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Abstract: The frequency estimation of complex exponential carrier signals in noise is a critical problem
in signal processing. To solve this problem, a new iterative frequency estimator is presented in this
paper. By iteratively computing the interpolation of DTFT samples, the proposed algorithm obtains
a fine frequency estimate. In addition, its mean square error (MSE) analysis is presented in this
paper. By analyzing influences of the selectable parameters on the estimation accuracy of the model,
a method for choosing appropriate parameters is discussed, helping to reduce the estimation error
of the proposed estimator. Simulation results show that compared with other algorithms with a
comparable estimation accuracy, the proposed iterative estimator can obtain a root mean square error
(RMSE) that is closer to Cramér–Rao lower bound (CRLB).

Keywords: frequency estimation; spectral analysis; parameter estimation; DTFT interpolation

1. Introduction

Obtaining accurate and fast frequency estimates of complex exponential signals is
a classic problem in signal processing. It has extensive applications in navigation [1],
power systems [2,3], metabolomics [4], and aerospace communication [5,6]. The frequency
offsets in these systems may lead to demodulation failure, especially for highly dynamic
applications, such as satellite communication, aviation communication control systems,
and missile control systems. Thus, an efficient and simple frequency estimation method is
necessary to ensure real-time communication for the above applications.

Frequency estimation can be seen as a search process. A coarse frequency estimate
can be obtained by searching the spectral maximum. However, the estimation accuracy
of algorithms based on the spectrum calculated by a DFT is limited by the frequency
resolution. The obtained estimate must be an integral multiple of the frequency resolution,
which deviates from the fact that the true frequency usually lies between spectral lines.
Thus, it is necessary to determine a fine frequency estimation to further reduce the residual
frequency offset.

Many estimators have been proposed based on the interpolation of DFT and DTFT
samples, which is an efficient way to perform fine frequency estimation [7–27]. The interpo-
lations of Jacobsen estimator [7], Candan estimator [8,9], Quinn estimator [10], parabolic in-
terpolation estimator [11,12], and Fang estimator [13] are based on DFT samples. The resid-
ual frequency offset can be reduced with only a few additional multiplication operations
after obtaining a coarse estimation. However, the RCSTL estimator [14], which uses three
DTFT samples to assist with fine frequency estimation, obtains a smaller estimation error
than other approaches. Its estimation error still deviates from the CRLB. Therefore, A&M
in [16] first introduced the iteration operation into interpolation algorithms and further
reduced the offset. IpDFT/e-IpDFT [19] were proposed to reduce the spectral leakage of
coarse estimation by iteratively interpolating the weighted signal. The weighted signal
is generated by applying different windows on the received signal [20–23]. Moreover,
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iterative algorithms can also obtain precise frequency estimates for various signals, such
as the real sinusoid signal [26], the damped complex exponential signal [28], and the two-
dimensional (2-D) complex exponential signal [29]. The asymptotic variances of some
iterative estimators are very close to the CRLB, but an edge effect problem is encountered
in which the variance may increase obviously at the edge of the frequency offset range. At
the end, we summarize the performance of the key estimators in Table 1:

Table 1. Analysis of key estimators.

Estimators Merits/Demerits Limits of Applicability

IpDFT with a cosine
window [20]

Reduce the influence of spectral
leakage by introducing a cosine

window/increase the computation

Linear computation
based on all DFT samples

IpDTFT with a cosine
window [21]

Reduce the influence of spectral
leakage by introducing a cosine

window/increase the computation,
extra two DTFT computations

Almost two times CRLB

e-FLLs/FLLs
(frequency-domain linear

least-squares) [22,23]

Robust to harmonics/matrix
computation for window, matrix
inversion for linear least-squares

Amplitude and phase
estimation

QSE/HAQSE (hybrid
A&M and q-shift

estimator) [24]

DFT-based, easily realizable, within
±0.003 dB CRLB/at least extra four

DTFT computations and several
complex computations for the estimate

Edge effect

Aboutanios and Mulgrew
(A&M) [25,26]

DFT-based, easily realizable, 1.0147
times the asymptotic CRLB/extra four

DTFT computations and several
complex computations for the estimate

Edge effect

Parabolic
interpolation [27]

DFT-based, easily realizable, within
±0.526 dB CRLB/extra three DTFT
computations and several complex

computations for the estimate

Limited accuracy

In fact, even a slight improvement in the estimation accuracy is important for signals
in highly dynamic applications. Thus, to further explore the performance potential of
estimators based on interpolation and obtain robust estimates, we present a new iterative
algorithm in this paper. It includes two stages. In the coarse estimation stage, we first pad
M− N zeros after the N-point signal samples. Then, a coarse estimate can be obtained
by maximizing the magnitude of the M-point FFT, which is an efficient computation
method of the DFT. In the fine estimation stage, every iteration, three DTFT samples
are calculated to obtain a fine estimate. The general form of the estimator and a mean
square error (MSE) analysis are also presented so that the estimator parameters can be
adjusted according to the given design requirements. Simulation results reveal that the
RMSE of the proposed estimator is closest to the CRLB in most cases. At the same time,
this estimator has a relatively simple form and low computational complexity, so it can
satisfy the high accuracy and fast estimation speed requirements of the given application
environments. It can not only be used in a single complex signal system but can also be
used for signal estimation in multi-sinusoid communication systems when introducing the
approach proposed in [27].

The rest of the paper is organized as follows. In Section 2, the deduction of the model
expression is presented, and the estimation process is also described. In Section 3, a general
MSE analysis of the new estimator is performed. The developed parameter design method
is discussed in Section 4. In Section 5, a comparison between the new estimator and existing
estimators is given by simulation.
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2. Signal and Frequency Offset Model

For the frequency estimation of complex exponential signals in noise, the received
signal can be written as [11]

y(n) = x(n) + w(n)

= Ae(j(2π
f
fs

n+φ))
+ w(n), n = 0, 1, . . . , N − 1,

(1)

where x(n) = Ae(j(2π
f
fs

n+φ)) is the useful signal, A is the signal magnitude, φ is the initial
phase, fs is the sampling rate, N is the number of signal samples, and f is the signal
frequency that needs to be estimated. w(n) represents complex Gaussian white noise
following a normal distribution N(0, σ2).

2.1. CRLB of Frequency Estimation

The Cramér–Rao Lower Bound of frequency estimation is [30]

CRLB =
3

2π2SNR · N(N2 − 1)
, (2)

where SNR is the signal-to-noise ratio (SNR). Its definition is SNR = A2

σ2 .

2.2. DFT and DTFT of Complex Exponential Signals

First, the M-point DFT of x(n) can be obtained by

X(k) =
M−1

∑
n=0

x(n)e−j 2πnk
M . (3)

It is assumed that M-point data are generated by padding an integral multiple of
M− N zeros after N signal samples; for example, M = 3N means that N signal samples
are padded with 2N zeros. (3) can be written as

X(k) =
N−1

∑
n=0

Aejφej2π
f
fs

ne−j 2πnk
M . (4)

In (3), noise is not considered for simplifying the estimation process. The spectral
line can be found by locating the maximum of |X(k)| and is denoted as km, km ∈ [1, M].
The corresponding frequency estimation is km∆ f . ∆ f = fs/M is the frequency resolution of
the spectrum of the input complex exponential signal. Since the actual spectral peak usually
lies between spectral lines f = (km ± δ)∆ f , where δ ∈ [−0.5, 0.5] is the residual frequency
offset between the true frequency and the coarse frequency estimate km∆ f , a smaller
frequency resolution is helpful for obtaining a higher frequency estimation accuracy. Thus,
frequency resolution has an important impact on the accuracy of frequency estimation.
To reduce this influence, it is necessary to perform a second stage to refine the frequency
estimation process. This is an efficient method for performing fine estimation using DTFT
samples around the DFT peak km. DTFT samples are usually regarded as interpolations
between DFT samples. The DTFT samples around km can be expressed as

X(km + p) =
N−1

∑
n=0

Aejφej2π
f
fs

ne−j 2πnk
M |k=km+p, f=(km+δ)∆ f . (5)

As shown in Figure 1, the two neighboring green lines of km are the DTFT samples
used to assist with the estimation of δ. −1 < p < 1 is the offset between the assistant DTFT
samples and the coarse frequency estimate km∆ f . The meanings of ∆ f , δ, km, and p, and
their relationships are also shown in Figure 1.
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Figure 1. Magnitudes of the DTFT and DFT of a complex exponential signal.

After some rearrangement, (5) can be simplified as

X(km + p) = Aejφejπ N−1
M (δ−p) sin(π(δ− p))

sin( π
M (δ− p))

. (6)

3. Proposed Algorithm

To ensure the estimation accuracy of our model, we focus on the fine frequency
estimation process and propose a new estimator. The steps of the proposed estimator are
shown in Algorithm 1. First, we give the expressions of the two neighboring DTFT samples
of the spectral peak:

X(km ± p) = Aejφej2π N−1
M (δ∓p) sin(πN

M (δ∓ p))
sin( π

M (δ∓ p))
. (7)

Then, we obtain their magnitudes:

|X(km ± p)| = A

∣∣∣∣∣ sin(πN
M (δ∓ p))

sin( π
M (δ∓ p))

∣∣∣∣∣. (8)

From the definitions of δ and p, it can be deduced that |δ∓ p| < 3/2. Considering
that 0 < N

M < 1/2, we can obtain −3π/4 < πN
M (δ∓ p) < 3π/4. Thus, sin(πN

M (δ∓ p)) and

sin( π
M (δ∓ p)) have the same sign in this range, namely, sin( πN

M (δ∓p))
sin( π

M (δ∓p)) > 0. In this way, (8)
can be changed to

|X(km ± p)| = A
sin(πN

M (δ∓ p))
sin( π

M (δ∓ p))
. (9)

The ratio of |X(km + p)| to |X(km)| is

|X(km + p)|
|X(km)|

=
sin(πN

M (δ− p))
sin( π

M (δ− p))
/

sin(πN
M (δ))

sin( π
M (δ))

. (10)

Since M� π(δ− p), we obtain

|X(km + p)|
|X(km)|

≈
sin(πN

M (δ− p))

sin(πN
M (δ))

/
δ− p

δ
. (11)
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(11) can also be expressed as:

|X(km + p)|
|X(km)|

δ− p
δ
≈

sin(πN
M (δ− p))

sin(πN
M (δ))

. (12)

According to the transformation formula of a trigonometric function, (12) can be
decomposed as

|X(km + p)|
|X(km)|

δ− p
δ
≈

sin(πN
M δ) cos(πN

M p)− cos(πN
M δ) sin(πN

M p)

sin(πN
M δ)

. (13)

Similarly,

|X(km − p)|
|X(km)|

δ + p
δ
≈

sin(πN
M δ) cos(πN

M p) + cos(πN
M δ) sin(πN

M p)

sin(πN
M δ)

. (14)

After adding (13) to (14), we obtain

|X(km + p)|
|X(km)|

δ− p
δ

+
|X(km − p)|
|X(km)|

δ + p
δ
≈ 2 cos(

πN
M

p). (15)

Finally, the estimate of δ can be obtained by

δ̂ =
p|X(km + p)| − p|X(km − p)|

|X(km + p)|+ |X(km − p)| − 2|X(km)| cos(πN
M p)

. (16)

The frequency estimate is

f̂ = (km + δ̂)
fs

M
. (17)

From (17), we can obtain a precise estimate of the frequency offset, but the above
analysis is based on a signal without noise and some approximations. In fact, the frequency
estimation derived from (17) usually deviates from the true frequency due to the influence
of noise, so we introduce an iteration operation into the fine estimation process. The
procedures of the proposed estimator are shown in Algorithm 1.

Algorithm 1 The proposed iterative estimator.
Input: Signal samples y
Output: Frequency estimate f̂
1: Coarse estimation: calculate the M-point DFT, and obtain the location of the spectral

peak km as the coarse frequency estimate.
2: Fine estimation: initialize the iteration variables; δ̂ = 0, q = 1
3: for q < Q do
4: Compute the DTFT samples |X(km + p)|, |X(km)|, and |X(km − p)| according to (8)
5: Compute δ̂ according to (16)
6: Update the iteration variables: km = km + δ̂, q = q + 1
7: Compute f̂ according to (17)
8: return f̂

4. MSE Analysis of the Proposed Algorithm

To perform a MSE analysis for the developed iterative algorithm, we give the expres-
sion of the spectral magnitude of a complex exponential signal in noise:

|Y(k)|=|X(k)+W(k)|, (18)
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where W(k) is the DFT of additive Gaussian white noise w(n). The spectral peak in the
noise is

|Y(km)|=|X(km)+W(km)|=

∣∣∣∣∣∣A
sin
(

πN
M δ
)

sin
(

π
M δ
) + W(km)e−jφe−jπ N−1

M δ

∣∣∣∣∣∣. (19)

Because |W(k)| � |X(k)| at a high SNR, |Ykm | = Akm + Re(e−jϕkm Wkm ), Akm is the
magnitude of Xkm , and ϕkm is the phase of Xkm . Therefore, an approximation of (19) can be
expressed as

|Y(km)| ≈ |X(km)|+ Re(W(km)e−jϕkm ) ≈ Akm+Ukm , (20)

where Akm = |X(km)| = A · sin
(

πN
M δ
)

/ sin
(

π
M δ
)
, Ukm = Re(W(km)e−jϕkm ),

ϕkm = φ + π N−1
M δ. Similarly, the DTFT samples can be expressed as

|Y(km + p)| ≈ Akm+p + Ukm+p, |Y(km − p)| ≈ Akm−p + Ukm−p. To simplify the analy-
sis, we denote Y0 = Y(km), Yp = Y(km + p), Y−p = Y(km − p), A0 = Akm , Ap = Akm+p,
A−p = Akm−p, U0 = Ukm , Up = Ukm+p, and U−p = Ukm−p. Consequently, (16) becomes

δ̂=
p(Ap+Up)− p(A−p+U−p)

(Ap+Up) + (A−p+U−p)− 2(A0+U0) cos
(

πN
M p

)
=

p(Ap − A−p+Up −U−p)

Ap+A−p − 2A0 cos
(

πN
M p

)
+ Up+U−p − 2U0 cos

(
πN
M p

)
=

p(Ap − A−p+Up −U−p)

Ap+A−p − 2A0 cos
(

πN
M p

) · 1

1 +
Up+U−p−2U0 cos( πN

M p)
Ap+A−p−2A0 cos( πN

M p)

.

(21)

Because
Up+U−p−2U0 cos( πN

M p)
Ap+A−p−2A0 cos( πN

M p)
� 1, the first-order Taylor expansion of the second item

on the right side of (21) is

1

1 +
Up+U−p−2U0 cos( πN

M p)
Ap+A−p−2A0 cos( πN

M p)

≈ 1−
Up+U−p − 2U0 cos

(
πN
M p

)
Ap+A−p − 2A0 cos

(
πN
M p

) . (22)

By introducing (22) into (21), the frequency offset is

δ̂ =
p(Ap − A−p)

Ap+A−p − 2A0 cos
(

πN
M p

) +
p(Up −U−p)

Ap+A−p − 2A0 cos
(

πN
M p

)
−

p(Ap − A−p)
(

Up+U−p − 2U0 cos
(

πN
M p

))
(

Ap+A−p − 2A0 cos
(

πN
M p

))2

−
p(Up −U−p)

(
Up+U−p − 2U0 cos

(
πN
M p

))
(

Ap+A−p − 2A0 cos
(

πN
M p

))2 .

(23)

The last item is approximately zero if the SNR is high. Thus, after some
simplification, (23) becomes

δ̂ = δ+
p(Up −U−p)

Ap+A−p − 2A0 cos
(

πN
M p

) − δ ·
Up+U−p − 2U0 cos

(
πN
M p

)
Ap+A−p − 2A0 cos

(
πN
M p

) . (24)
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Then, we compute the expectation of the estimation error and the MSE of the
frequency estimate:

E(δ̂− δ) =
p(Up −U−p)

Ap+A−p − 2A0 cos
(

πN
M p

) − δ ·
Up+U−p − 2U0 cos

(
πN
M p

)
Ap+A−p − 2A0 cos

(
πN
M p

)
=
(p− δ)Up − (p + δ)U−p)− 2U0δ cos

(
πN
M p

)
Ap+A−p − 2A0 cos

(
πN
M p

) ,

(25)

and

E
[
(δ̂− δ)

2
]
= E

 (p− δ)Up − (p + δ)U−p)

Ap+A−p − 2A0 cos
(

πN
M p

) − 2U0δ cos
(

πN
M p

)
Ap+A−p − 2A0 cos

(
πN
M p

)
2

. (26)

According to deduction in Appendix A, the final MSE expression is obtained as follows:

E
[
(δ̂− δ)

2
]
≈



π2 N
M2 ·

δ2((δ2−p2))
2

SNR ·
p2+δ2+2δ2cos2( πN

M p)−(3δ2+p2) sin c( 2πN
M p)

4p2(p sin( πN
M δ) cos( πN

M p)−δ cos( πN
M δ) sin( πN

M p))
2 ,

|δ| 6= p&|δ| 6= 0
p2

4N·SNR ·
1−sin c 2πN

M p

(sin c πN
M p−cos( πN

M p))
2 , δ=0

2p2

N·SNR ·
1+cos2( πN

M p)−2 sin c 2πN
M p

(1−sin c 2πN
M p)

2 , |δ|=p

. (27)

4.1. Discussion on p

Once the ratio M/N has been decided, a smaller p means that the assistant DTFT
samples are closer to the DFT peak. Will we obtain a more precise estimate if a smaller p is
chosen? How can we choose p? This section provides a discussion about p. We simulate
the proposed method versus p for different values of δ to verify the influence of p on the
estimation accuracy of the resulting model.

In Figure 2, p has an important influence on the RMSE/CRLB of the algorithm. It
decreases as p decreases at the beginning. However, when p is sufficiently small, the im-
provement in the RMSE/CRLB does not change further. In fact, it does not keep decreasing
as p decreases. The minimum RMSE/CRLB varies with |δ|, so we choose a medium p = 0.3
in Section 5.

4.2. Discussion on M

The spectral frequency resolution directly affects the algorithm’s estimation accuracy.
When the sampling frequency is determined, choosing a larger N can reduce the spectral
frequency resolution and increase the spectral magnitude. However, this also increases the
estimation time and computational complexity of the algorithm. Therefore, we first pad
zeros after the signal samples before computing the corresponding DFTs. This approach
can decrease the frequency resolution without increasing the observation time. The DFT
and DTFT waveforms of samples with and without zero-padding are shown in Figure 3.
The figure indicates that the DFT and DTFT waveforms of the signal are extended after the
signal samples are padded with N zeros. The two green circles are closer to the peak than
the two blue circles. The 2N-point DFT around the peak, which is closer to the peak, can
obtain a smaller RMSE/CRLB in Figure 4. In addition, as M/N increases, the improvement
in the MSE decreases. Considering the computational complexity brought by M, we choose
M = 2N as a compromise between computational complexity and the estimation accuracy.
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Figure 2. The RMSE/CRLB of the proposed algorithm versus p for different values of δ when the
SNR = 0 dB and N = 512.

Figure 3. DFTs and DTFTs of complex exponential signals at M = N and M = 2N.
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Figure 4. The RMSE/CRLB of the proposed estimator versus δ at different values of M when
SNR = 0 dB and N = 512.

4.3. Discussion on Q

We introduce the iteration operation into the frequency estimation and decrease the
final estimation error by iteratively updating the estimate of the frequency offset and
the DTFT samples used in interpolation. To choose the number of iteration, we make a
simulation about the performance of the proposed algorithm versus iteration number Q
at different δ when SNR = 0 dB and N = 512. The RMSE/CRLB is shown in Figure 5.
From Figure 5, it can be seen that the RMSE/CRLB decreases obviously after the second
iteration, when |δ| = 0.5 or |δ| = 0.3. However, When Q > 2, the RMSE/CRLB does not
decrease as Q increases. Thus, considering the accuracy improvement and the calculation
complexity, we choose Q = 2 as the iteration number for simulation in Section 5. This
iteration number is also consistent with the research in [24].

Figure 5. The RMSE/CRLB of the proposed estimator versus Q at different values of δ when
SNR = 0 dB and N = 512.



Sensors 2022, 22, 861 10 of 18

5. Experiment

To test the estimation performance of the proposed iterative estimator, we set the
simulation parameters as follows: the signal magnitude A = 1, the sampling frequency
fs = 512 kHz, the frequency offset |δ| < 0.5, the spectral peak km = 64 kHz, the true fre-
quency 63.5 kHz < f0 < 64.5 kHz, the number of iterations Q = 2 [24], and the initial phase
φ ∈ [0, 2π] is generated randomly. Moreover, we compare the proposed algorithm with
other algorithms including Jacobsen estimator [7], Candan estimator [8,9], A&M estima-
tor [16], Fan estimator [15], and Fang estimator [13], and RCSTL [14]. Every estimation
result is obtained from 10,000 simulations.

5.1. Comparison of the CRLB and RMSE of the Proposed Estimator

In this section, we perform simulations of the proposed estimator with different
iterations. As shown in Figure 6, the simulation result at the first iteration is consistent with
the MSE analysis. The periodic characteristic is also verified. Therefore, the MSE analysis
in Section 4 is effective. However, these results provide only the reference standard for the
proposed estimator at the first iteration. The RMSE/CRLB at the second iteration can be
verified by simulation. In Figure 6, the RMSE/CRLB at the second iteration can approach 1,
which means that the proposed estimator has a promising estimation accuracy.

One more aspect that needs to be explained is that the MSE of the proposed estimator
in (27) is a periodic function. It can be seen in Figure 6 that between δ = −0.5 and δ = 0.5,
there are two periods for M = 2N and Q = 1 and one period for M = N and Q = 1. They
are both symmetric about δ = 0. This means that the RMSE/CLRB is periodical and that
the length of its period varies with the ratio of M to N.

Figure 6. The RMSE/CRLB of the proposed estimator versus δ under different settings of M and Q
when SNR = 0 dB and N = 512.

5.2. Comparison of RMSEs among the Existing Algorithms

To test the proposed estimator’s RMSE versus the SNR and N, we set δ = 0.2 and
simulate seven estimators.
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Figures 7–10 are figures corresponding to N = 64, N = 128, N = 256, and N = 512,
respectively. Upon comparing these figures, the SNR threshold decreases from 0 dB to
−10 dB. The RMSEs of these estimators and the RMSE differences among these estimators
decrease as N increases. Detailed figures at SNR = 10 dB are also provided, from which we
can see that the RMSEs of A&M, Fan, and the proposed estimator are closest to the CRLB.
The RMSE of the proposed estimator is slightly lower than those of the other simulated
methods in most cases, although the RMSE difference between the proposed estimator
and the Fan estimator is small. In addition, the RMSE of the proposed estimator is only
1.003 times the CRLB when SNR = 10 dB and N = 512.

Figure 7. RMSE comparison among frequency estimates versus SNR at N = 64 and δ = 0.2.

Figure 8. RMSE comparison among frequency estimates versus SNR at N = 128 and δ = 0.2.
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Figure 9. RMSE comparison among frequency estimates versus SNR at N = 256 and δ = 0.2.

Figure 10. RMSE comparison among frequency estimates versus SNR at N = 512 and δ = 0.2.

5.3. RMSE Comparison among Estimators with a Comparable Accuracy

To further evaluate the RMSE of the proposed estimator, we compare the estimators
with the comparable estimation accuracy at SNR = 0 dB. The results in Figures 11 and 12
show that the RMSE of the proposed estimator is closest to the CRLB in most cases. RMSE
of the Fan estimator is slightly larger than that of the proposed estimator. Both the two
estimators are more stable than the other simulated estimators, showing that the variations
in their RMSEs are small throughout the whole δ range. The RMSE of the A&M estimator
is also very small, but there exists a kind of edge effect in which the RMSE increases at
δ = ±0.5. For some values of δ, the corresponding RMSEs may lie slightly below the CRLB
and are asymmetric relative to δ = 0 due to the limited number of Monte Carlo trials.

5.4. Computational Complexities of the Estimators Used in the Simulation

Computational complexity is an important aspect to consider when evaluating the
performance of estimators. We mainly compare the numbers of complex calculations per-
formed by the various methods, including complex multiplications and complex additions.
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Figure 11. RMSE comparison among the frequency estimates versus δ at N = 256 and SNR = 0 dB.

Figure 12. RMSE comparison among the frequency estimates versus δ at N = 512 and SNR = 0 dB.

Table 2 gives the computational complexities of all simulated estimators. To reduce the
computational complexity of the DFT, we choose N = 2k as the DFT length and compute
the FFT instead. An N-point FFT requires N

2 log2N complex multiplications and Nlog2N
complex additions. A one-bin N-point DTFT requires N complex multiplications and
N − 1 complex additions. The additional multiplication and addition operation other
than those utilized in the FFT calculation are performed to compute δ̂. During the two
iterations, the proposed estimator uses five magnitudes of DTFTs to compute δ̂, so it omits
several complex multiplications and additions compared with the Fan estimator, which
have comparable estimation accuracies as the proposed estimator. Compared with the
A&M estimator, the proposed estimator has a lower RMSE and avoids the edge effect when
|δ| approaches to 0.5.
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Table 2. Computational complexities of the estimators used in the simulation.

Estimators Complex Multiplications Complex Additions

Jacobsen (N points) N
2 log2N + 1 Nlog2N + 3

Candan (N points) N
2 log2N + 1 Nlog2N + 3

A&M (N points, 2 iterations) N
2 log2N + 4N + 2 Nlog2N + 4N

Fan (M points, 2 iterations) M
2 log2M + 5N + 8 Mlog2M + 5N + 1

Fang (M points) M
2 log2M Mlog2M

RCSTL (M points) M
2 log2M + 1 Mlog2M

Proposed (M points, 2 iterations) M
2 log2M + 5N Mlog2M + 5(N − 1)

6. Conclusions

In this paper, we present a new and simple iterative frequency estimator that is used
for the fine estimation of complex exponential signals. In this algorithm, the magnitudes of
DTFT samples are used to calculate the frequency offset to reduce the number of required
complex calculations, and iterative calculations are introduced into the estimation process to
further improve the estimation accuracy of the resulting model. It is verified by simulation
that the developed algorithm achieves a higher estimation accuracy compared with other
algorithms. Moreover, it has a lower computational complexity than the algorithm that has
a comparable estimation accuracy. In addition, the general form of the proposed estimator
is also presented in this paper to help select appropriate parameters according to given
application requirements.
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Appendix A. Deduction of the MSE Expression

The deduction process of the final expression of the MSE is given in this section. To
obtain E

[
(δ̂− δ)

2
]
, we need to compute the numerator and denominator of the MSE:

(δ̂− δ)2
nomi =(p− δ)2U2

p + (p + δ)2U2
−p + 4U2

0 δ2cos2
(

πN
M

p
)

− 2(p2 − δ2)UpU−p + 4UpU+p(p− δ)δ cos
(

πN
M

p
)

+ 4UpU−p(p + δ)δ cos
(

πN
M

p
)

,

(A1)

and

(δ̂− δ)2
denomi =

(
Ap+A−p − 2A0 cos

(
πN
M

p
))2

. (A2)
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Because Up is the real part of Wp at all frequencies and w(n) ∼ N(0, σ2),
E(U2

p) = E(U2
−p) = E(U2

0) = Nσ2/2. To compute E(UpU+p), we go back to the
DTFT expression:

Up = Re(Wpe−jϕp) = Re(
N−1

∑
n=0

w(n)e−j(2π fpn+ϕp)). (A3)

The expectation of UpU−p is

E
[
UpU−p

]
= E

[
N−1

∑
n=0

(
wr(n) cos(2π fpn + ϕp)+wi(n) sin(2π fpn + ϕp)

)
·

N−1

∑
m=0

(
wr(m) cos(2π f−pm + ϕ−p)+wi(m) sin(2π f−pm + ϕ−p)

)]
,

(A4)

where ϕp = ϕ + π N−1
M (δ − p) and ϕ−p = ϕ + π N−1

M (δ + p) are the phases of Xp and
X−p, respectively. fp = N

M (δ − p) and f−p = N
M (δ + p) are the frequencies of Xp and

X−p, respectively. According to the independence characteristic of Gaussian white noise,
E(wr(n)wi(m)) = 0, and E(wi(n)wr(m)) = 0. If n 6= m, E(wr(n)wr(m)) = 0, and
E(wi(n)wi(m)) = 0. Therefore, only autocorrelation items (n = m) are retained in the
expectation, which can be written as

E
[
UpU−p

]
=E

[
N−1

∑
n=0

(
w2

r (n) cos(2π fpn + ϕp) cos(2π f−pn + ϕ−p)+

w2
i (n) sin(2π fpn + ϕp) sin(2π f−pn + ϕ−p)

)]
=Nσ2/2

N−1

∑
n=0

(
cos(2π fpn + ϕp) cos(2π f−pn + ϕ−p)

+ sin(2π fpn + ϕp) sin(2π f−pn + ϕ−p)
)

=Nσ2/2
N−1

∑
n=0

(
cos(2π( fp − f−p)n + (ϕp − ϕ−p))

)
.

(A5)

After some algebra, we have

E
[
UpU−p

]
=

Nσ2

4

[
ej(ϕp−ϕ−p) 1− ej(2π( fp− f−p)n)

1− ej(2π( fp− f−p)n/M)
+

e−j(ϕp−ϕ−p) 1− e−j(2π( fp− f−p)n)

1− e−j(2π( fp− f−p)n/M)

]
.

(A6)

By substituting ϕp − ϕ−p = −π N−1
M p, fp − f−p = − 2N

M p into (A6), we obtain

E
[
UpU−p

]
=

Nσ2

2
sin( 2πNp

M )

sin( 2πp
M )

≈ Nσ2

2
sin( 2πNp

M )
2πp
M

. (A7)

In the same way, E
[
U0Up

]
=E
[
U0U−p

]
= Nσ2/2 sin(πNp/M)

sin(πp/M)
≈ Nσ2/2 sin(πNp/M)

πp/M .
Then, we introduce the above results into (A1) and obtain

E
[
(δ̂− δ)

2
]

nomi
= Nσ2

[
p2 + δ2 + 2δ2cos2

(
πN
M

p
)
− (3δ2 + p2)

sin
(

2πN
M p

)
2π
M p

. (A8)
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To compute the denominator of E
[
(δ̂− δ)

2
]
, we return to the expression of Ap

Ap=|X(km + p)|=A ·
sin
(

πN
M (δ− p)

)
sin
(

π
M (δ− p)

) ≈ A ·
sin
(

πN
M (δ− p)

)
π
M (δ− p)

. (A9)

Similarly, A−p ≈ A · sin( πN
M (δ+p))

π
M (δ+p) , A0 ≈ A · sin( πN

M δ)
π
M δ

.
By introducing Ap, A−p, and A0 into (A2), we obtain

Ap+A−p − 2A0 cos
(

πN
M

p
)
≈A ·

 sin
(

πN
M (δ− p)

)
π
M (δ− p)

+
sin
(

πN
M (δ+p)

)
π
M (δ+p)

−
2 sin

(
πN
M δ
)

cos
(

πN
M p

)
π
M δ


≈2AM

π
·

 p2 sin
(

πN
M δ
)

cos
(

πN
M p

)
δ(δ2 − p2)

−
pδ cos

(
πN
M δ
)

sin
(

πN
M p

)
δ(δ2 − p2)

.

(A10)

Then,

E
[
(δ̂− δ)

2
]

denomi
=

(
Ap+A−p − 2A0 cos

(
πN
M

p
))2

=

(
2AMp

π

)2
·

[
p sin

(
πN
M δ
)

cos
(

πN
M p

)
δ2(δ2 − p2)2

−
δ cos

(
πN
M δ
)

sin
(

πN
M p

)]2

δ2(δ2 − p2)2 .

(A11)

Since there are two cases in which the denominator equals zero, which leads to a
meaningless result, we further analyze these two cases. When |δ| = p,

Ap+A−p − 2A0 cos
(

πN
M

p
)

≈ 2AMp
π

·
p sin

(
πN
M δ
)

cos
(

πN
M p

)
− δ cos

(
πN
M δ
)

sin
(

πN
M p

)
δ(δ2 − p2)

≈ 2AMp
π

·
δ sin

(
πN
M (δ− p)

)
− (δ− p) sin

(
πN
M δ
)

cos
(

πN
M p

)
δ(δ2 − p2)

≈ 2ANp
δ + p

·
(

sin c
(

πN
M

(δ− p)
)
− sin c

(
πN
M

δ

)
cos
(

πN
M

p
))

≈ AN ·
(

1− sin c
(

πN
M

δ

)
cos
(

πN
M

p
))

;

(A12)
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when δ = 0,

Ap+A−p − 2A0 cos
(

πN
M

p
)

≈ 2AM
π
·

p2 sin
(

πN
M δ
)

cos
(

πN
M p

)
− pδ cos

(
πN
M δ
)

sin
(

πN
M p

)
δ(δ2 − p2)

≈ 2AM
π
·

− sin
(

πN
M δ
)

cos
(

πN
M p

)
δ

+
cos
(

πN
M δ
)

sin
(

πN
M p

)
p


≈ 2AN ·

(
sin c

(
πN
M

p
)
− cos

(
πN
M

p
))

.

(A13)
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12. Djukanović, S.; Popović, T.; Mitrović, A. Precise sinusoid frequency estimation based on parabolic interpolation. In Proceedings
of the 2016 24th Telecommunications Forum (TELFOR), Belgrade, Serbia, 22–23 November 2016; pp. 1–4. [CrossRef]

13. Fang, L.; Duan, D.; Yang, L. A new DFT-based frequency estimator for single-tone complex sinusoidal signals. In Proceedings
of the MILCOM 2012—2012 IEEE Military Communications Conference, Orlando, FL, USA, 29 October–1 November 2012;
pp. 1–6. [CrossRef]

14. Yang, C.; Wei, G. A Noniterative Frequency Estimator with Rational Combination of Three Spectrum Lines. IEEE Trans. Signal
Process. 2011, 59, 5065–5070. [CrossRef]

15. Fan, L.; Qi, G.; Xing, J.; Jin, J.; Liu, J.; Wang, Z. Accurate Frequency Estimator of Sinusoid Based on Interpolation of FFT and
DTFT. IEEE Access 2020, 8, 44373–44380. [CrossRef]

16. Aboutanios, E.; Mulgrew, B. Iterative frequency estimation by interpolation on Fourier coefficients. IEEE Trans. Signal Process.
2005, 53, 1237–1242. [CrossRef]

17. Chen, X.; Zhi, W.; Xiao, Y. Carrier Frequency Estimation based on Frequency Domain and Wavelet Ridge. Int. J. Perform. Eng.
2019, 15, 2107.

18. Liu, W.; Bian, X.; Deng, Z.; Mo, J.; Jia, B. A Novel Carrier Loop Algorithm Based on Maximum Likelihood Estimation (MLE) and
Kalman Filter (KF) for Weak TC-OFDM Signals. Sensors 2018, 18, 2256. [CrossRef] [PubMed]

19. Belega, D.; Petri, D. Effect of Noise and Harmonics on Sine-wave Frequency Estimation by Interpolated DFT Algorithms Based
on Few Observed Cycles. Signal Process. 2017, 140, 207–218. [CrossRef]

20. Belega, D.; Petri, D. Influence of the Noise on DFT-based Sine-wave Frequency and Amplitude Estimators. Measurement 2019,
137, 527–534. [CrossRef]

http://doi.org/10.1109/AERO.2019.8742181
http://dx.doi.org/10.1109/TIM.2019.2941290
http://dx.doi.org/10.1109/TPWRD.2019.2936885
http://dx.doi.org/10.1109/CISP.2010.5647394
http://dx.doi.org/10.1109/AERO47225.2020.9172578
http://dx.doi.org/10.1109/IWCMC48107.2020.9148098
http://dx.doi.org/10.1109/LSP.2011.2136378
http://dx.doi.org/10.1109/LSP.2013.2273616
http://dx.doi.org/10.1109/78.558515
http://dx.doi.org/10.1109/TSP.2017.8076030
http://dx.doi.org/10.1109/TELFOR.2016.7818824
http://dx.doi.org/10.1109/MILCOM.2012.6415812
http://dx.doi.org/10.1109/TSP.2011.2160257
http://dx.doi.org/10.1109/ACCESS.2020.2977978
http://dx.doi.org/10.1109/TSP.2005.843719
http://dx.doi.org/10.3390/s18072256
http://www.ncbi.nlm.nih.gov/pubmed/30011786
http://dx.doi.org/10.1016/j.sigpro.2017.05.021
http://dx.doi.org/10.1016/j.measurement.2019.01.058


Sensors 2022, 22, 861 18 of 18

21. Belega, D.; Petri, D.; Dallet, D. Accurate Frequency Estimation of a Noisy Sine-wave by Means of an Interpolated Discrete-Time
Fourier Transform Algorithm. Measurement 2017, 116, 685–691. [CrossRef]

22. Belega, D.; Petri, D. Accuracy Analysis of an Enhanced Frequency-Domain Linear Least-Squares Algorithm. In Proceedings
of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand,
20–23 May 2019; pp. 1–5. [CrossRef]

23. Belega, D.; Petri, D. Accuracy of DTFT-based Sine-wave Amplitude Estimators. J. Phys. Conf. Ser. 2018, 1065, 052030. [CrossRef]
24. Serbes, A. Fast and Efficient Sinusoidal Frequency Estimation by Using the DFT Coefficients. IEEE Trans. Commun. 2019,

67, 2333–2342. [CrossRef]
25. Belega, D.; Petri, D. Effect of Frequency Uncertainty on the Sine-wave Amplitude Estimator Returned by Linear Least-Squares

Fitting. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC),
Dubrovnik, Croatia, 25–28 May 2020; pp. 1–5. [CrossRef]
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