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ABSTRACT

The ribosome is a complex molecular machine that
offers many potential sites for functional inter-
ference, therefore representing a major target for
antibacterial drugs. The growing number of high-
resolution structures of ribosomes from different
organisms, in free form and in complex with various
ligands, provides unique data for structural and
comparative analyses of RNA structures. We
model the ribosome structure as a network, where
nucleotides are represented as nodes and intermo-
lecular interactions as edges. As shown previously
for proteins, we found that the major functional sites
of the ribosome exhibit significantly high centrality
measures. Specifically, we demonstrate that muta-
tions that strongly affect ribosome function and
assembly can be distinguished from mild mutations
based on their network properties. Furthermore, we
observed that closeness centrality of the rRNA
nucleotides is highly conserved in the bacteria, sug-
gesting the network representation as a compara-
tive tool for the ribosome analysis. Finally, we
suggest a global topology perspective to character-
ize functional sites and to reveal the unique proper-
ties of the ribosome.

INTRODUCTION

The ribosome is a large complex of proteins and ribosomal
RNA (rRNA) that is responsible for protein biosynthesis
in all organisms. The ribosome is made up of two subu-
nits: a small subunit (30S) and a large subunit (50S). In
Escherichia coli, the small subunit consists of the 16S
rRNA (1542 nt) and 21 proteins, whereas the large sub-
unit contains the 23S rRNA (2904 nt), the 5S rRNA
(120 nt) and 33 proteins. The small and the large riboso-
mal subunits associate into an active 70S complex, which
catalyzes protein synthesis. The small subunit contains the
decoding center (A-site), known to mediate the correct

interaction between the tRNA anticodon and the
mRNA, which is being translated. The large subunit con-
tains the peptidyl transferase center (PTC), which cata-
lyzes the peptide bond formation in the growing
polypeptide (1). It is well established that the major func-
tional sites in the ribosome that are involved in peptide
bond formation are composed mainly of rRNAs, which is
in the heart of the catalytic process (2). Though the ribo-
some is commonly considered a ribozyme (1), the involve-
ment of a protein in the catalytic site has been
demonstrated in E. coli (3).
High resolution structures of 30S and 50S ribosomal

subunits have been solved by X-ray crystallography.
These include the 30S subunit from the eubacteria
Thermus thermophilus (4,5), the 50S subunit from the
archaeon Haloarcula marismortui (6) and the eubacteria
Deinococcus radiodurans (7). Several high-resolution struc-
tures of the 70S ribosome are also available, including the
E. coli ribosome at 3.5 Å (8), and T. thermophilus at 2.8 Å
(9) and 3.7 Å (10). The 70S ribosome structures provide
unique information on the interface between the subunits,
as well as the conformation of the active site in the context
of the entire ribosome complex. Overall, the growing
number of high-resolution structures of ribosomes from
different organisms, in the free form as well as in complex
with various ligands and antibiotics, provides a unique
data set for structural and comparative analysis of the
ribosome, specifically of the rRNA (4,6,8,9).
Different computational methods, which are based on

force field, have been used to study macromolecular struc-
tures, specifically proteins (11). However, the computa-
tional cost of these methods for studying long and short
range interactions in a large-scale system such as the ribo-
some is extremely high. Therefore, coarse grained methods
have been developed (12,13). Furthermore, graph theory
has been found to be a useful tool to investigate different
properties of macromolecules such as folding, stability,
function and dynamics (14). These studies have predomi-
nately concentrated on protein structures. In order to
model structure as a graph (network), several representa-
tions have been developed, ranging from coarse repre-
sentation, in which each node represents a secondary
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structure element (15), to finer modeling methods, in
which each node represents an atom (16).
A common methodology to represent a macromolecular

structure as a network considers amino acids/bases as
nodes and inter-residue interactions as edges (17–20). In
protein structures, it has been shown that the network of
amino acid interactions is highly clustered and has proper-
ties of a small-world network. Such a network is charac-
terized by the presence of a small number of central nodes
(21). Interestingly, the central nodes defined by the small-
world network description were found to be associated
with key residues in protein folding and dynamics
(18,22–25), functional sites such as enzymes catalytic
sites, ligand-binding sites (17,26–29) and hot spots in pro-
tein–protein interactions (20,30).
Previously, a small-world network approach has been

applied to study the conformational space of tRNA sec-
ondary structure (31). In addition, a network approach
has been utilized for RNA structure characterization, in
which different types of interactions (i.e. Watson–Crick,
Hoogsteen and Sugar-edge) were applied to present the
complexity of the structure (32). Here, we represented
the rRNA 3D structure as a network with nucleotides as
nodes and inter-nucleotides interactions as edges. We
revealed that the rRNA structure-derived network fits
the model of geometric random graphs with characteris-
tics of a small-world network. Though the network para-
meters were directly derived from the structure of the
ribosome complex, they were not found to simply corre-
late with classical structural parameters (e.g. solvent sur-
face accessibility). The lack of strong correlation between
structural properties and network parameters suggests
that the latter can provide extra insights on the ribosome
structure–function relationship. Specifically, we found
that nucleotides with significantly high centrality values
in the network correspond to the major functional regions
in the small and large subunits of the ribosome. Addition-
ally, we observed that rRNA mutations that cause a
strong deleterious effect to the ribosome function, exhibit
high centrality. In summary, applying a network-based
analysis, we show that critical sites in the bacterial ribo-
some exhibit high values of local and global structural
parameters. Moreover, these functional sites can be iden-
tified based solely on the network parameters without con-
sidering evolutionary information.

MATERIALS AND METHODS

Network analysis

The ribosome structure was presented as an undirected
graph (network), in which nodes represent nucleotides or
amino acids, and edges represent contacts. In order to
generate the network, all atomic contacts were calculated
using the CSU program (33). Nucleotides or amino acids
were considered to be in contact if at least one of the
corresponding atoms was in surface complementarity, as
defined in ref. (33).
Two parameters were calculated to characterize the net-

work: the average shortest path length, and the average

clustering coefficient. The average shortest path length of a
network with N nodes is defined by Equation (1):

L ¼
2

N N� 1ð Þ

XN�1

i¼1

XN
j¼iþ1

Lij 1

where, Lij is the shortest path length between nodes i and j.
The average clustering coefficient of a network with N

nodes is defined by Equation (2):

C ¼
1

N

� �XN
i¼1

Ci 2

where, Ci is the clustering coefficient of node i, defined
as the fraction of contacts that exist among its nearest
neighbors relative to the maximum contacts among all
neighbors.

In order to test the network properties, we calculated
the average shortest path length and the average cluster-
ing coefficient for random and regular networks with
the same number of nodes, and the same average
number of edges (degree) (24). In a random network,
Lrand � lnN= lnK and Crand � K=N, while for a regular
network, Lreg ¼ NðNþ K� 2Þ=½2KðN� 1Þ� and Creg ¼

3ðK� 2Þ=½4ðK� 1Þ�, N denotes number of nodes and K
number of edges.

For each node in the network, we calculated three cen-
trality measures, i.e. degree, closeness and betweennness.
The degree of a node i is defined as the number of edges
connected to i. The closeness of a node i is defined as the
inverse average length of the shortest paths to all other
nodes in the graph (34). The closeness of node i is given in
Equation (3):

N� 1j jP
j6¼i

dij
3

where, N is the total number of nodes in the network, and
dij is the shortest path length to node i.

The betweenness of a node i is defined by the number of
the shortest paths that cross node i. The betweenness of
node i is given in Equation (4):

X
j6¼k;i 6¼j;k6¼i

gjik
gjk

4

where, gjik is the number of the shortest paths from j to k
that pass through i.

The shortest path length calculations are based on a
modified form of Dijkstra’s algorithm (35). Network para-
meters were calculated with the igraph package version
0.1.2 using GNU R statistical software (http://cneur
ocvs.rmki.kfki.hu/igraph), and the network python pack-
age (https://networkx.lanl.gov).

Statistical analysis

Enrichment of mutations within high centrality nucleo-
tides was evaluated based on the Hyper Geometric
Distribution using the Fisher’s exact test. In addition,
we tested the enrichment in 100 random sets of nucleotides
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of the same size of each mutations dataset and expended
the tested set to include the contacting nucleotides, as
applied for the original datasets. The proportion of
nucleotides that were randomly sampled from the large
and small ribosomal subunit was as in the mutation
datasets.

Ribosome structure analysis

In order to define the ribosomal subunits interface, the
solvent accessible surface area of each nucleotide in the
16S and the 23S rRNA was calculated using the POPS
server (36,37). A nucleotide was considered to be in the
interface if it had at least one atom that lost solvent acces-
sibility upon complex formation (PDB codes 2AVY and
2AW4).

The nucleotides of the tunnel were defined using the 3V
Channel Extractor (http://geometry.molmovdb.org/3v)
with a large probe radius of 9.0 Å and a small probe
radius of 3.4 Å. Using the 3V Channel Extractor, an
output file with the tunnel surface represented as water
atoms was generated. We considered a nucleotide to be
located in the tunnel if at least one of its atoms was located
at a distance <5 Å to the computed water oxygen atom.

Accessible surface area of each nucleotide was calcu-
lated using the POPS server (36,37). POPS is based on a
fast algorithm for calculating solvent accessible surface
areas of large macromolecular assemblies, such as the
ribosome. Nucleotides were defined as interface nucleo-
tides if their solvent accessible surface area decreased
upon subunit association. The accessible surface area of
each nucleotide in the 70S E. coli rRNA (PDB codes
2AVY and 2AW4), and the 16S and 23S rRNA were cal-
culated separately.

Theoretical B-factors were downloaded from the iGNM
V1.2 database (http://ignm.ccbb.pitt.edu). The GNM pro-
gram calculated the theoretical B-factors (1JJ2) for a 1 nt
model using a cutoff of 7.3 Å for aa, and 19 Å for
nucleotide.

The following nucleotides in the 16S rRNA were
defined as the A site: 1405, 1406, 1407, 1408, 1409, 1410,
1490, 1491, 1492, 1493, 1494, 1495 and 1496. The follow-
ing nucleotides in the 23S rRNA were defined as the PTC
nucleotides: 2061, 2062, 2063, 2064, 2251, 2252, 2439,
2450, 2451, 2452, 2453, 2492, 2493, 2494, 2503, 2506,
2507, 2553, 2554, 2555, 2573, 2583, 2584, 2585, 2602
and 2603.

Evolutionary rate

Aligned sequences and a guide tree for both the 16S/18S
and the 23S/28S were downloaded from the ARB-SILVA
database (release 92) (http://www.arb-silva.de) (38). The
16S/18S alignment comprises high-quality sequences with
a minimum length of 1200 bases for Bacteria and Eukarya
and 900 bases for Archaea. The 23S/28S alignment com-
prises high quality rRNA sequences with a minimum
length of 1900 bases. Positional variability in bacteria
was calculated with the ARB package using parsimony
function (38), including 168131 and 4115 sequences for
the 16S and 23S rRNA, respectively. The evolutionary

rate was calculated for each column as the mutations
sum divided by the mutations frequencies sum.

Mutation data

Datasets 1, 2. The two datasets are based on mutation
data, collected from various studies. The ribosomal
RNA mutation database in E. coli (16SMDB and
23SMDB) was downloaded (http://server1.fandm.edu/
departments/Biology/Databases/RNA.html) (39). We
further extended the database by including data from
recent studies (40–43). Dataset 1 includes mutations with
strong effect on the ribosome function were selected by
using a keyword search (strong, lethal, severe and deleter-
ious) excluding mutations with mild or moderate effect.
Further, the mutations were manually filtered to include
only single point mutations. In addition, those mutations
which had their phenotypic effect tested with the presence
of antibiotics were excluded. To avoid redundancy, we
included mutations with a minimal space of 3 nt in the
primary sequence. Additionally, we excluded mutations
that appeared in Datasets 3 and 4. In total, Dataset 1
included 44 nt: 25 nt in the 16S rRNA and 19 in the 23S
rRNA. The 16S rRNA mutated nucleotides included posi-
tions: 13, 18, 517, 529, 571, 627, 643, 702, 770, 787, 792,
865, 914, 922, 967, 981, 1200, 1207, 1401, 1409, 1414, 1418,
1483, 1491 and 1498. The 23S rRNA mutated nucleotides
included positions: 1832, 1836, 1849, 1896, 1916, 1926,
1932, 1940, 1946, 1955, 1960, 1972, 1979, 1984, 2252,
2504, 2507, 2580 and 2584 (Supplementary Table S5).
Dataset 2 includes mutations with mild effect of the bac-
teria function. In total, Dataset 2 included 30 nt: 18 nt in
the 16S rRNA and 12 in the 23S rRNA. The 16S rRNA
mutated nucleotides included positions: 531, 534, 618, 624,
631, 634, 641, 645, 651, 912, 966, 1203, 1341, 1351, 1388,
1397, 1404 and 1518. The 23S rRNA mutated nucleotides
included positions: 1067, 1098, 1914, 1921, 1940, 1951,
1979, 2249, 2254, 2477, 2561 and 2661.

Dataset 3, 4. These two sets were derived from two recent
studies, which applied random mutagenesis procedure on
E. coli 16S and 23S rRNA genes (44,45). In these studies,
53 and 77 mutations in the 16S and 23S rRNA, respec-
tively, were classified according to their phenotypic sever-
ity. The 16S and 23S rRNA included 50 and 69 base
substitutions, and 3 and 8 deletions, respectively. Among
the 16S base substitutions, 13 mutations were classified as
strong, 17 as mild and 20 as moderate. In the 23S base
substitutions, 12 mutations were classified as strong, 34 as
mild and 23 as moderate. Overall, the datasets included 25
positions (13+12) that were classified as strong and 51
positions (17+34) that were classified as mild.
The 16S rRNA mutated nucleotides with strong dele-

terious phenotype (Dataset 3) included the following
mutations: Y516G, C518U, C519U, A520G, G521A,
G973A, G1058A, G1068A, A1111U, C1208G, C1395U,
U1406C and U1495C. The 16S rRNA mutated nucleo-
tides with mild effect included: U49C, A51G, G57A,
A161G, G299A, A373G, A389G, C536U, G568C,
C614A, A622G, U684C, A1014G, C1054U, A1055G,
U1073C and U1085C. The 23S rRNA mutated
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nucleotides with strong deleterious phenotype included:
U860C, G864A, U2249A, G2250A, U2438C, G2446A,
A2450G, A2451U/G, A2453G, C2499U, G2603A, and
G2664A. The 23S rRNA mutated nucleotides with
mild effect (Dataset 4) included: G46A, A49G, G55A,
G58A, G123A, G215A, A324G, U328C, A330G,
A371G, G380A, C420U, G425A, G481A, U558A,
G578A, G656U, G778A, G1259A, C1297U, A1342G,
C1345U, U1397G, G1421A, A1572C, U1602C, A1614G,
U1683C, U1765G, C1800U, U1995C, G2027A, G2641A
and U2898C.
Throughout this work, nucleotides were presented

according to the E. coli sequence numbering.

RESULTS AND DISCUSSION

Ribosomal RNA exhibits small-world properties

Previously, it has been shown that amino acid network of
a model protein structure have the unique properties of a
small-world network (25). To study the properties of the
ribosome network, we investigated the topological proper-
ties of four rRNA networks, including the small ribosomal
subunit (PDB code 1J5E), two large ribosomal subunits
(PDB codes 1NKW, 1JJ2) and the rRNA of the entire
ribosome structure (PDB codes 2AVY, 2AW4). We pre-
sented the nucleotides and amino acids of the ribosome as
nodes in the graph. Two nodes were connected by an edge
when at least one atom from 1nt/aa was in contact with at
least one atom from a neighboring node. The inter-atomic
contacts were defined based on surface complementarity,
calculated with the CSU software (33).
The topological characteristics of a network are gener-

ally defined by two major parameters: the clustering coef-
ficient (C) and the average shortest path length (L) (see
Materials and Methods section). The clustering coefficient
is the probability that any two neighbors of a given node
in a graph are directly connected to each other, whereas
the average path length is defined as the average of the
minimal distance between all pairs of nodes in the graph.
Different than random networks, small-world networks
are characterized by a small number of highly central
nodes (21). In comparison to random networks of the
same size, small-world networks have a significantly
higher clustering coefficient (Csmall-world�Crand) and an
average shortest path length higher or in the same order
of magnitude (Lsmall-world�Lrand or Lsmall-world�Lrand)
(24). To test whether the ribosome structures have

characteristics of small-world networks, we calculated
the values of L and C of the ribosome networks,
and compared to their equivalent values in regular and
random networks with the same number of nodes and
an average number of edges. The values of L and C of
four rRNAs networks are presented in Table 1. Notably,
the C values calculated for the ribosome structures were
orders of magnitude larger than in randomly generated
networks, while the L values were in the same order of
magnitude as the theoretical random networks. In other
words, rRNA structure can be described as a network of
interacting nucleotides that have an intermediate value
of L and C, a property which characterizes the class of
small-world networks (21). In all four rRNA networks
we analyzed, the clustering coefficient values as well as
the average path lengths scaled with the values measured
for protein structures (19,46).

Small-world and scale-free properties have been found
in a large number of real world networks. However, the
small-world property is less studied in networks that are
not scale-free (47). To study the network properties of the
ribosome, we selected the 2.4 Å high-resolution structure
of the large ribosome subunit from H. marismortui
(PDB code 1JJ2). We compared the 23S rRNA network
extracted from 1JJ2 to five random graph models (48):
Erdös-Rényi random graphs (‘er’) (49), random graphs
with the same degree distribution as the data model net-
work (‘er-dd’), 3D geometric random graphs (‘geo’) (50),
Barabási-Albert-type scale-free networks (‘sf’) (51) and
stickiness-index-based networks (‘sticky’) (52). Based on
this comparison (Supplementary Table S1), we found
that the rRNA structure-derived network fits best with
the geometric random graph model both by global and
local properties. Overall, the rRNA structure-derived net-
work fits the geometric random graph model but is highly
clustered as typical for small-world networks.

Centrality measures and unique properties of the ribosome

Network analyses of protein structures have concluded
that high centrality measures are associated with key
(functional) positions, such as: enzyme catalytic sites,
ligand-binding sites (17,27,28) as well as hot spots in pro-
tein–protein interactions (20,30). The major parameters
examined in these studies included both local and global
properties of the protein structures. In an attempt to iden-
tify prominent nucleotides that have a central role in the
rRNA structure, we calculated three centrality measures

Table 1. Topological properties of four rRNA structures

rRNA structure Nodes Edges Average shortest path length Clustering coefficient

Lrand Lobserved Lreg Crand Cobserved Creg

T. thermophilus (30S) 1494 5389 3.7 12.5 104 0.0048 0.50 0.63
D. radiodurans (50S) 2766 10 673 3.9 11.6 179.6 0.0028 0.47 0.64
H. marismortui (50S) 2754 10 447 3.9 11.9 181.2 0.0028 0.48 0.64
E. coli (70S) 4371 16 049 4.2 15.5 198.2 0.0017 0.48 0.63

Average shortest path length and clustering coefficient were calculated for the small ribosomal subunit of T. thermophilus (PDB code IJ5E), the large
ribosomal subunit of D. radiodurans (PDB code 1NKW), the large ribosomal subunit of H. marismortui (PDB code 1JJ2) and the structure of the 70S
ribosome from E. coli (PDB codes 2AVY and 2AW4). The C and L of the random and the regular networks were calculated as described in text.
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for all nucleotides (nodes) in the network, i.e. degree, clo-
seness and betweenness. Degree is a local measure that
is defined as the number of edges directly connected to a
node, whereas closeness and betweenness are based on the
global centrality of the node. Closeness reflects the average
length of the shortest path connecting a node to all other
nodes in the network. Betweenness reflects the frequency
in which a node appears on the shortest path between any
two nodes in the network.

Closeness, betweenness and degree distributions have
been utilized to compare network topologies. Among
them, networks with small-world properties, such as
protein–protein interaction network (53) and protein
structure-based network (26). The distribution of the
three centrality measures of all nucleotides in the 23S
rRNA network (1JJ2) is presented in Figure 1. As pre-
viously observed in protein structures (17,26), the close-
ness parameter in the rRNA ribosome network showed
a bell-shaped distribution (Figure 1A). Additionally,
in accordance with previous observations in protein
structures (19,25,54), the degree parameter of the rRNA
structure follows a Poisson distribution (Figure 1C).
The latter observation is different from other small-
world networks such as regulatory networks that are
scale-free (51), namely, a small number of nodes having
very high degree values (51,55). Important to note that
based on a visual investigation of wiring diagrams of the
16S rRNA, it has been suggested that the ribosome has
characteristics of a scale-free network (32). Nevertheless,
the observed distribution of the degree values in our
nucleotide network (Figure 1C) indicates that the prob-
ability of highly connected nodes is relatively low. This
result is expected based on the limited binding capacity
of a given nucleotide, due to the excluded-volume effect
in the RNA (56). Unlike the distribution of the degree
parameter, the betweenness centrality parameter displays
a power law distribution (Figure 1B), meaning that
the majority of nucleotides demonstrate low values of
betweenness, while only a few possess high values.

We further calculated the Pearson correlation coefficient
for the different parameters in the 23S rRNA network
(PDB code 1JJ2, 2754 nt). Our results indicate a weak posi-
tive correlation between the parameters. The correlation
between closeness and betweenness is 0.42 (P< e-15),

while the correlation between degree and closeness, and
between degree and betweenness is 0.54 and 0.50, respec-
tively (P< e-15). The relative weak correlation between the
network parameters suggest that each parameter can be
applied independently to describe specific nodes (nucleo-
tides) in the network, i.e. a node in the network can have a
small number of neighbors (low degree) but can still be
located in a central position in the structure (high closeness
and betweenness). A notable example is nt 2602 in the 23S
rRNA (E. coli numbering throughout), which has a high
closeness value in E. coli 70S (z-score=1.7, P< 0.05) but
has a very low degree, i.e. in contact with only two neigh-
bors. Moreover, the betweenness of this nucleotide was
zero, meaning that there is no short path that passes
through this position. Interestingly, nt 2602 is the only
nucleotide in the PTC that has zero betweenness. The
unique global and local properties of nt 2602 are consistent
with the different conformations observed in various func-
tional complexes of the large subunit with different anti-
biotics and substrate analogs (57–60).
Though this study focuses on the unique properties of

the rRNA, since the ribosome consists of both the rRNA
and proteins, it was intriguing to examine the influence of
the ribosomal proteins on the network properties of the
rRNA. Thus, we analyzed the centrality measures sepa-
rately for the 23S rRNA structure and for the 50S subunit,
which comprises the 23S rRNA, the 5S rRNA and the
ribosomal proteins. Both networks are based on the
atomic coordinates of the 2.4 Å resolution structure
from H. marismortui (PDB code 1JJ2). The first network
included 2754 nodes and 10 447 edges (Table 1), while the
second network, including the ribosomal proteins, was
comprised of 6577 nodes and 33 013 edges. Interestingly,
high correlations between the rRNA and the 50S subunit
were obtained for closeness (r=0.96, P< e-15) and
betweenness (r=0.72, P< e-15). While a lower correla-
tion was measured for the degree parameter (r=0.63,
P< e-15). Similarly, we compared between the T. thermo-
philus (PDB code 1J5E) 16S rRNA network (Table 1) and
the 30S structure that comprises the 16S rRNA and the
ribosomal proteins (3850 edges and 18 929 edges). The
Pearson correlation coefficient of the 16S rRNA nucleo-
tides was 0.91, 0.86 and 0.67 (P< e-15) for closeness,
betweenness and degree, respectively. The high correlations

Figure 1. Closeness, betweenness and degree distributions calculated for the structure-based network of the large ribosomal subunit (PDB code 1JJ2).
The presented distributions correspond to the 23S rRNA nucleotides. (A) Closeness, (B) betweenness and (C) degree.
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in the network parameters, specifically the closeness,
between the rRNA and the entire ribosome networks
of both the 30S and the 50S suggest that the proteins
do not change the network properties. These results
reinforce that the rRNA network can be analyzed
independently.

Comparative analysis of the rRNA structure using
centrality measures

We further compared the centrality values of ribosomal
networks from different organisms. When comparing
between the 70S rRNA of E. coli (8) (PDB codes 2AVY
and 2AW4) and the 70S of T. thermophilus (9) (PDB codes
2J00 and 2J01) we observed extremely high correlations
for both closeness (r=0.98, P< e-15,) and degree
(r=0.87, P< e-15), though a lower correlation was
observed for betweenness (r=0.7, P< e-15). Similar
results were obtained when comparing the 23S rRNA net-
work from bacteria to the 23S rRNA from archaea, as
well as for the 16S rRNA from different bacteria (E. coli
and T. thermophilus) (Supplementary Table S2). Here
again, among the three centrality parameters closeness
was the most conserved, while betweenness tended to be
more variable.

A comparison between the network parameters from
different organisms is shown for a stretch of consecutive
nucleotides in the central domain V of the 23S rRNA
(Figure 2). The fine-tuned correlation in the closeness
values (Figure 2A) is notable when comparing the 70S
structures from E. coli (8) and T. thermophilus (9) as
well as to the H. marismortui 50S structure (6).
Conversely, the betweenness (Figure 2B) and the degree
(Figure 2C) parameters show notable variations among
the different structures. For example, variations in the
betweenness and degree parameters between the two
E. coli structures were observed in the region between
nucleotides U2473 and C2475 in helix H89. These varia-
tions may correspond to the movement of the L1 arm, as
observed in the two ribosome structures (8).

Centrality and functionality

The most intriguing question when studying the structural
properties of the ribosome is to what extent these proper-
ties correspond to functionality. Given that evolutionary
conservation is indicative of functionality, we computed
the correlation between the network parameters and the
evolutionary rate of the 23S rRNA sequence. Evolutionary
rate in bacteria was calculated using the ARB software,

Figure 2. The correlation between the centrality measures in different organisms is presented for the central domain V, nt 2433–2610. (A) Closeness,
(B) betweenness and (C) degree. Network parameters are based on the rRNA network calculated for the E. coli 70S (2AVY, 2AW4: blue line),
(2AW7, 2AWB: cyan line), T. thermophilus 70S (2J00, 2J01: red line) and H. marismortui 50S (1JJ2: black line).
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based on aligned sequences and a guide tree downloaded
from the SILVA database (38) (see Materials andMethods
section). Our results show a weak negative correlation
between the evolutionary rate and closeness (PDB codes
2AVY and 2AW4) in the 16S and 23S rRNA (r=0.44,
P< e-15). These results are consistent with earlier studies
in proteins in which the closeness was found to be in cor-
relation with evolutionary conservation, with values ran-
ging between r=0.24 and r=0.62 (17).

To test the conjecture that the network parameters can
give new insight into the ribosome function, we focused on
two major functional sites, the PTC and the nascent pep-
tide exit tunnel. The PTC is the catalytic center, located on
the interface side of the large subunit at a cavity that opens
into a roughly cylindrical tunnel, which is �100 Å long
and spans the entire body of the large ribosomal subunit.
Quite expected, we found that the PTC nucleotides
(defined in the Materials and Methods section) demon-
strated higher than average closeness values (the average
z-score for all PTC nucleotides was 1.47). Moreover, when
compared to all nucleotides in the entire ribosome com-
plex, the closeness values of the PTC nucleotides were
significantly higher (Figure 3). This result is consistent
with the observation that the catalytic sites in enzymes
are located in regions with high closeness (17,27,61).

In order to examine whether high closeness of the
ribosomal nucleotides simply reflect their low accessibility
to the solvent, we calculated the Pearson correlation
between the solvent accessible surface area of each nucleo-
tide in the 23S rRNA (36,37) and the network parameters.
The correlations for closeness, betweenness and degree
were �0.57, �0.37 and �0.65, respectively (in all cases
the P-value was highly significant P< e-15). As shown in

Figure 3, overall the closeness and the surface accessibility
demonstrated a weak negative correlation. Nevertheless, it
can be noticed that the high closeness of the PTC is inde-
pendent of the surface accessibility.
The outstanding high closeness centrality values

observed here for the PTC is consistent with the high
evolutionary conservation previously shown for this
region (57,58,62–64). To test the ability of each one of
the parameters: evolutionary rate, solvent accessibility,
closeness, betweenness and degree to exclusively charac-
terize the PTC nucleotides, we applied a ROC curve ana-
lysis (65) for each property independently (Figure 4). As
described in the Materials and Methods section, the PTC
nucleotides were labeled as ‘positives’ and the remaining
nucleotides in the 70S ribosome (16S and 23S) were
labeled as ‘negatives’. The ROC curves show the true posi-
tive rate versus the false positive rate. To quantify the
classification performance, we compared the area under
the curve (AUC) of the different ROC plots. As can be
noticed (Figure 4) the closeness centrality better classifies
the PTC nucleotides (AUC=0.95) compared to all other
structural parameters, as well as to the evolutionary
conservation rate (AUC=0.87). Remarkably, for 100%
sensitivity, i.e. all 26 nt comprises the PTC nucleotides
being classified correctly, the closeness achieved 78%
accuracy while the evolutionary rate achieved only 48%
accuracy. Additionally, our results show that the solvent
accessibility parameter did not improve the PTC nucleo-
tides’ identification. This latter result differs from obser-
vations in proteins showing that solvent accessibility
improves the identification of enzyme catalytic residue sig-
nificantly (17,26). Taken together, our results indicate that
the ribosome major catalytic site can be accurately

Figure 3. Closeness versus solvent accessible surface area (SASA)
calculated for the E. coli 70S rRNA. The Pearson coefficient shows a
weak negative correlation (r=0.51, P< e-15). The A-site nucleotides of
the 16S rRNA are colored green. The PTC nucleotides are colored red.
Notably, the PTC nucleotides demonstrate high closeness values inde-
pendent of the solvent accessibility.

Figure 4. ROC curves classifying the PTC nucleotides. The structural
parameters are based on the E. coli 70S network (2AVY, 2AW4). As
shown, the PTC nucleotides were better classified using the closeness
parameter (red line, AUC=0.95) rather than the evolutionary rate
(black line, AUC=0.87), solvent accessibility (blue line, AUC=0.74),
degree (green line, AUC=0.71) and betweenness (magenta line,
AUC=0.67).
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identified by a global topological measure (closeness) with
no requirement for evolutionary information.
In addition to the PTC, other functional sites in the

ribosome such as the A-site in the 30S (Figure 3) and the
exit tunnel in the 50S (Supplementary Table S4) demon-
strated high closeness values. Generally, the 23S rRNA nts
were found to have higher closeness values compared to
the 16S rRNA nucleotides, with a maximum z-score of
2.37 and 1.85, respectively. Nevertheless, it can be noticed
that both the PTC and the A-site nucleotides encompass
relatively high closeness values compared to the rest of the
70S nucleotides (Figure 3). Additionally, the exit tunnel
nucleotides (50S) were found to possess high closeness
values with the highest values for the tunnel nucleotides
facing the PTC (Supplementary Table S4). Further, we
examined the number of contacts (degree) of the tunnel
nucleotides (PDB code 1JJ2). Interestingly, the high
degree values, like the closeness values, were independent
of the solvent accessibility. Overall, the average degree of
the tunnel nucleotides (123 nt) was found to be significantly
higher (8.3) than the average degree of all 23S rRNA
nucleotides (7.6) (P=0.001, t-test).
When examining the distribution of degree values

along the tunnel by dissecting it into 10 Å wide slices
(5 Å overlap) starting from the PTC (nt 2451), we found
that the highest degree values in the tunnel were within a
distance of 20–30 Å from the PTC (Supplementary
Table S3). The distribution of the degree values along
the ribosome tunnel could be indicative of the tunnel
dynamics. To better understand the correspondence
between the tunnel dynamics and the degree we compared
the profile of the degree in the tunnel with a theoretical B-
factor calculated with the Gaussian Network Model
(GNM) method (66,67). GNM has been introduced as
an efficient tool to explore the dynamics of proteins and
large biomolecular structures such as the ribosome
(12,54,68). In the GNM, a structure is represented as a
network of N nodes corresponding to the a-carbon
atoms of proteins and selected atoms of the nucleotides
(see Materials and methods section). In accordance with
the degree distribution, the theoretical B-factor confirmed
that the center of the tunnel (15–25 Å from nt 2451) is
more rigid, but its flexibility increases as it reaches the
tunnel exit. Based on the crystallographic B-factor
values for the RNA atoms in the H. marismortui large
ribosomal subunit, an upper bound estimate of nucleotide
thermal fluctuations of 0.63 Å was suggested (6). It has
been argued that random structural fluctuations of this
magnitude will not allow drastic changes in the tunnel
dimensions, which would be required in order for the nas-
cent polypeptide to form tertiary structures (69). Our net-
work analysis, demonstrating high closeness of the tunnel
nucleotides and a relatively high degree of nucleotides that
construct the tunnel wall (Supplementary Tables S3 and
S4, Figure S1) supports this hypothesis (69). The relatively
high degree in a central region within a macromolecule is
quite expected and is consistent with other observations in
globular proteins showing that the residues in the protein
core are characterized by a higher mean degree than the
surface residues (18).

As shown, the PTC nucleotides have significantly high
closeness values among all the ribosome nucleotides.
Notably, the top ranked nucleotides in the 70S rRNA
only partially overlap with the PTC nucleotides. This can
also be observed in the exit tunnel profile (Supplementary
Table S4), which shows that the highest average closeness
is within a distance of 5–15 Å from nt 2451. To identity the
nucleotides with the highest closeness in the rRNA, we
ranked the closeness values of nucleotides in the E. coli
70S rRNA (8) (PDB codes 2AVY and 2AW4) and the
T. thermophilus 70S rRNA (9) (PDB codes 2J00 and
2J01). Interestingly, among the top ten nucleotides with
the highest closeness values in each of the ribosome net-
works (from different bacteria), 7 nt were common (1938,
2439, 2584, 2591, 2604, 2605 and 2608). Interestingly, these
nucleotides only partially overlap the PTC nucleotides.
This result is consistent with previous observations in pro-
teins (26) showing that the most central residues fall near
the center of the structure, which often does not overlap
with the catalytic residues. Notably, in the ribosome net-
works, among the top ranked nucleotides there were no
nucleotides that directly interact with the ribosome sub-
strate, such as nt 2062, 2573, 2585, 2602 and 2609 (62).
This could be partially explained by the conformation var-
iations observed for these nucleotides in different ribosome
structures (57,62,70). Interestingly, among the ten top
ranked nucleotides in the two bacteria (70S) and in the
archaeon (50S) was nt A2439 with extremely high close-
ness. This nt (A2439, H74) is located in the symmetrical
region of the ribosome (62), and forms an A- to P-region
contact through its ribose (A2439 is bulged with U2586,
H93). The high closeness values in the vicinity of the PTC
both in the bacteria (70S), and in archaea (50S), may sug-
gests that the spatial organization of the rRNA nucleotides
is required to enable signal transmission between remote
locations in the ribosome. This hypothesis is supported by
the observation of a 2-fold symmetry axis within domain V,
which suggests that the PTC resulted from an early gene
duplication event and may indicate that domain V is the
most ancient part of the primitive ribosome (62,70).

Network properties of critical positions in the ribosome

As demonstrated in Table 1, the network of interacting
nucleotides in the 70S rRNA is highly clustered
(Table 1). Consequently, there is a relatively small
number of nucleotides that are highly central and serve
as interconnection hubs between all nucleotides in the
structure. A fascinating conjecture is that the latter
nucleotides have a central role in the function or stability
of the ribosome complex. Here, we focused on functional
information derived from mutagenesis studies, including
directed mutations and random mutations, which have
been reported to specifically affect ribosome function or
subunits association (39–45,71).

The first dataset we tested included 44 mutations, which
have been reported to have strong, lethal, severe or dele-
terious effect on ribosome function, activity, growth, asso-
ciation or translation fidelity (see Materials and Methods
section). We defined the mutated nucleotides and their
structural neighbors as experimental set 1. Overall, the
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nucleotides of the experimental set 1 represented 7% of
the ribosomal nt (308/4371). As a negative control, we
extracted from various studies a dataset of 30 mutations
that have mild effect of the bacteria function (see Materials
and Methods section, Supplementary Table S5). The mild
mutations and their structural neighbors were defined
as experimental set 2. Overall, the nucleotides of the
experimental set 2 represented 5% of the ribosomal nt
(212/4371).

The two additional datasets were based on a random
mutants library of rRNA gene (44,45). The first dataset
included deleterious mutation with strong (25 nt) effect
on E. coli growth. The second dataset included mutations
with mild (51 nt) effect on E. coli growth (44,45). Further,
we defined the mutated nucleotides and their structural
neighbors as experimental sets. Overall, the nucleotides
of experimental set 3, derived from the strong deleterious
mutations represented 4% of the ribosomal nt (185/4371),
and the nucleotides of experimental set 4 derived from the
mutations with mild phenotype represented 10% of the
ribosomal nt (422/4371).

Next, we defied three subsets of nucleotides that encom-
pass high centrality, i.e. nucleotides with the top 5%
values of closeness, betweenness and degree, in the
E. coli 70S rRNA (PDB codes 2AVY and 2AW4). Their
exact position is presented on the ribosome secondary

structure diagram (Supplementary Figures S4 and S5).
In order to calculate the correspondence of the experimen-
tal sets to the network parameters, we calculated the frac-
tion of the experimental sets nucleotides among the
nucleotides with high values (top 5%) of closeness,
betweenness and degree (Figure 5). To evaluate the enrich-
ment of the mutations among nucleotides with the high
centrality values, we applied the Hyper Geometric
Distribution analysis using the Fisher’s exact test.
Additionally, to test the significance of the results, we
selected 100 random sets with equal number of nucleotides
as in each one of the experimental sets (see Materials and
Methods section) and tested their overlap with the subsets
of nucleotides with high centrality values. As shown in
Figure 5A, the set of mutations with strong deleterious
effects on bacterial growth (experimental set 1), was signif-
icantly enriched with nucleotides with high values of close-
ness and betweenness (Figure 5A, black bars). An
enrichment (relatively to randomly selected nucleotides)
was also observed in experimental set 3 (Figure 5C) but
was not observed in the control sets (experimental set 2,
4), which comprises mutations with mild effect on bacterial
growth (Figure 5B and D). Interestingly, the significant
enrichment of deleterious mutations among highly central
nucleotides was found in two independent sets of data,
which were obtained from different sources. By examining

Figure 5. A histogram demonstrating the enrichment of mutated nucleotides among three sets of nucleotides: (A) experimental set 1, (B) experimental
set 2, (C) experimental set 3 and (D) experimental set 4. High centrality refers to nucleotides with significantly high values (top 5%) for closeness,
betwenness and degree. Black bars represent nucleotides with high centrality values (top 5%). The gray bars represent subset of ribosomal nucleo-
tides that do not possess high centrality. White bars represent randomly selected equal sized subsets of nucleotides. The enrichment of mutations that
cause strong deleterious effect on ribosome function is statistically significant in the strong deleterious mutations (A and C) but not in the mild
mutations (B and D).
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different thresholds for high centrality definition,
we obtained that in all thresholds (Supplementary
Figure S2) there was an enrichment of nucleotides with
strong deleterious mutation (experimental set 1, 3) among
nucleotides with high closeness centrality. Here again, we
did not observe a significant enrichment for the nucleotides
with the mild phenotype (experimental set 2, 4), relatively
to randomly selected nucleotides (Figure 5, Figure S2).
It has been shown (44,45) that evolutionary conserva-

tion (72) is high for both strong deleterious mutations and
for a large fraction of the mild mutations. In order to
quantify the ability of evolutionary rate (38), and the clo-
seness centrality to classify strong deleterious mutations
we applied a ROC curve analysis (65). Strong deleterious
mutations comprising nucleotides in experimental set 1
and 3 were labeled as ‘positives’ (433) and the remaining
nucleotides in the 16S and 23S rRNA were labeled as
‘negatives’. Our results showed (Supplementary
Figure S3) that in the 16S rRNA, the performance of
the closeness-based classifier was better (AUC=0.77)
than the evolutionary rate classifier (AUC=0.67). An
overall higher performance was observed in the 23S
rRNA for both the closeness (AUC=0.85) and the evo-
lutionary rate classifiers (AUC=0.84).
In summary, we have shown that deleterious mutations,

in contrast to mild mutations, tend to have high closeness
values in the rRNA. Furthermore, with the closeness para-
meter derived from a single ribosome structure we were
able to distinguish the strong deleterious mutations from
mutations which do not affect the ribosome function inde-
pendent of the evolutionary conservation of the mutated
nucleotides. Quite strikingly, in the small subunit the clo-
seness parameter achieved even better performance com-
pared to the evolution-based parameter, which is
traditionally used for defining functionality.

CONCLUSION

Here, we have applied a network approach to study the
unique properties of the bacterial and the archaeal rRNA.
We show that the different ribosome structures have prop-
erties of a small-world network and that the network
properties correlate weakly with structural properties of
the ribosome as well as with evolutionary conservation.
Interestingly, the active sites of the ribosome demon-
strated high centrality measures independent of the
surface accessibility and evolutionary conservation, rein-
forcing their unique structural properties. Most promi-
nently, we show that the network parameters can point
out nucleotides with critical functional roles. Specifically,
we found that the major functional nucleotides in the
ribosome demonstrate significantly high centrality values
in both global and local properties. In addition, we were
able to distinguish mutations in nucleotides, which have
deleterious effect on the ribosome function or assembly
from those which cause mild effect, based on their network
centrality. We suggest that the closeness centrality mea-
sures can be used to classify functional and critical posi-
tions in the ribosome, independent of their evolutionary
conservation. In conclusion, we present a new approach to

characterize essential positions in the bacterial ribosome,
which can also be exploited as a tool for structural com-
parative analysis of large RNA structures.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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