of lattice tiling models that have a long and impor-

tant history in mathematics and computer science (which we

discuss further in §2).

Despite these great simplifications, and in analogy with the

highly schematic HP model, RNA secondary structure models

and Boolean network models of GRNs, we expect the Polyomino

model to provide insight into the general structure of the full GP

map for the formation of protein complexes from folded proteins.

In fact, our earlier work [15] has already discussed the evolution-

ary dynamics of the Polyomino model, demonstrating that it

can be used to rationalize the preference of dihedral over cyclic

symmetries in homomeric protein tetramers [19,20].

In figure 1, we compare coarse-grained representations

for RNA secondary structure, protein tertiary structure and

protein complexes. On the left-hand side, the biological

representation is shown and on the right, a given model rep-

resentation. Through this figure, we wish to highlight

two points. Firstly, that each of the model systems is a dra-

matically simplified version of the corresponding biological

system and that the Polyomino model is of a similar order of

coarse-graining to previous models. And secondly, that the

Polyomino model can provide a concise representation of real

protein complexes by capturing features such as the symmetry

of the subunit arrangements (C4 in this case).

In contrast to RNA secondary structure or protein tertiary

structure, where structure forms through the folding of

a connected string of individual entities (nucleotides or

amino acids), protein complexes are built by joining separate

individual entities (protein chains). Furthermore, while for

string-like self-assembly the final structure size is constrained,

proteins can form unbounded structures that can be ordered

or disordered. In our work here, we focus on the subset of

deterministic, finite-sized structures to model protein qua-

ternary structure. But, in principle, the Polyomino model

can also capture the more general phenomenology of

unbounded and non-deterministic assembly [14,15].

As an example of the link between protein quaternary

structure and the structures supported by our model, in

figure 2 (top) we show the haemoglobin protein complex (Hb

A, [25]) and the mutant that causes sickle cell anaemia (Hb S,

[26]), alongside a polyomino representation of the wild-type

and mutant phenotype (figure 2, bottom). In both cases, we

show that a single mutation to the respective wild-types results

in the production of extended unbound structures: Hb S

forms long fibre aggregates, while the polyomino case forms

unbound tiling of the plane (further details in figure). While

the exact geometrical results in this analogy are different, the

qualitative behaviour that results from a single patch changing

is the same, highlighting the utility of our model as a GP map

modelling protein quaternary structure. In this paper, we

do not study extended structures, but rather structures that

reversibly self-assemble to the same finite structure each time.

Finally, tiling models have been used to study synthetic

self-assembling systems [28], and a better understanding of

the design space of polyominoes may aid in the design

of these artificial systems.

This article proceeds as follows. We first describe in detail

the Polyomino model and some of its fundamental properties

(§2). We then analyse a wide range of properties of the resul-

tant GP map and compare these properties to those

described, for example in [29], for the HP model and the

RNA secondary structure map. In particular, we show in

§3.1–3.3 that the mapping from sequences to phenotypes
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Figure 1. A comparison of how three different biological structures may be represented in a corresponding model system. Row (a) compares a version of the iconic
hammerhead ribozyme (PDB reference 1RMN [21]) with its secondary structure representation (showing the bonding pattern of nucleotides) produced by the Vienna
RNA package [22] shown alongside. The orange, blue and green colours in each part represent the bonded stems in the structure. Row (b) depicts a cartoon of the
tertiary structure of a single chain of length 21 (chain A) from an insulin protein (PDB reference 1APH [23]) which is compared to a schematic HP lattice protein
interpretation on the right. The orange and blue colours are used to demonstrate the structural feature of a-helices in the pictures. Finally in row (c), we show a
protein complex (PDB reference 1BKD [24]) alongside a polyomino representation. The orange and blue colours represent the different subunits involved in the
protein. The ability of the polyomino representation to capture the C4 symmetry of 1BKD is apparent from the rotation of the labelling on the subunits.
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for all three models share the following general properties:

redundancy (there are many more genotypes than phenotypes)

leading to large neutral sets (the collection of all genotypes that

map to a given phenotype) and phenotype bias (some pheno-

types are associated with many more genotypes than

others). A more fine-grained analysis shows that the neutral

sets also exhibit component disconnectivity (not all genomes in

a neutral set can be linked with single mutational steps). We

proceed with a more detailed comparison of the Polyomino

and RNA systems, through considering shape space covering
(most phenotypes can be reached from any other phenotype

with just a small number of mutations), before showing the

mean mutational robustness of a phenotype (the phenotypic
robustness) scales very roughly logarithmically with the redun-

dancy of a phenotype, and finally that it is positively correlated

with the evolvability (defined here as the number of other pheno-

types potentially accessible from a phenotype), as postulated to

hold more generally by Wagner [30]. Finally, in §4 we discuss

some implications of the remarkable agreement we find

between the structure of our Polyomino GP map and those of

the better studied RNA secondary structure and HP maps.
2. The Polyomino self-assembly model and its
associated genotype – phenotype map

The process of tiling and its connection with computer science

was first developed by Wang [31]. Since then, tiling models
have been shown to be capable of computation and, in particu-

lar, Turing-universal computation under the condition that

cooperative binding is allowed between tiles, demonstrat-

ing the ability of two-dimensional tiling systems to model

computational as well as structure-forming processes [32].

Rothemund & Winfree [33] studied the program size complex-

ity necessary to build a structure of a given size. More general

considerations of the complexity of tiled structures have since

been discussed in [34], with a more biological slant given by

Ahnert et al. [14] and applications to artificial biological

systems discussed by Rothemund et al. [28].

Here, rather than focusing on these tiles as potential comput-

ing devices or as models for complexity, we explore how they can

be used to understand the GP map of a specific biological system,

namely the self-assembly of finite-sized protein structures.

Nevertheless, we are aware that some of our conclusions may

have applications for a wider class of systems.

We now proceed with a more detailed description of the

Polyomino model as a GP map.

2.1. Summary of the Polyomino genotype –
phenotype map

The genotype is modelled as a character string representation

of a set of Nt tiles which make up an assembly kit. The edges

of each tile in the assembly kit are given a number which rep-

resents the interface type. Interactions between interface types

are defined via an interface interaction matrix Aij. In our work
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Figure 2. The haemoglobin phenotype polymorphism with a representation in a Polyomino GP map. A Polyomino genotype (bottom left) is constructed to mimic
the transition from the haemoglobin wild-type (top left, Hb A, PDB: IGZX [25]) to the sickle cell mutant (top right, Hb S, PDB: 2HBS [26]). In Hb S, residue 6 of the
b chain is mutated from glutamic acid (E) to valine (V), shown in blue. The mutation leads to a hydrophobic patch being created at this position which allows
binding to a pocket between residues 85 and 88 (shaded orange) on the second b chain. A single binding is depicted in the middle stage of the top right. The
binding allows for large-scale polymerization of Hb S in a double strand form, which further aggregates to form extended fibres [27] (a cartoon depiction of this in
the top right). In the polyomino example (bottom), we assume that odd-even numbered interfaces may interact ( full details of the model are explained in §2).
In the bottom right, a single change (from 0 to a 6 at the third residue of the b tile) has occurred resulting in a new interaction with the second position also on
the b tile (5$ 6). The new interaction leads the self-assembly process to produce an unbound aggregate, tiling the two-dimensional plane. This provides an
example of the potential for the Polyomino GP map to capture basic features of protein assembly, including extended structures.
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here, we only consider one such interaction matrix type, with a

total of c interface types. There are no self-interacting interface

types and interface types interact in unique pairs (1$ 2, 3$ 4,

. . . ), with the only fully neutral types being 0 and c 2 1. Defin-

ing interface interactions in this way allows the single

parameter c to control the number of potential unique bond

types. As such, the two parameters that describe a given para-

metrization of the Polyomino GP map are the tile number Nt

and the total number of interface types c, allowing a particular

Polyomino GP map to be labelled as SNt, c.

Below we discuss the genotype, phenotype and map used

in the Polyomino GP map.
2.2. Genotype
The genotype for the set of building blocks in the assembly kit

is written as a character string of length L in base K. The base

we use in this paper is the total number of interface types c
used in a given GP map. This allows each base to mutate to

any other base at each site. The procedure of converting a

genotype string into the assembly kit is part of the map.
2.3. Phenotype
In the context of the self-assembly mapping, there are several

ways of classifying a polyomino structure. These may include
criteria based on its overall shape and the individual tile

types making up the final polyomino structure, as well as

individual tile orientations. These different possibilities are

discussed in [15].

Here, we will classify the phenotype according to the

overall shape of the polyomino independent of origin trans-

lation and C4 (908) rotations. Note that chiral counterparts

of polyominoes represent distinct phenotypes.
2.4. Map
The map has two stages: conversion of the genotype into the

assembly kit, followed by assembly of a polyomino from

an assembly process involving the assembly kit and the inter-

face interaction matrix. A diagram representing this process is

shown in figure 3.
2.4.1. Genotype to assembly kit
The characters of the genotype are read from left to right

along the string. Characters are assigned to the next blank

edge of a square tile in the assembly kit. The edges are

taken in clockwise order (from the top side) with all edges

being written before moving on to a new block. The total

number of tiles, in terms of the genotype string length, can

be expressed as Nt¼ L/4.
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Figure 3. The Polyomino GP map. (a) The translation from an example genotype to phenotype is depicted, with the intermediate conversion into an assembly kit
shown. In the genotype, the characters are underlined with the colour of the block they are assigned to. The interface interaction matrix is not shown explicitly, but
throughout our work we assume the convention of interface types interacting in pairs (1$ 2, 3$ 4 . . . ), with 0 and c 2 1 being neutral. The interaction
matrix together with the assembly kit are passed to the assembly algorithm, which is used to produce the phenotype. (b) An example of the assembly process is
shown, which proceeds in discrete time steps. The first tile in the assembly kit is used to seed the assembly. Further time steps follow, with the identification of
available sites (depicted in light green and blue in the second picture from left), followed by the random choice of an available site and placement of the corre-
sponding tile (a blue tile is placed on the blue available site in this example). Assembly is terminated when there are either no more available sites (as above), or if
the structure is larger than Dmax (number of blocks) in width or height after which we assume the structure will no longer terminate but grow indefinitely.
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2.4.2. Assembly kit to phenotype
The assembly of the two-dimensional polyomino takes place

on a square lattice where individual tiles from the assembly

kit are placed. The interface types on the edges of tiles can

form an attractive interaction as determined by the binary

interface interaction matrix Aij, with 1 denoting attraction

and 0 neutrality. A bond may form between tiles if two adja-

cent (interacting) edges have interface types which attract, as

defined by the interaction matrix.

The assembly process is initialized by placing (seeding) a

single tile on the lattice. We will consider only GP maps, in

which the seed tile corresponds to the first tile described

in the genotype. A different protocol where any tile may be

used to seed the assembly is also possible and does not sig-

nificantly affect the results presented here (see appendix A).

The assembly then proceeds as follows:

(1) Available sites on the lattice are identified. These are places

on the lattice where a tile may be placed in a particular

orientation such that it will form a bond to an adjacent

tile that has already been placed. In the assembly algor-

ithm, a list is kept of the position, tile type and

orientation for each possible tile placement. A potentially

infinite number of tiles, in equal proportions, are available.

(2) A random available site on the lattice is chosen.

(3) The chosen site is filled with the associated tile and with

the corresponding orientation.

These steps are repeated until either:

— There are no available sites for bonding.

— The structure grows beyond a certain width or height

Dmax, which is taken as a proxy for unbounded assembly,

so that the resulting phenotype is described as unbound.
We set Dmax ¼ 16 here, but our results are not sensitive

to this cut-off as, for the polyomino systems we study

here, there are no bounded structures larger than this.

At this point, the assembly process is terminated and the

structure produced is recorded. No re-seeding takes place as

we only consider the assembly of a single connected structure.

To test whether the structure is deterministic, the assembly pro-

cess is repeated k times, with each C4 rotation of the final

structure checked against the recorded structure. If there are

any differences between any of the k assemblies, the phenotype

is classified as non-deterministic. Phenotypes that are classified

as unbound or non-deterministic structures are represented

by a single phenotype, which we refer to as the undetermined

(UND) phenotype and is assumed not to be biologically rel-

evant in this context. A more detailed discussion of the

classification of polyomino structures is given in [15].

2.5. Methods for RNA and hydrophobic-polar lattice
protein models

RNA secondary structure was modelled with the Vienna pack-

age [22] with the default parameters. Single isolated base pairs

were permitted (see [35] for further discussion of this choice).

The HP lattice model data were taken from the enumeration

performed by Irbäck & Troein [36] over the set of non-compact

folds for L ¼ 25 and reproduced results discussed in their

original work as well as that of Ferrada & Wagner [29].
3. Properties of the Polyomino genotype –
phenotype map

In this section, we analyse the Polyomino GP map by making

measurements of redundancy, phenotype bias and component



Table 1. Redundancy, phenotype bias and components in Polyomino, RNA
and HP GP maps. Comparing the number of phenotypes (NP) to the number
of genotypes (NG) for each GP map highlights large-scale redundancy present.
Phenotype bias is demonstrated in each map with the measure of the
fraction of phenotypes that covers 95% of the genotypes (Ncov is the number
of phenotypes that covers the 95% of genotypes). In all cases the fraction of
phenotypes is significantly smaller than the fraction of genotypes being
covered, indicating the presence of a strong phenotype bias. The final column
is the total number of genotype components (NC) in each GP map. In all
cases (non-computable values left out), the number of components is larger
than the number of phenotypes, indicating phenotypes tend to be spread
out over multiple disconnected components. RNA data for L ¼ 12 were
computed from the Vienna package [22] and taken from [41] for L ¼ 15,
20. The value of Np for the Polyomino S4,16 GP map is approximate as it is
found from large-scale sampling of the GP map over multiple runs of the
algorithm presented in [42]. All other Polyomino results were found by
exhaustive enumeration. The HP results were calculated from the data made
available by Irbäck & Troein [36]. Non-deterministic phenotypes and the
trivial structure in RNA are excluded from the statistics.

GP map NG NP
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Figure 4. Phenotype bias in GP maps. The plot displays three Polyomino GP
maps with increasing tile numbers S2,8 (green), S3,8 (blue) and S4,8 (red)
alongside the RNA L ¼ 12 GP map (yellow). Note the log – log scale. The
frequency of a given phenotype (structure) is plotted against the rank of
its frequency within the map. In all three Polyomino maps, we see an
approximately linear trend between log-frequency and log-rank. The error
bars for the Polyomino S4,16 map are the associated standard error on the
mean for the estimates of frequencies calculated using the estimation
algorithm for large maps developed by Jörg et al. [42].
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numbers, before moving on to analyse the properties of

shape space covering, robustness and the relationship bet-

ween robustness and evolvability. For each measurement,

comparisons are made with the RNA secondary structure

model and, for the first three of these properties, a HP lattice

protein model.
3.1. Redundancy
It is now well established that many different sequences can

generate similar protein or RNA phenotypes [37]. This large-

scale redundancy is the basis, for example, of the molecular

clock hypothesis, which is widely used for inferring phylo-

genetic relationships [38]. It is therefore not surprising that

such redundancy (also known in the literature on GP maps

as degeneracy/designability) has been observed in model

RNA [9], HP lattice protein [13] and genetic regulatory [39]

GP maps, as well as in more general model systems such as sig-

nalling networks [40]. As such, redundancy is expected to be a

typical feature of GP maps.

In table 1, we show the number of genotypes (NG) and

phenotypes (NP) for different polyomino, RNA and HP GP
maps. As expected, all three models show significant

redundancy. The Polyomino model displays large-scale

redundancy shown by the vastly fewer phenotypes in com-

parison to genotypes for each of the GP maps presented.

As can be seen in table 1, this is of a similar order to the

RNA GP maps. For example, for RNA L ¼ 12 and Polyomino

S2,8 (which both have 1.7 � 107 genotypes), there are 57

phenotypes for the former and 13 for the latter.

3.2. Phenotype bias
On top of the measure of redundancy in GP maps, it is also poss-

ible to consider phenotype bias, the idea that some phenotypes are

much more redundant than others. Examples of bias can again

be seen in RNA [9,35] and the HP model [12,13,29]. We demon-

strate bias in the GP maps in two ways. In table 1, we present the

fraction of phenotypes (Ncov/NP, where Ncov is the number of

phenotypes) that cover 95% of the genotype space. This statistic

shows that in all three GP maps (RNA, HP and Polyomino),

of the deterministic/non-trivial space, a smaller fraction of

phenotypes is required to cover a given amount of the genotype

space, indicating a bias in the number of genotypes assigned to

each phenotype. In figure 4, we plot the frequency (fractional

coverage of genotype space) of each phenotype against its fre-

quency rank in three different Polyomino GP maps, as well as

for the RNA L ¼ 12 GP map. In each of the Polyomino GP

maps, we see an approximately linear trend between log-

frequency and log-rank, although there are not enough data

for this to be considered a power law. The data from the RNA

GP map also show a distinct bias, although the relationship is

more complicated than the more apparent linear form seen in

the Polyomino GP maps. Taken together these statistics show

a significant amount of phenotype bias in the Polyomino GP

map along with the RNA and HP GP maps.

3.3. Component disconnectivity
Further to the consideration of redundancy and bias of pheno-

types in genotype space, we can ask how many components a
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mutations. Error bars are the standard error on the mean. The expec-
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given phenotype forms in a particular GP map. In graph

theory, a component is a set of nodes that are connected, and

thus when applied to genotype spaces, is a set of connected

genotypes with the same phenotype. Here, we consider only

point mutations. In RNA, simple biophysical considerations

show that two point mutations are needed to turn a purine–

pyramidine bond into a pyramidine–purine bond. This neutral

reciprocal sign epistasis leads to many individual components

[43,44]. We expect similar behaviour in polyominoes, where

there may be several ways of encoding a given phenotype

that are not connected through neutral point mutations

owing to there being multiple interface types.

In the final column of table 1, we show the number of gen-

otype components (NC) for four different GP maps: Polyomino

S2,8, RNA L ¼ 12, RNA L ¼ 15 and HP L ¼ 25 (Polyomino S3,8

and S4,16 and RNA L ¼ 20 GP maps were unobtainable owing

to computational expense). In all four, we see a substantially

larger number of components than phenotypes, indicating

that phenotypes tend to form disconnected components.

Although many components may be small, it is still the case

that whole-phenotype properties need to be considered

carefully in the context of evolutionary dynamics, as it is not

typically possible to access every genotype of a given

phenotype through neutral point mutations.

ted asymptotic value of unity is used for the Polyomino S3,8 GP map for
n . 4 owing to computational unfeasibility.
3.4. Shape space covering
GP maps typically exist in high-dimensional genotype

(sequence) spaces, a property with counterintuitive conse-

quences and a topic of current biological research for GP

maps [45,46]. For example, for an alphabet of K letters (e.g.

K ¼ 4 for RNA or K ¼ 20 for proteins) the number of geno-

types scales exponentially as KL, while the number of

mutations needed to reach any two genotypes is at most L,

and so scales linearly. In practice, considerably fewer than L
mutations are needed to connect any two phenotypes. This

property has been studied most extensively for RNA GP

maps, and in that context Schuster et al. [9], borrowed the

term shape space covering from its original use in immu-

nology [47]. The HP model has also been considered with

respect to shape space covering [13,29] with seemingly less

rapid space covering.

We explore shape space covering in a similar way to

Ferrada & Wagner [29], who compared RNA and HP

models, building on work of earlier investigators. Shape

space covering is measured by counting the average fraction

of phenotypes found when applying a given number of inde-

pendent mutations (the radius, n) to a genotype in the GP

map. This process involves picking a sample of genotypes

and then measuring the number of phenotypes found in

the ball of genotypes n-mutations around each of them.

Ferrada & Wagner [29] found that in both the RNA second-

ary structure and HP lattice protein GP maps, the fraction

of phenotypes discovered increases in a roughly sigmoidal

fashion with the increasing number of independent

mutations applied to the source genotype and at a greater

rate for RNA than the HP GP map.

In our work, we measure shape space covering in a simi-

lar manner: we picked a sample of 1000 genotypes uniformly

across all phenotypes and measured the phenotype of geno-

types at each given radius (n). In figure 5, we plot the average

fraction of phenotypes found for the Polyomino S2,8, S3,8 and

RNA L ¼ 12 GP maps. The general behaviour of both the
Polyomino and RNA GP maps is similar. Phenotypes are

almost completely covered within half the sequence length,

and at a slightly higher rate in the Polyomino GP maps.

This provides clear evidence to suggest that the Polyomino

GP map has shape space covering—most phenotypes can

be found within a ball containing many fewer genotypes

than the entire space.

Ferrada & Wagner [29] found that shape space covering

was dependent on the exact group of phenotypes under con-

sideration—exploring around genotype networks of the most

frequent phenotypes, resulted in a more rapid shape space cov-

ering than from random genotypes. In appendix A, we provide

additional discussion of phenotype parametrizations in the

Polyomino GP map. From the general lack of variation in Poly-

omino GP map properties such as redundancy and phenotype

bias discussed there, we would expect shape space covering to

exhibit similar behaviour for other conceivable deterministic,

bound phenotype parametrizations.
3.5. Robustness
Biological systems need to be robust and consistently produce

the same phenotype in response to environmental pertur-

bations or to genetic mutations [2]. Here, we consider only

the phenotypic effects of mutations to the genotype. Muta-

tional robustness describes the invariance of a phenotype as

a result of mutations to the genotype. We focus here on

single point mutations such that the fraction of 1-mutants

that have the same phenotype as the original genotype

under examination is defined as the genotypic robustness. For

a genotype g, with phenotype p, the genotype robustness

can thus be expressed as follows:

rg ¼
n p,g

(K � 1)L
(3:1)
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where rg is the genotypic robustness of g, np,g is the

number of 1-mutant neighbours of g with phenotype p, K
is the base and L is the sequence length (there are a total

of (K 2 1)L 1-mutants for any genotype). The robustness

of the phenotype can then be considered as the average

of this quantity over all genotypes with phenotype p,

resulting in

rp ¼
1

jPj
X

g[P
rg (3:2)

where rp is the phenotypic robustness and P is the set of

genotypes with phenotype p.

In figure 6, we plot the phenotypic robustness rp against

the frequency of each phenotype fp for the two Polyomino GP

maps S2,8 and S3,8 and the RNA L ¼ 12 GP map. Corroborat-

ing previous results [41,43], it can be seen that the RNA

phenotypic robustness scales logarithmically with phenotype

frequency—the exact coefficient of scaling being pheno-

type dependent [43]. This linear trend with log-frequency is

very approximate for the Polyomino GP maps, although the

robustness can still be seen to strongly scale with phenotype

frequency. Both Polyomino GP maps exhibit a slightly smaller

phenotypic robustness at a given frequency when compared

with the RNA GP map. Nonetheless, despite these two obser-

vations, the clear indication here is that Polyomino GP maps

have a phenotype robustness that scales similar to phenotypes

in the RNA GP map.

3.6. Robustness versus evolvability
Robustness and evolvability are two evolutionary properties

that have received much recent attention in the literature

[2,30,48–51]. As discussed in §3.5, robustness is the ability

of an organism to maintain its phenotype if its genotype

is mutated. Evolvability on the other hand is considered

as the capacity for producing phenotypic variation [1,30].

One might expect that for an individual to be robust it
would have to compromise its ability to produce variation

(to be evolvable). Using the RNA GP map, Wagner [30]

demonstrated that this expected trade-off exists for individ-

ual genotypes, but that the two properties are in fact

positively correlated at the level of phenotypes. A possible

geometric explanation is that phenotypes can become

more mutationally robust as a result of increased redun-

dancy (more neutral neighbours). This in turn leads to

connected components spreading out further across geno-

type space and possessing a greater ‘surface’, thus

allowing a greater number of phenotypes to be accessible

through neutral mutations.

Wagner’s argument is really about the static structure

of genotype space and does not account for any dynamical

evolutionary effects. Other authors have considered further

static properties, including a different notion of phenotypic

evolvability (diversity evolvability) [52] defined as being the

probability that two non-neutral mutations lead to different

phenotypes. Such a definition of evolvability was found not

to be correlated with robustness in the RNA GP map. A dyna-

mical study by Draghi et al. [53] demonstrated that evolvability

could depend non-monotonically on robustness. In our work

here, we simply consider whether the static properties of the

Polyomino GP map behave in a similar manner to those of

the RNA GP map as demonstrated by Wagner [30] without

here commenting on the wider debate of how robustness

and evolvability relate.

In the left-hand plots of figure 7, we show fractional evol-

vability versus fractional robustness, for genotypes and

phenotypes in both the RNA L ¼ 12 and Polyomino S3,8 GP

maps. The genotype plot is a binned version of 100 randomly

sampled genotypes for each phenotype (apart from the

non-deterministic/trivial structure) in each GP map. The frac-

tion of all phenotypes that can be produced in any 1-mutation

to each sampled genotype (genotypic evolvability, eg) is

plotted against the fraction of those 1-mutations that produce

the same phenotype as that of the genotype being tested

(genotypic robustness, equation (3.1)). For both polyominoes

and RNA, we see a significant negative correlation. This

expected negative correlation simply represents the trade-off

between genotypic evolvability and robustness at the level

of the individual genotype.

In the right-hand plots of figure 7, we plot phenotypic

evolvability against phenotypic robustness. The phenotypic

evolvability ep of phenotype p is defined here as the fraction

of all phenotypes that can be reached in a single mutation

from any genotype with phenotype p. We also refer to this

as the potential evolvability because it represents the potential

number of phenotypes that could be reached. Whether they

can be reached depends, of course, on details of the evol-

utionary dynamics. For example, if only single mutations

are available then ep should really be defined with respect

to the relevant component [44]. Phenotypic robustness is

defined in the same way as in §3.5, as the average genotypic

robustness over all genotypes with phenotype p (equation

(3.1)). In the plots, we see strong positive correlations for

both the RNA L ¼ 12 and the Polyomino S3,8 GP maps, as

expected. In other words, for both maps, phenotypes with

a greater redundancy can be generated by a larger number

of genotypes and are therefore, on average, more likely to

be mutationally robust. Furthermore, such phenotypes are

also likely to have a larger set of genotypes, and therefore

a greater diversity of other phenotypes potentially
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Figure 7. Robustness and evolvability in the RNA and Polyomino GP map. In columns (a,c), we show a significant negative correlation between genotypic robustness
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accessible from this set. Thus, phenotypic robustness and

potential evolvability are positively correlated.
4. Discussion
In this paper, we have explored the properties of a GP map

for biological self-assembly of the kind exhibited by protein

quaternary structure based on a recently introduced Polyo-

mino model for tile assembly [14,15]. We compared its

properties to models of RNA secondary structure and the

HP model for protein tertiary structure. As is the case for

these two well-studied GP maps, we argue that even

though our Polyomino model is highly schematic and thus

misses many details of protein quaternary structure, it may

nevertheless provide important biological insight into the

structure of the design space for protein complexes.

Despite the great complexity in potential phenotypes, the

polyomino model remains tractable as demonstrated in

this paper by the ability to perform a wide variety of useful

measurements on the GP map. Our main results are: firstly,

the Polyomino model exhibits large-scale redundancy, a

strong phenotype bias and the presence of disconnected gen-

otype components across several parametrizations of the

Polyomino GP map (§3.1–3.3). Secondly, that shape space

may be covered in only a fraction of mutations—that is, all

phenotypes are a significantly smaller number of mutations

away from each other than the total sequence length
(§3.4). Thirdly, phenotypic robustness scales very roughly

with the logarithm of the phenotype frequency (§3.5).

And finally, genotypic robustness and genotypic evolva-

bility are negatively correlated, while phenotypic robustness

and phenotypic (potential) evolvability are positively

correlated (§3.6).

The Polyomino model describes the self-assembly of dis-

connected units (proteins) into finite-sized structures

(protein clusters) that can vary in size. By contrast, for RNA

secondary structure and the HP model for protein tertiary

structure, strings of connected units (nucleotides or amino

acids) assemble into shapes of a fixed size. Given the substan-

tially different class of the phenotypes in our model, it is

remarkable that the measured properties of these GP maps

turn out to be so similar. This begs the question of whether

what we observe is in fact a more general property of self-

assembling systems, or even broader, whether a wider class

of GP maps will share these properties. This question can be

sharpened by looking at the different properties separately.

Redundancy should be widely shared across GP maps. Pheno-

type bias has been observed in models for gene-regulatory

networks [54] and developmental networks [55]. Could it be

a more general property of GP maps? Disconnected com-

ponents have also been observed in a Boolean threshold

model for gene regulation [56]. To the best of our knowledge,

shape space covering has not been studied for other GP maps,

but general considerations based on the high-dimensionality

of genetic space suggest that something like this may be
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more widely relevant [57]. Finally, the correlation between

phenotypic robustness rp and potential evolvability ep is

deeply connected to the geometry of neutral sets and so is

likely to be a much more general property of GP maps. How

this correlation plays out for realistic evolutionary dynamics

is, of course, a much more complicated question.

We are hopeful that more complete answers will be

derived through further analysis and comparisons of different

model GP maps in a similar manner to the work here or, for

example, in [29] or [2]. An important related question is

whether model GP maps for parts of systems can be combined

to achieve a more complete understanding of the evolution of

phenotypic traits in the full organismal GP maps [37].

The Polyomino model can easily be adapted to study

unbounded assembly or the assembly of synthetically pro-

duced objects like DNA tiles or patchy colloids [28]. Thus,

the perspective gained from viewing polyominoes as a GP

map may also shed light on the artificial design process for

these systems.

Finally, although we introduce the Polyomino model as a

coarse-grained model for protein quaternary structure, it is

clear that the model is not capable of modelling particular

intricacies of some individual proteins. For example, F1-

ATPase is a protein whose subunit structure could not be

accurately represented with a square tile model. We argue

that the Polyomino model nevertheless provides biological

insight into questions about the global nature of the GP

map that would not be computationally accessible using

more complex models with greater biological detail.
However, further work is needed to assess how well this

new GP map performs in this respect.
Appendix A. Methods: interface types, assembly
and phenotype
In this section, we discuss how variation in number of inter-

face types, phenotype definition and assembly process can

affect properties of the GP map produced. We performed

GP map analysis of S2,4, S2,6, S2,8, S02,8 (same as S2,8 except

the interface type 7 may interact with itself ), Sc
2,8 (chiral

counterparts are regarded as the same phenotype) and Sg
2,8

(any tile may seed the assembly process) and in figure 8

show how redundancy, phenotype bias and robustness vary.

A.1. Interface types
First, we discuss the impact of varying interface type num-

bers, c. As the number of interface types is increased (c ¼ 4,

6, 8), we see that the number of phenotypes (Np) increases

from 8 before saturating at 13 (S2,c�6). For the adjacent integer

interface interactions, we have defined for these GP maps, an

increase in Np before saturating for a certain value of c is

expected to be a general behaviour due to the following

rationale: there are 4Nt edges in the assembly kit and thus

for c � 4Nt, every edge may be given a unique interface,

resulting in no further new interactions being able to be intro-

duced to the assembly kit by further increasing c. In general,
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we expect Np to saturate for smaller values of c due to the

deterministic assembly criterion.

We also consider the effect of introducing a self-interact-

ing interface type (7$ 7) to the standard S2,8 GP map. In

figure 8, we see what nine more phenotypes are now pro-

duced, although the overall number of phenotypes remains

of the same order of magnitude.
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A.2. Phenotype definition
As discussed in §2, there are several ways of defining a poly-

omino phenotype and, as well as being biologically more or

less relevant, can possibly affect the GP map properties

discussed in this paper. The approach taken in our work

has focused on treating the self-assembly process in two

dimensions, leading to tiles with distinct chirality being

used in the assembly process, as well as distinct chirality

being applied to the overall phenotypes. In this section, we

discuss one particular alternative GP map where the chiral

counterparts of a given polyomino are treated as the same

phenotype with all other aspects of the GP map definition

remaining the same (Sc
Nt ,c).

In figure 8, we depict the effect on phenotype numbers in

the column Sc
2,8 with Np only reduced from 13 to 12 (a

reduction of Np by 7.14%) as there is only a single phenotype

with a distinct chiral counterpart. The change in Np becomes

more pronounced for larger systems—in Sc
3,8 a 30.41%

reduction and in Sc
4,16 43.03% reduction. We note that the

change in Np can at most be 50% when every phenotype

has a chiral counterpart, and owing to the symmetries of

the way assembly kits are constructed in the Polyomino GP

map, chiral counterparts would have precisely the same

frequencies, component numbers and robustness as each

other. With these considerations, we can see that chirality is

a property that will not dramatically affect any of the overall

GP map properties discussed here, but may be important

when considering particular biological situations.

In some GP maps, changes in phenotype definition can

have a more dramatic effect. For example, in the HP lattice

model, considering phenotypes only from the subset of maxi-

mally compact structures greatly affects the number of

potential phenotypes. For those of length L ¼ 25 the size of

the non-compact set (that may be produced by at least a

single sequence from the 225) is 107 336 [36], in comparison

to the compact set of 549 [58], a difference of several orders

of magnitude. The strong effect here is due to genotypes that

have multiple minimum energy structures in the non-compact

case being reduced to a unique structure in the compact case.

An analogous definition for the Polyomino GP maps

would be a phenotype reclassification that resulted in members

from the set of non-deterministic or unbound phenotypes

giving rise to large numbers of new meaningful phenotypes.

Such ideas are certainly conceivable—unbound behaviour may

be deterministic and thus may be categorized as individual

phenotypes in their own right by a description of a repeat-

ing unit in the structure. However, detailed categorization

of such formulations may be regarded as less biologically

relevant—most biological functions performed by protein

complexes rely on deterministic bound assemblies. However,

we note that the Polyomino GP map may be parametrized to

consider such cases, as shown in the haemoglobin example

in figure 2.
A.3. General tile seeding
A final variation of the GP map considered is the seeding of

the assembly process itself. In the SNt, c GP maps tested here,

it is always the first tile in the assembly kit which is used to

begin the assembly process. In figure 8, we demonstrate the

effect on Np, phenotype bias and robustness, in allowing

any randomly chosen tile to seed the assembly (general tile
seeding, first discussed by Ahnert et al. [14]). We denote this

assembly protocol as Sg
Nt ,c. As can be seen in figure 8, Sg

2,8

has Np¼ 11, in comparison to S2,8 with Np¼ 13. Sg
3,8 possesses

Np¼ 119 phenotypes in comparison to Np¼ 148 for S3,8. The

reduction in number of phenotypes is due to the extra infor-

mation required to ensure the deterministic assembly. While

the biological relevance of the single and general tile seeding

is open to discussion, the GP map properties can be seen to

be qualitatively similar.
Appendix B. Computational details for
Polyomino genotype – phenotype maps
Three main Polyomino GP maps are tested in this work: S2,8,

S3,8 and S4,16. In enumerating the GP maps, S2,8 and S3,8 were

approached exhaustively, while the statistics of S4,16 could

only be estimated through sampling because of the greater

number of genotypes.

For GP maps enumerated exhaustively, the enumeration

is performed in two steps: first the space is sampled ran-

domly with large values for k (repeat assemblies) and Dmax,

to check for the largest structures that may be produced

deterministically. As mentioned in §2, Dmax¼ 16 was

found to be sufficient for all GP maps studied here. With

regard to determinism checking, for low values of k some

genotypes will be mistakenly classified as deterministic,

while if they were assembled a greater number of times, a

different polyomino would eventually be produced. To

reduce the chance of error to essentially 0 (it can never be

fully 0 as the process is stochastic), in the S2,8 GP map we

used values of k ¼ 1000. For S3,8, computationally more

challenging owing to the much greater number of genotypes,

we were only able to set k ¼ 200 for the full enumeration,

although from sampling at k ¼ 5000, we found the exact

number of phenotypes, as well as finding the Dmax ¼ 16

value sufficient. Furthermore, from analyses of genotype

sampling for values of k . 200, we saw only rare misclassifi-

cation, leading to negligible error in this regard.

Owing to the much greater size of the S4,16 GP, this

could only be enumerated through a sampling approach

and we made use of the algorithm developed by Jörg et al.
[42]. We used smaller values of k ¼ 20 to aid the speed of

the algorithm, with any error due to misclassified determinis-

tic assembly being absorbed into the error predicted by the

algorithm, which is shown to be small in our work. The

algorithm of Jörg et al. [42] relies upon a distance measure

between phenotypes A and B. We constructed such a

measure between polyominoes based upon the number of

blocks that would need to be moved to produce B from A.

If there is a difference in sizes of A and B, the number of

blocks required to be added or removed is also included in

the distance. This simple measure allowed an effective

implementation of the algorithm.



12
References
rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140249
1. Alberch P. 1991 From genes to phenotype:
dynamical systems and evolvability. Genetica 84,
5 – 11. (doi:10.1007/BF00123979)

2. Wagner A. 2005 Robustness and evolvability in living
systems. Princeton, NJ: University Press Princeton.

3. Noble D. 2006 The music of life: biology beyond
genes. Oxford, UK: Oxford University Press.

4. Pigliucci M. 2010 Genotype – phenotype mapping
and the end of the ‘genes as blueprint’ metaphor.
Phil. Trans. R. Soc. B 365, 557 – 566. (doi:10.1098/
rstb.2009.0241)

5. Svensson E, Calsbeek R. 2012 The adaptive
landscape in evolutionary biology. Oxford, UK:
Oxford University Press.

6. Kauffman SA. 1969 Metabolic stability and
epigenesis in randomly constructed genetic nets.
J. Theor. Biol. 22, 437 – 467. (doi:10.1016/0022-
5193(69)90015-0)

7. Li F, Long T, Lu Y, Ouyang Q, Tang C. 2004 The yeast
cell-cycle network is robustly designed. Proc. Natl
Acad. Sci. USA 101, 4781 – 4786. (doi:10.1073/pnas.
0305937101)

8. Mathews DH, Moss WN, Turner DH. 2010 Folding
and finding RNA secondary structure. Cold Spring
Harb. Perspect. Biol. 2, a003665. (doi:10.1101/
cshperspect.a003665)

9. Schuster P, Fontana W, Stadler PF, Hofacker IL. 1994
From sequences to shapes and back: a case study in
RNA secondary structures. Proc. R. Soc. Lond. B 255,
279 – 284. (doi:10.1098/rspb.1994.0040)

10. Cowperthwaite MC, Meyers LA. 2007 How
mutational networks shape evolution: lessons from
RNA models. Annu. Rev. Ecol. Evol. Syst. 38,
203 – 230. (doi:10.1146/annurev.ecolsys.38.091206.
095507)

11. Dill KA. 1985 Theory for the folding and stability of
globular proteins. Biochemistry 240, 1501 – 1509.
(doi:10.1021/bi00327a032)

12. Li H, Helling R, Tang C, Wingreen N. 1996
Emergence of preferred structures in a simple model
of protein folding. Science 273, 666 – 669. (doi:10.
1126/science.273.5275.666)

13. Bornberg-Bauer E. 1997 How are model protein
structures distributed in sequence space? Biophys. J.
73, 2393 – 2403. (doi:10.1016/S0006-3495(97)
78268-7)

14. Ahnert SE, Johnston IG, Fink TMA, Doye JPK, Louis
AA. 2010 Self-assembly, modularity, and physical
complexity. Phys. Rev. E. 82, 026117. (doi:10.1103/
PhysRevE.82.026117)

15. Johnston IG, Ahnert SE, Doye JPK, Louis AA. 2011
Evolutionary dynamics in a simple model of self-
assembly. Phys. Rev. E. 83, 066105. (doi:10.1103/
PhysRevE.83.066105)

16. Levy ED, Pereira-Leal JB, Chothia C, Teichmann SA.
2006 3D complex: a structural classification of
protein complexes. PLoS Comput. Biol. 2, e155.
(doi:10.1371/journal.pcbi.0020155)

17. Perica T, Marsh J, Sousa F, Natan E, Colwell L,
Ahnert S, Teichmann S. 2012 The emergence of
protein complexes: quaternary structure, dynamics
and allostery. Biochem. Soc. Trans. 40, 475. (doi:10.
1042/BST20120056)

18. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat
TN, Weissig H, Shindyalov IN, Bourne PE. 2000 The
Protein Data Bank. Nucleic Acids Res. 28, 235 – 242.
(doi:10.1093/nar/28.1.235)

19. Levy ED, Erba EB, Robinson CV, Teichmann SA. 2008
Assembly reflects evolution of protein complexes.
Nature 453, 1262 – 1265. (doi:10.1038/nature
06942)

20. Villar G, Wilber AW, Williamson AJ, Thiara P, Doye
JPK, Louis AA, Jochum MN, Lewis ACF, Levy ED.
2009 Self-assembly and evolution of homomeric
protein complexes. Phys. Rev. Lett. 102, 118106.
(doi:10.1103/PhysRevLett.102.118106)

21. Tuschl T, Gohlke C, Jovin TM, Westhof E, Eckstein F.
1994 A three-dimensional model for the
hammerhead ribozyme based on fluorescence
measurements. Science 266, 785 – 789. (doi:10.
1126/science.7973630)

22. Hofacker IL. 2003 Vienna RNA secondary structure
server. Nucleic Acids Res. 31, 3429 – 3431. (doi:10.
1093/nar/gkg599)

23. Gursky O, Badger J, Li Y, Caspar DL. 1992
Conformational changes in cubic insulin crystals in
the pH range 7 – 11. Biophys. J. 63, 1210 – 1220.
(doi:10.1016/S0006-3495(92)81697-1)

24. Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan
J. 1998 The structural basis of the activation of RAS
by SOS. Nature 394, 337 – 343. (doi:10.1038/28548)

25. Paoli M, Liddington R, Tame J, Wilkinson A, Dodson
G. 1996 Crystal structure of T state haemoglobin
with oxygen bound at all four haems. J. Mol. Biol.
256, 775 – 792. (doi:10.1006/jmbi.1996.0124)

26. Harrington DJ, Adachi K, Royer Jr WE. 1997
The high resolution crystal structure of
deoxyhemoglobin S. J. Mol. Biol. 272, 398 – 407.
(doi:10.1006/jmbi.1997.1253)

27. Wishner BC, Ward KB, Lattman EE, Love WE. 1975
Crystal structure of sickle-cell deoxyhemoglobin at
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