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Abstract: Oncolytic virotherapy is a type of nanomedicine with a dual antitumor mechanism. Viruses
are engineered to selectively infect and lyse cancer cells directly, leading to the release of soluble
antigens which induce systemic antitumor immunity. Representative drug Talimogene laherparepvec
has showed promising therapeutic effects in advanced melanoma, especially when combined with im-
mune checkpoint inhibitors with moderate adverse effects. Diverse viruses like herpes simplex virus,
adenovirus, vaccina virus, and so on could be engineered as vectors to express different transgenic
payloads, vastly expanding the therapeutic potential of oncolytic virotherapy. A number of related
clinical trials are under way which are mainly focusing on solid tumors. Studies about further
optimizing the genome of oncolytic viruses or improving the delivering system are in the hotspot,
indicating the future development of oncolytic virotherapy in the clinic. This review introduces
the latest progress in clinical trials and pre-clinical studies as well as technology innovations di-
rected at oncolytic viruses. The challenges and perspectives of oncolytic virotherapy towards clinical
application are also discussed.

Keywords: oncolytic viruses; nanotechnology; oncolytic virotherapy; immunotherapy; melanoma;
head and neck cancer

1. Introduction

Viruses have been gradually discovered for their antitumor effects since 1904, and a
woman with acute leukemia showed clinical remission after a viral infection [1]. Therefore,
many studies have been performed to discover the oncolytic ability of different types of
viruses. It started with wild viruses, but the results were unsatisfactory due to the uncon-
trollability of wild viruses [2]. With the advent of genetic engineering by knockouts and/or
knockins of certain genes in the viral genome can attenuate virulence and enhance tumor
specificity of the virus, making the use of viruses in cancer therapeutics a reality [3]. In 2004,
the first drug of the oncolytic virus Rigvir was approved to treat melanoma in Latvia,
followed by Oncorine for head and neck cancer [4,5]. However, oncolytic virotherapy has
not attracted much attention due to insufficient clinical evidence. The emergence of T-VEC,
an oncolytic virus based on herpes simplex virus (HSV)-1, sparked renewed interest in
oncolytic virotherapy [6]. Nowadays, a variety of oncolytic viruses have been developed,
and those entered clinical trials showed promising results regarding safety and treatment
efficacy [7].
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Oncolytic viruses generally refer to viruses after genome engineering. Natural tropism
and genetic targeting facilitate the specific selectivity of oncolytic viruses to the tumor cells.
Briefly, oncolytic viruses inhibit tumors by directly infecting and lysing tumor cells and
triggering a systemic immune attack. After infection, the virus starts its replication process,
producing viral proteins, reducing cell function, stimulating oxidative stress states, and
contributing to the activation of pathways being related to the autophagic processes. Lysis
of cancer cells triggers the release of a variety of tumor-associated antigens (TAAs), which
are taken up by the antigen-presenting cells (APC) to present tumor antigen information
to naïve T cells in the lymph nodes. Thereafter, CD4+ and CD8+ T cells are stimulated,
and at the same time, a series of cytokines are released that consequently lead to the
migration and maturation of inflammatory cells. Antitumor immune response is activated.
With the continuous oncolysis caused by the virus and immune attack, an increasing
number of TAAs are released, thus generating more effector T cells and leading to a cascade
of responses. Additionally, memory T cells recognizing TAAs distributed in the circulatory
system will conduct immune tracking of distant tumors more than infected tumors [8,9].
However, current oncolytic virotherapy has not given full play to the ideal antitumor ability
due to inadequate oncolytic ability, physical barriers, and antiviral host immunity during
its delivery [10].

Considerable efforts have been made to improve the efficiency of oncolytic virotherapy.
Strategies to combine oncolytic virus with conventional therapies, immune checkpoint
inhibitors (ICIs), and even the chimeric antigen receptor (CAR)-engineered T-cell therapy,
hold the hope for producing synergistic benefits [11,12]. Moreover, multiple functional
elements have been introduced into the genome of oncolytic viruses to enhance their
therapeutic effects. Additionally, a variety of delivery methods have been developed to
concentrate the oncolytic viruses in tumor lesions more efficiently. In this review, we will
introduce current applications of oncolytic viruses in the clinic, including approved drugs
and representative clinical trials. Research on improving antitumor functions of oncolytic
viruses and their delivery efficiency, will also be illustrated to discuss the progress and
prospects of oncolytic virotherapy toward further clinical application.

2. Approved Oncolytic Viruses

Rigvir was the first approved oncolytic virus, based on ECHO-7 virus to treat melanoma
in Latvia in 2004 [4]. Subsequently, a second oncolytic virus H101 (Oncorine) which is an on-
colytic Ad5 with E1B-55kD deletion, was approved for nasopharyngeal carcinoma in 2005
in China [5]. In a multi-center, randomized and controlled phase III trial combining H101
with chemotherapy, the objective response rate (ORR) in squamous cell carcinoma of the
head and neck (SCCHN) was 78.8%, compared with the 39.6% of control group (p < 0.001),
demonstrating the immense anti-cancer efficacy of H101 combined with chemotherapy [13].
After its launch to the market, potential indications on liver cancer, pancreatic cancer, lung
cancer, and malignant pleural effusion were also explored in clinical trials and have shown
certain efficacy [5,14]. However, H101 had slightly impact on the market which might be
due to the favorable efficacy of radiotherapy for nasopharyngeal carcinoma.

Recently, talimogene laherparepvec (T-VEC) showed a significantly better ORR in
unresectable stage IIIB-IV melanoma and was fast-tracked by the Food and Drug Adminis-
tration (FDA) in 2015 [15]. T-VEC is a live, attenuated HSV-1 with deletions of the ICP34.5
and ICP47 and an insertion of a human granulocyte–macrophage colony-stimulating factor
(GM-CSF) cassette [16]. Deletions of the ICP34.5 and ICP47 can improve tumor suppression
effects and neuron safety of the virus, while the insertion of GM-CSF can promote local
expression of GM-CSF and boost APC and trigger systemic antitumor immunity [16,17].
T-VEC is administered by intratumoral injection. Thus, melanoma is the most widely
evaluated tumor due to its accessibility of lesions. In representative the OPTiM study,
which was a randomized, phase III open-label clinical trial to evaluate T-VEC monotherapy
compared with GM-CSF in patients with unresectable stage IIIB-IV melanoma, the ORR
of T-VEC was significantly higher than that of GM-CSF (26.4% vs. 5.7%; p < 0.001) [15].
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Thereafter, T-VEC was approved by the FDA, and a phase II clinical trial (ClinicalTrials.gov,
NCT02211131) is currently being carried out to evaluate the efficacy of T-VEC as neoad-
juvant therapy in melanoma [18]. According to the interim analysis, patients receiving
neoadjuvant intratumoral injection of T-VEC have a two-year relapse-free survival (RFS) of
29.5% and a two-year overall survival (OS) of 88.9%, with an overall hazard ratio of 0.75
(80% CI = 0.58–0.96) and 0.49 (80% CI = 0.30–0.79), respectively, compared with those going
straight to surgery [18]. Oncolytic virotherapy has attracted great attention again, and a
series of clinical or preclinical studies have been actively conducted.

ICIs such as PD-1 inhibitors, have shown limited response rates in some cancer pa-
tients, especially those with poor immune infiltration in tumor lesions [19]. As mentioned
above, oncolytic viruses can enhance antitumor effects by inducing systemic immunity.
Studies have shown that T-VEC can promote immune infiltering systematically, turn the
tumor microenvironment (TME) from ‘cold’ to ‘hot’, thus promote the efficacy of ICIs [20].
Preliminary results from phase I-II clinical trials demonstrated the benefits of combin-
ing T-VEC and ICIs in advanced melanoma. Whether combined with the PD-1 inhibitor
pembrolizumab or the CTLA-4 inhibitor ipilimumab, the response rates of the combined
therapy were significantly improved [20,21]. However, a phase III clinical trial of T-VEC in
combination with pembrolizumab showed that the combination therapy did not signifi-
cantly improve progression-free survival (PFS) or OS compared with the control group in
unresectable stage IIIB–IVM1c melanoma [22]. Subgroup analysis of this trial suggested
that melanoma patients with normal baseline levels of LDH and low tumor burden may
benefit from this combination. It cannot be ruled out that the lack of improvement in PFS
or OS may be partly related to the choice of evaluation criteria because the adoption of
RECIST/iRECIST, which are criteria for systemic therapy in the assessment of local inter-
vention, may not be accurate enough [23]. In other malignancies, such as SCCHN, sarcoma,
and breast cancer, the efficacy of this combination therapy is also under investigation, and
currently, it has shown tolerable safety profiles [24–26]. In addition to combining with
ICIs, researchers have explored the combination of T-VEC with chemotherapy, radiother-
apy, targeted therapy, or cell therapy [6,27,28]. Preoperative intratumoral T-VEC with
concurrent external beam radiation therapy induced a 95% pathologic necrosis rate of 24%
(7/29) in a phase IB/II clinical trial for soft tissue sarcomas [29]. In triple-negative breast
cancer, 55% (5/9) of patients achieved RCB0 when treated with T-VEC and neoadjuvant
chemotherapy [30]. The results of clinical trials on T-VEC combined with targeted therapy
or cell therapy are still waiting to be reported.

Teserpaturev/G47∆ (Delytact) is another approved oncolytic virus based on HSV-1 for
glioma in Japan. G47∆ is oncolytic HSV-1 with the deletion of ICP34.5 and ICP47 genes, and
a insertion of lacZ to inactivate the ICP6 gene to further enhance the tumor specificity [27,28].
In a phase I/II study of G47∆ for recurrent or progressive glioblastoma, 13 patients were
recruited and received repeated intratumoral injection of G47∆ (UMIN-CTR Clinical Trial
Registry UMIN000002661). According to the latest results, G47∆ showed a better safety
profile than T-VEC in the brain with a higher dose and was generally well tolerated. The
median OS was 7.3 months and the one-year survival rate was 38.5%. Notably, three
patients survived more than 46 months, including one who reached complete response (CR)
and one who reached partial response (PR). The median PFS was eight days, possibly due
to a sudden influx of immune infiltration towards tumor cells according to the histology of
biopsy and the shrinkage of enlarged lesions after steroid administration, which suggest
its potential to be combined with ICIs [31]. As seen in murine models, the combination
of G47∆ and anti-CTLA-4 antibody has shown enhanced antitumor activity [32]. Recent
published data from the phase II study show that for 19 patients recruited, the one-year
survival rate after G47∆ initiation reached 84.2% in a higher total dose than that of the
phase I/II study, and the median OS was 28.8 months from the initial surgery, which were
better than the historical data (UMIN-CTR Clinical Trial Registry UMIN000015995) [32,33].
One patient reached PR, 18 patients reached stable disease (SD), and three patients were
stable for more than three years after the last G47∆ administration, indicating that G47∆
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could induce a long-term disease control [33]. The promising results indicate G47∆ is a
favorable option for malignant glioma treatment.

3. Representative Oncolytic Viruses in Clinical Trials

Currently, a number of oncolytic viruses have entered clinical trials, and some pre-
liminary data on safety and efficacy profiles have been reported. For example, HSV was
used as the same vector as T-VEC and G47∆, such as OrienX010 [34] and OH2 [29], and
adenovirus was used as the same vector as Oncorine, for example CG0070 [35]. In fact,
a variety of viruses can be used as genome engineering vectors for oncolytic viruses as
long as there are no uncontrollable risks of serious toxicity. In this section, we summarize
the status of oncolytic viruses under development with promising results in clinical trials
(Table 1). Considering that some oncolytic viruses have not been further studied due to the
early results of modest efficacy or other reasons, this section only introduces viruses with
updated results from clinical trials in the last five years.

Among recent clinical trials, the majority of oncolytic viruses under development are
adenoviruses [35–49], followed by HSV, including HSV-1 and HSV-2 [34,50–59]. Others,
such as reovirus, vaccina virus, and coxsackie virus, could also be used as vectors [60–70].
No data about phase III clinical trials of novel oncolytic virotherapy have been published
in the past five years. Most of the reported data are from phase I clinical trials only with
published abstracts in conferences, suggesting that the knowledge is limited to safety data
thus far. Few treatment-related adverse effects above grade 4 are monitored, indicating
that oncolytic virotherapy is generally safe and well tolerated. Preliminary efficacy data of
some phase I clinical trials were published as it was seen most oncolytic virotherapies could
bring certain benefits to patients with malignant tumors. Some phase II studies of oncolytic
therapy have been published for their efficacy data. CG0070 is a replication-competent
oncolytic adenovirus, intravesical of which yielded an overall 47% CR rate at six-month for
patients with BCG-unresponsive non-muscle-invasive bladder cancer and 50% for patients
with carcinoma-in-situ, comparable with other published trials with short follow-up [36].
OH2 is a genetically engineered oncolytic HSV-2 expressing GM-CSF. Among 40 patients
with advanced solid tumors receiving single agent OH2 and 14 receiving OH2 in combination
with HX008, four patients having rectal cancer or metastatic esophageal cancer achieved
immune-PR, two in each group separately, demonstrating durable antitumor activity of OH2
in esophageal and rectal cancer [58]. ParvOryx is an oncolytic parvovirus administrated
intravenously followed by intratumorally. There were 2 of 7 patients reaching PR (one
unconfirmed) according to RECIST criteria. All patients showed T-cell responses to viral
proteins, suggesting immune activation after administration of ParvOryx [69]. V937, also
called CVA21, is an unmodified oncolytic coxsackievirus. In a phase II clinical trial of advanced
melanoma recruiting 57 patients, the six-month PFS rate per immune-related RECIST was
38.6% (95% CI, 26.0 to 52.4) and durable response rate (DRR) was 21.1%. Regression was
observed in both injected and noninjected lesions [71]. In summary, the current data are
mainly from single arm phase I or phase II studies with small sample sizes, except Pelareorep
which will be discussed in the next part. Subsequent clinical trials with expanded sample
sizes are needed to further evaluate the efficacy of these novel oncolytic viruses.

According to these clinical trials, oncolytic viruses are mainly administered as local
injections combined with other therapies, such as chemotherapy or ICIs. As seen in earlier
clinical trials, T-VEC is not as competitive as monotherapy [6]. Thus, it may be speculated
that combination therapy would be an indispensable way for oncolytic viruses to play a
critical role in the antitumor arena. Currently, the major method of oncolytic viruses’ admin-
istration is intratumoral injection or infusion in the cavity, leading to a local concentration
of oncolytic viruses. Although oncolytic virotherapy does have a distant tumor suppressive
effect, analyses of T-VEC and G47∆ have confirmed that effects in lesions receiving direct
injection are significantly better than those in distal lesions [33,72]. Additionally, there is
an unmet need to optimize delivery methods that can induce a stronger systemic tumor
suppressive effect of oncolytic viruses. Notably, some oncolytic viruses, such as Celyvir, are
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administered systemically through autologous mesenchymal stem cells (MSCs), Pelareorep
and Pexa-Vec through intravenous infusion, etc., [45,66,71]. Celyvir will be discussed in a
later section. Pelareorep is a serotype 3 reovirus, intravenous delivery of which has showed
good tolerance and encouraging efficacy in advanced pancreatic adenocarcinoma and
melanoma [73,74]. However, no advantages of PFS were observed in randomized phase
II studies for patients with colorectal cancer, breast cancer, and non-small cell lung cancer
(NSCLC), while the OS of patients with metastatic breast cancer who received Pelareorep
combined with paclitaxel was significantly prolonged when imbalanced baseline factors
were excluded [75–77]. Pexa-Vec is a thymidine kinase gene-inactivated oncolytic vaccinia
virus expressing human GM-CSF, which could be administrated both intratumorally and
intravenously [78,79]. Most data of Pexa-Vec were published in 2015 or before and limited
to safety data, except for liver cancer. The phase III study of intratumoral Pexa-Vec com-
bined with sorafenib in liver cancer was terminated because of an unsatisfactory predicted
endpoint in 2019 [80–83]. The most recent data of intravenous Pexa-Vec combined with dur-
valumab was published in the abstract of the 2020 American Society of Clinical Oncology,
with an ORR of 7% in colorectal cancer [63]. In general, intravenous administration of on-
colytic virus would be safe and well-tolerated with promising results, with the efficacy data
mainly from single-arm phase I studies with small sample sizes. However, intratumoral
administration showed significant improvement while intravenous administration did not
in a meta-analysis [84]. It remains to be evaluated in future clinical trials for the efficacy of
intravenous oncolytic viruses. Notably, lessons from clinical trials revealed limitations on
the replication of some oncolytic viruses due to the existence of neutralizing antibodies in
the blood, bio-barriers affecting the efficacy of delivery and rapid elimination of oncolytic
viruses by activated immune system, etc. Thus, efforts to address these obstacles would be
necessary to increase therapeutic concentrations of drugs with limited toxicity and improve
the delivery efficacy.

Table 1. Overview of clinical trials with promising results of oncolytic viruses from 2017–2022.

Vector Name Indications Interventions Results Phase Registration Number

Adenovirus

CG0070 Bladder cancer
ip. N = 45, Overall

6-month CR: 47%, II NCT02365818 [36]

nivolumab + ip.
(neoadjuvant

followed by radio
cystecmy)

N = 15, ORR = 54% I NCT04610671 [35]

pembrolizumab +
ip.

N = 35, CRR =
87.5% (16
evaluable)

II NCT04387461 [37]

ONCOS-102 Ovarian/Colorectal
cancer durvalumab + ip.

OC: N = 19, SD = 4;
CRC: N = 36, SD =

9;
I/II NCT02963831 [38]

OBP-301 Hepatoma it. N = 20, SD = 7, PD
= 11 I NCT02293850 [39]

DNX-2401 Glioma it. N = 25, reduction ≥
95% = 3 I NCT00805376 [40]

Pediatric
Glioma

Infusion in cerebella
followed by

radiotherapy

N = 12, PR = 3, SD =
8 I NCT03178032 [85]

Celyvir Advanced
Tumors iv. N = 16, SD = 2 I/II NCT01844661 [41]

VCN-01 Pancreatic ade-
nocarcinoma iv. N = 26, ORR 50% I NCT02045602 [42]
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Table 1. Cont.

Vector Name Indications Interventions Results Phase Registration Number

Enadenotucirev
Ovarian cancer iv. + PTX/ip.

N = 38, ORR = 10%,
* 6 discontinued

treatments due to
TRAE

I NCT02028117 [44]

Epithelial solid
tumors iv. N = 61 I/II NCT02028442 [43]

Nsc-crad-s-pk7 Glioma ip. N = 12, mPFS = 9.1
m, mOS = 18.4 m I NCT03072134 [45]

LOAd703 Pancreatic
cancer

it. + nab-PTX +
GEM

N = 22, ORR = 44%,
DCR = 94% (18

evaluable)
I/II NCT02705196 [46]

Ad5-DS Pancreatic
cancer it. N = 11, PR = 2, SD =

2 (9 evaluable) I NCT02894944 [47]

Ad5-
yCD/mutTK(SR39)rep-

hIL-12

Pancreatic
cancer it. N = 12 I NCT03281382 [48]

CAN-2409 NSCLC it. + ICIs ±
chemotherapy

N = 28, PR = 4, SD =
8 (14 evaluable) II NCT04495153 [49]

Herpes simplex
virus-1

VG161 Advanced solid
tumors it. N = 3 I ACTRN12620000244909

[50]

HF-10
Melanoma. it.+ ipilimumab N = 46, ORR = 41%,

DCR = 68% II NCT02272855 [51]

Pancreatic
cancer

it. + GEM +
nab-PTX

N = 6, PR = 4, SD =
2 I NCT03252808 [52]

RP1 Skin cancer it. + nivolumab

Melanoma: ORR =
13/36 (36.1%),

Non-melanoma:
ORR = 19/31

(61.3%)

II NCT03767348 [53]

OrienX010
Melanoma it. N = 26, ORR =

19.2%, DCR = 53.8% Ib CTR20140631/
CTR20150881 [34]

Melanoma with
liver metastases it. + toripalimab

N = 23, ORR = 15%,
DCR = 50% (20

evaluable)
I NCT04206358 [86]

Seprehvir
Refractory

extracranial
solid cancers

iv. N = 9, SD = 2 I NCT00931931 [54]

G207 Pediatric
Glioma it. N = 12, mOS = 12.2

m I NCT02457845 [55]

T3011 Cutaneous/subcutaneous
malignancies it. N = 8, SD = 5 (6

evaluable) I/II NCT04370587 [56]

rQNestin Glioma it. N = 30, mOS =
13.25 m I NCT03152318 [57]

Herpes simplex
virus-2

OH2
Advanced solid

tumors it./it.+ HX008
OH2:PR = 2/54;

OH2+ toripalimab:
PR = 2/14

I/II NCT03866525 [58]

Melanoma it. N = 35, iPR/PR = 5,
SD = 6 I/II NCT04386967 [59]

Reovirus Pelareorep Pancreatic ade-
nocarcinoma

iv. +
pembrolizumab +

chemotherapy

N = 11, SD = 3, PR =
1(10 evaluable) I NCT02620423 [60]

Melanoma iv. + CBP + PTX
N = 14, ORR = 21%,
mPFS = 5.2 m, mOS

= 10.9 m
II NCT00984464 [74]
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Table 1. Cont.

Vector Name Indications Interventions Results Phase Registration Number

Breast cancer iv. + PTX vs. PTX

N = 36 vs. 38, mPFS
= 3.78 m vs. 3.38 m,

mOS = 17.4 m vs.
10.4 m

II NCT01656538 [76]

Vaccinia virus
TG4023 Liver tumor it. + flucytosine N = 16 I NCT00978107 [61]

GL-ONC1 Ovarian cancer ip. N = 11 I/II NCT02759588 [62]

Pexa-Vec Colorectal
cancer

iv. +
durvalumab/iv. +

durvalumab +
tremelimumab

N = 16, PR = 1(14
evaluable) I/II NCT03206073 [63]

Coxsackie virus CVA21
Bladder Cancer ip. N = 15, CR = 1 I NCT02316171 [64]

Melanoma it.

N = 57, 6-months
PFS rate = 38.6%,

DRR = 21.1%, ORR
= 28.1%

II NCT01227551/
NCT01636882 [71]

it. + ipilimumab
N = 13, ORR =
38.0%, DCR =

88%(8 evaluable)
I NCT02307149 [65]

measles virus MV-NIS Urothelial
carcinoma iv. N = 8, pCR = 2 I NCT03171493 [66]

Poliovirus PVSRIPO
Melanoma it. N = 12, ORR = 33%,

pCR = 2 I NCT03712358 [67]

Glioblastoma it. N = 61, a plateau of
21% at 24 months I NCT01491893 [68]

Parvovirus ParvOryx Pancreatic Ade-
nocarcinoma iv. N = 7, PR = 1 I/II NCT02653313 [69]

Vesicular
stomatitis virus VSV-IFNβ-NIS Refractory solid

tumors iv. N = 18 I NCT02923466 [70]

* The safety results of other clinical trials are all well tolerated. ip.: intracavity perfusion; it.: intratumoral
injection; iv.: intravenous injection; ICIs: immune checkpoint inhibitors; PTX: paclitaxel; CBP: carboplatin; GEM:
gemcitabine; CR: complete response; CRR: complete response rate; PR: partial response; pCR: pathological
complete response; pPR: pathological partial response; iPR: immune partial response; ORR: objective response
rate; SD: stable disease; PD: progressive disease; DCR: disease control rate; DRR: partial or complete response for
≥ 6 months; OS: overall survival; TRAE: treatment related adverse event; CRC: colorectal cancer.

4. Genome-Engineering Approaches to Improve Therapeutic Effects of Oncolytic
Viruses

The immune system could be a double-edged sword for oncolytic therapy. On the
one hand, the antiviral immune response must be minimized to avoid inhibiting viral
replication and promoting viral transmission within the tumor. On the other hand, it
requires mobilization of innate and adaptive immune responses and monitoring of the
immunosuppressive TME to maximize the antitumor effects. To balance such responses of
the immune system, many efforts have been made to optimize current oncolytic viruses or
develop new viruses to enhance the stimulation of host immune responses to tumor cells
without triggering quick clearance of oncolytic viruses (Figure 1 & Table 2). For example,
modifications have been made to previously established oncolytic viruses, such as the
deletions of ICP34.5 and ICP47 in T-VEC [6]. Moreover, cytokines or chemokines can be
introduced into the genome to further enhance the therapeutic effects of oncolytic viruses.
For example, GM-CSF, an immune-related cytokine, can increase the activation of APC
and trigger a systemic antitumor immune response [15,34]. Additionally, TAAs, immune-
related ligands or bispecific T-cell engager (BiTE) antibodies can also modify the oncolytic
viruses. Inspired by combination therapy, insertion into the genome of oncolytic viruses
with functional elements related to other antitumor therapies has also been studied.
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Not published 
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VEGI

Figure 1. Strategies for improving oncolytic virotherapy. Strategies are divided into two main
categories: improvements of genome engineering and of the delivery system. In terms of the
genome engineering (left), various functional elements can be designed into the genome of oncolytic
virus, including those can activate the immune system directly, specific recognition of cancer cells,
tumor-suppressor genes, and inspirations from other therapies. In terms of the delivery system
(right), multiple nanomaterials could be used as chemical modifications to the capsule of viruses. In
addition, physical technology such as magnetic fields and ultrasound could also help in the guidance
of oncolytic viruses. Stem cells, CAR-T cells, and even bacteria could be used as vehicles to transport
oncolytic viruses. TAAs: Tumor-associated antigens; BiTE: Bispecific T cell engager; ICIs: Immune
checkpoint inhibitors; VEGI: vascular endothelial cell growth inhibitor; PEG: poly(ethylene) glycol;
CAR: chimeric antigen receptor; NK cells: natural killer cells. The figure is drawn by FigDraw.

Table 2. Examples of genome engineering categories for oncolytic virus.

Genetic Modification Transgenes Virus Models Main Results

Cytokines GM-CSF HSV-1 Clinical trials of Melanoma
etc. Approved by the FDA [15]

IL-12
(NCT02062827) HSV-1 Phase I study of glioma Not published

TNF-α Vesicular stomatitis virus
Refractory orthotopic mouse
model of mammary cancer

(combined with SMC)

Prolonged survival and
slower tumor growth [87]

Chemokines CXCL11 Vaccina virus
intraperitoneal mouse

models of mesothelioma and
colon cancer

Induction of systemic
antitumor immunity and

better survival [88,89]

CXCL9, CXCL10, IFN
(NCT04053283) Adenovirus Phase I clinical trial of

epithelial tumors Not published

Tumor specific antigens Claudin-6 Measles virus B16-hCD46/mCLDN6
melanoma mouse models

Inhibit metastasis and
increase the therapeutic

efficacy [90]

PSA, brachyury, MUC-1 Vaccina virus
Phase I clinical trial of

castration-resistant prostate
cancer

Well tolerated [91]
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Table 2. Cont.

Genetic Modification Transgenes Virus Models Main Results

Cell surface molecules OX40L (and IL-12) HSV-1

Patient-derived oral
xenograft and syngeneic

colon and pancreatic mouse
tumor models

Complete tumor
regression [92]

CD40L, 4-1BBL Adenovirus In vivo xenograft mouse
models of pancreatic cancer Reduced tumor burden [93]

BiTE α-CD3-VH/L,α-TAA-
VH/L Measles virus

Syngeneic and xenograft
mouse models of melanoma

and colorectal cancer

Protective antitumor
immunity and prolonged

survival [94]

Tumor-suppressor genes P53 Adenovirus EH-GB1 xenografts
mouse model Inhibit tumor growth [95]

PTEN HSV-1 Intracranial tumor
mouse model

Long-term survival and
prime anti-cancer T-cell

immunity [96]

Immune checkpoint
inhibitors

Anti PD-1/PD-L1 (and
IL-12) Newcastle disease viruses B16-F10 melanoma mouse

model
Induce tumor control and

survival benefits [97]

Anti-angiogenic
transgenes

VEGI-251(and E1B 55
kDa deletion) Adenovirus

Human cervical and
colorectal tumor xenografts

mouse model
Inhibit tumor growth [98]

Genes associated with
cytotoxic medicine FCU1 Vaccina virus

Orthotopic liver metastasis
of colon cancer xenografts
mouse model (combined

with SMC)

Substantial tumor growth
retardation [99]

HSV: herpes simplex virus; SMC: smac mimetic compounds; PSA: prostate-specific antigen; BiTE: bispecific
T-cell engager; α-CD3-VH/L: anti-murine/human-CD3 variable heavy/light domain; α-TAA-VH/L: antitumor-
associated antigen (CD20/CEA) variable heavy/light domain; VEGI: vascular endothelial cell growth inhibitor.

4.1. Introducing Immune Activating Cytokines/Chemokines Directly

Activation of systemic immunity is one of the key antitumor mechanisms of oncolytic
virus. For this reason, GM-CSF is inserted into T-VEC, OH2, etc., to further enhance
the ability of oncolytic virus to induce immunity against tumor, which has shown their
great benefits in clinical trials [15,58]. In addition to GM-CSF, cytokines such as TNF,
IFN-α/β, IL-12, IL-7, or chemokines such as CXCL9 and CXCL10 have been tested as
immune enhancers in the genomes of oncolytic viruses, and some of them have shown their
abilities to promote antitumor activities in preclinical tumor models and clinical trials [72].
For example, interleukin-12 (IL-12) is a potent anticancer agent that promotes T-helper 1
(Th1) differentiation, facilitates T-cell-mediated killing of cancer cells, and inhibits tumor
angiogenesis [100]. A variety of IL-12-expressing oncolytic viruses have been genetically
engineered, including herpes simplex virus, adenoviruses, and measles virus [101–103].
The safety and efficacy of IL-12 have been verified in preclinical tumor models [104–106].
Currently, IL-12-expressing HSV (M032, ClinicalTrials.gov Identifier: NCT02062827) and
vaccina virus (ASP9801, ClinicalTrials.gov Identifier: NCT03954067) are being evaluated in
phase I clinical trials. Another cytokine that is widely considered is TNF-α, which is also a
major proinflammatory cytokine [107]. Oncolytic viruses with TNF-α can eradicate tumors
and induce antitumor T-cell responses in various tumor models [87]. In breast tumors, it
was found that TNF-α-armed oncolytic vesicular stomatitis virus (VSV) could improve
survival [108]. Other cytokines, including IFN-α/β, IL-7, IL-15, IL-18, IL-23 and IL-24, have
also shown certain effects [72].

Chemokines are small secreted chemotactic cytokines that can mediate the migration of
immune cells. When stimulated by chemokines, different immune cell subsets migrate into the
TME and regulate antitumor immune responses in a spatiotemporal manner [109]. Intratumoral
delivery of CXCL11-expressing vaccina virus could induce an aggregation of adoptive T-cells in
tumor tissues and prolong the survivals of tumor-bearing mice [88,89]. However, an oncolytic
VSV engineered to express CXCL9 did not show enhanced antitumor activity compare to the
control virus [110], which indicates that careful selection or combination of these cytokines is
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needed to develop more efficient oncolytic viruses. NG-641, an oncolytic adenovirus expressing
CXCL9, CXCL10, and IFN, is currently undergoing a phase I clinical trial to evaluate its safety
and tolerability (ClinicalTrials.gov Identifier: NCT04053283). The results are yet to be reported.

4.2. Introducing Elements to Improve Specific Recognition and Immunity against Tumors

One other design of oncolytic virotherapy is introducing tumor-specific antigens or
acting molecules that would facilitate the identification of oncolytic virus and induce sys-
temic immunity. TAAs are self-antigens expressed by tumor cells that are commonly used
in the construction of tumor vaccines to induce a specific and sustained systemic antitumor
response and have been verified in multiple animal models [111]. The introduction of
TAA into oncolytic viruses is a promising genetic modification approach that can further
enhance the induced antitumor immunity. Recombinant vaccine strain-derived measles
virus carrying claudin-6 significantly inhibited metastasis and increased the therapeutic
efficacy in in vivo tumor models being established with syngeneic B16-hCD46/mCLDN6
murine melanoma cells [90]. A novel platform using adenovirus 5 vectors with three
TAAs targeted, including prostate-specific antigen (PSA), brachyury, and MUC-1, has been
developed for a cancer vaccine and is well tolerated in the phase I study of metastatic
castration-resistant prostate cancer [91].

In the era of immunotherapy, costimulatory molecules such as CD28, B7.1, and in-
tercellular adhesion molecule 1, or ICIs such as PD-1, CTLA-4, TIM3, and LAG3 have
attracted significant attention in cancer therapeutics [65,112,113]. Oncolytic virotherapy
combined with ICIs has shown promising prospects in clinical trials [20,21], prompting fur-
ther developments of engineered oncolytic viruses with ICIs, which will be discussed later.
Engineering other ligands with the genome of oncolytic viruses has also been investigated.
A recombinant Newcastle disease virus expressing the inducible costimulator was found to
enhance T-cell infiltration in both virus-injected and distant tumors in mice, and induce
rejection of both tumors [114]. HSV-1-based oncolytic viruses encoding OX40 L and IL-12
can transform the infected tumor cells to artificial APC, induce complete tumor regression
in patient-derived xenograft and syngeneic mouse tumor models, and elicit antitumor
immune memory [92]. Currently, an oncolytic adenovirus (LOAd703) expressing CD40 L
and 4-1BBL has shown potential for immune activations in various tumor models and has
been investigated in clinical trials [93].

BiTE, a recombinant bispecific protein, has two linked single-chain fragment variables
(scFvs) derived from two individual antibodies by which can target both a cell-surface
molecule on T cells and antigen on the surface of malignant cells [115,116]. However, the
on-target off-tumor activity might lead to dose-limiting toxicities of BiTE due to the design
for dual effect of oncolytic viruses that can cobind tumor cells and T cells simultaneously,
restrict their delivery to the tumor site. Using malignant serous effusion for infection of
the BiTE-expressing EnAdenotucirev leads to activation of endogenous T cells to inhibit
tumor cells [117]. In tumor-bearing mice, oncolytic measles viruses encoding BiTE could
increase T-cell infiltration in the TME and induce antitumor immunity without intolerable
toxicity [94]. Recently, a novel strategy of oncolytic herpesvirus (oHSV-1) expressing PD-L1
BiTE that can enhance T-cell activation and the release of cytokines was found to has the
potential to treat immune ‘cold’ tumors [118].

4.3. Introducing Tumor Suppressor Genes Associated with Tumor Cell Apoptosis

Dysregulation of tumor suppressor genes can lead to the formation of cancer [119].
Engineering tumor suppressor genes into oncolytic viruses could facilitate tumor apoptosis
and enhance treatment efficacy, i.e., P53 and PTEN [96,120]. Various viruses, including
adenovirus, herpesvirus, vesicular stomatitis virus, and Newcastle disease virus, have been
used as vectors to carry the P53 gene in cancer therapeutics [95,121–124]. Some of them
have been applied in clinical trials with the safety data being published. However, most
results were from phase I clinical trials and published years ago, lacking recent updates
on further clinical trials [120]. An oncolytic HSV co-expressing PTEN was also shown to
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have the potential to boost immune responses against tumor and led to tumor rejection
and long-term survival in mice bearing intracranial tumors [96]. Additionally, oncolytic
viruses encoding other tumor-suppressor genes such as TRAIL and SMAC can also lead to
tumor-cell apoptosis [125–127].

4.4. Introducing Functional Elements Being Related to Other Antitumor Therapies

Combining oncolytic virotherapy with other antitumor therapies is promising. Other
than direct combinations, introducing functional elements related to ICIs, antiangiogenic
drugs, or cytotoxic chemicals into oncolytic viruses might strengthen therapeutic efficacy
due to a more convenient administration, widened therapeutic window and less toxity.
For example, oncolytic viruses in combination with ICIs have impressive effects in clinical
trials [26,128]. As mentioned above, oncolytic viruses have been engineered to directly
express ICIs such as PD-1/PD-L1 inhibitors, which have shown certain effects in murine
melanoma models. Newcastle disease viruses engineered to express anti-PD-1/PD-L1
elements induced tumor control and benefited survival in highly aggressive B16-F10 murine
melanoma models [97]. Expression of a PD-1 inhibitor in HSV-1 could also induce obvious
antitumor effects in murine melanoma models [129]. In addition, antiangiogenic targeted
therapy or traditional chemotherapy, has also been integrated into oncolytic virotherapy.
For example, antiangiogenic drugs such as bevacizumab, as one of the classical antitumor
drugs, play an important role in cancer therapeutics [130]. Oncolytic viruses encoding
antiangiogenic transgenes have been explored for their antitumor ability. An adenovirus
with E1B 55 kDa gene deletion and vascular endothelial cell growth inhibitor insertion was
constructed and showed anticancer therapeutic potential in athymic nude mice bearing
human cervical and colorectal tumor xenografts by inhibiting endothelial cell proliferation,
tube formation, and angiogenesis [98].

The integration of chemotherapy with genome engineering of oncolytic viruses is
one of the cornerstones in antitumor therapy. Cytosine deaminase can convert nontoxic
5-fluorocytosine to the highly toxic 5-fluorouracil, which is an indispensable chemother-
apy agent in the treatment of gastrointestinal cancer and others. A thymidine kinase
gene-deleted vaccinia virus that expressed the fusion suicide gene FCU1 derived from
the yeast cytosine deaminase and uracil phosphoribosyltransferase genes could produce
substantial tumor growth retardation in the presence of systemically administered prodrug
5-fluorocytosine, representing a potentially efficient means for oncolytic therapy [99]. Simi-
larly, oncolytic viruses carrying other genes such as HSV-TK that can convert ganciclovir to
the toxic ganciclovir phosphate, or genes encoding nitroreductase and cytochrome P450,
have shown antitumor therapeutic potential in preclinical models [131–133].

5. Innovations for Oncolytic Viruses Delivery

To date, the common delivery method of oncolytic viruses is intratumoral injection,
in which oncolytic viruses are injected directly into the tumor lesion, which is suitable
for superficial lesions such as cutaneous melanoma. In addition, with the guidance of
ultrasound, lesions in viscera such as liver and kidney could also be injected directly,
but this process is comparatively complicated, and risks such as infection and bleeding
cannot be avoided. Another common method is intravenous delivery, which ideally
can deliver oncolytic viruses to any location needed and possesses great advantages of
convenience and safety. However, due to the degradation in circulation, rapid clearance by
the antiviral immunity effect, sequestration in nontarget organs or physical barriers such
as the endothelial layer and the dense extracellular matrix, intravenous administration
of oncolytic virotherapy has limited success [134,135]. In addition, infusion of oncolytic
viruses in thoracic, abdominal, bladder, and other cavities in the body has been reported in
some phase I clinicals, but the indications are relatively limited [37,38,40]. In conclusion,
although oncolytic viruses can induce a systemic immune response and lead to tumor
regression as seen in clinical trials, the lower response of distant lesions compared to
injected lesions would be critical in oncolytic therapy [136]. Researchers are trying to utilize
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chemical modifications or biological vectors to further improve the efficiency of oncolytic
virus delivery (Figure 1).

5.1. Chemical and Physical Methods Assisting the Delivery

Nanomaterials such as poly(ethylene) glycol (PEG) and cationic polymers are designed
to enhance the systemic delivery of oncolytic viruses. PEG is a hydrophilic molecule that
has been widely researched as a delivery vehicle in biomedical applications with negligi-
ble cytotoxicity [137,138]. PEG protected oncolytic viruses from the immune system at a
sufficient therapeutic level of infection. Coating oncolytic adenoviruses with PEG reduces
the transduction of hepatocytes and hepatotoxicity after intravenous administration. The
antitumor efficacy of PEGylated oncolytic adenoviruses was increased in hepatocellular car-
cinoma xenografts where a longer tumor-free survival was observed [139]. Cholesterol-PEG
can significantly reduce the binding of an anti-vaccinia virus neutralizing antibody [140].
Cationic polymers contain a main chain with positively charged amine groups. Oncolytic
adenoviruses and polymer complexes with net cationic surface charge promoted cellular
uptake and transgene expression, while it is worth remembering that the highly posi-
tive surface charge could also lead to increased cytotoxicity [141,142]. Notably, chemical
modification might bring an additional benefit. Coating the oncolytic adenovirus with a
biomineral shell composed of manganese carbonates (MnCaCs) could realize the possibility
of real-time monitoring with the help of Mn2+ and the increased O2 from endogenous H2O2
by T1 modal magnetic resonance imaging (MRI) and photoacoustic imaging (PAI), and the
biomineral shell could also provide protection from removal of the host immune system at
the same time [143]. This approach is promising for testing in clinical trials.

Another promising nanomaterial to deliver the oncolytic virus is the hydrogel that is
formed by self-assembly or crosslinking of polymers with a highly porous and hydratable
structure, thus enabling a high concentration of the viruses in the target lesions and protecting
them from rapid clearance by the immune system [144]. Recently, a gelatin-based hydrogel
codelivering an oncolytic adenovirus armed with IL-12 and IL-15 and CIK cells was developed,
which can induce a durable antitumor immune response with a single administration, and
displays a more potent therapeutic effect in established lung and intestinal cancers [145].
Additionally, vehicles such as poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA) have
also been studied for delivering oncolytic viruses [146,147]. Most of these studies are limited
to preclinical studies, and further exploration in clinical trials is warranted.

Some physical methods are also being utilized for the delivery of oncolytic viruses.
For example, it has been demonstrated that magnetic nanoparticle-encapsulated oncolytic
viruses resulted in an increased infection and a better tumor suppression effect with the
aid of a magnetic field [148–150]. Recently, a magnetic targeting strategy has also been
combined with cells to form cell robots carrying on with oncolytic virus capable of tumor-
selective binding and killing [151]. Fe3O4 nanoparticles are asymmetrically modified
on the surface of oncolytic adenovirus-loaded cell robots to fabricate oncolytic viruses
with a magnetic response. Under magnetic control, the cell robots are able to perform
directional migration and have prolonged retention in the mouse bladder [151]. In addition,
ultrasound could also assist in the delivery of the oncolytic virus. Acoustic cavitation
has been found to play a potentially key role in both achieving targeted drug release and
enhanced extravasation [152]. Oncolytic viruses can be propelled hundreds of microns with
the help of inertial cavitation induced by the ultrasound. A polymeric cup formulation
that provides the nuclei for instigation of sustained inertial cavitation events within tumors
increased the activity of vaccinia viruses significantly and induced a significant retardation
of tumor growth [153].

5.2. Biological Vehicles to Deliver Oncolytic Viruses

With the remarkable clinical success of CAR-T therapy in leukemias and lymphomas [154],
adoptive T-cell therapies (ACTs) have attracted research interest. ACTs involve the infusion
of tumor-specific cytotoxic T cells, thus exerting more antitumor immunity specifically [155].
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Oncolytic viruses combined with ACTs can also be delivered into the tumor lesions, which
has been explored both preclinically and clinically. It was found in patients given intravenous
injections of reovirus that all viral particles detected in the blood were associated with peripheral
blood mononuclear cells in patients with colorectal cancer, suggesting that cells can be used as
carriers of oncolytic virus [156].

A variety of cell types have been demonstrated as potential carriers of oncolytic viruses,
among which stem cells are an important candidate due to their nature of an inherent
tropism toward invasive malignancies [157,158]. Stem cells from various sources including
MSCs and neural stem cells (NSCs) have been tested extensively for their effectiveness.
MSCs infected with engineered adenoviruses expressing IL-12 and PD-L1 inhibitors showed
the ability to deliver and produce functional viruses to infect and lyse lung tumor cells
and stimulate antitumor activity by releasing IL-12 and PD-L1 inhibitors [159]. Systemic
administration of hepatocellular carcinoma-targeted oncolytic adenovirus-infected MSCs
resulted in a high level of virion accumulation in the tumor lesion and inhibit tumor
growth at a low initial viral infecting dose [160]. No grade 2–5 toxicities were reported in a
phase I clinical trial for Celyvir, which is a kind of autologous MSCs carrying an oncolytic
adenovirus. In this study, two patients with neuroblastoma showed disease stabilization,
including one who continued on treatment for up to six additional weeks [41]. Although 18
of 34 recruited patients were excluded mainly because of rapid disease progression before
Celyvir treatment, the results from this phase I clinical trial indicate the potential use of this
stem cell carrier for further clinical investigation. The results of a phase I clinical trial using
NSCs as oncolytic virus delivery vectors were also published [45]. Twelve patients with
newly diagnosed malignant gliomas were recruited, of whom the median follow-up was 18
months, the median PFS was 9.1 months and the median OS was 18.4 months. Treatment
was well-tolerated as no formal dose-limiting toxicity was reached [45]. Delivering an
oncolytic virus by NSCs was feasible and safe. Natural killer (NK) cells are another
option for tumor-targeting delivery of oncolytic virus due to their well-established homing
ability to accumulate in tumor lesions and their highly cytotoxic immune effects [161,162].
Ad@NK is generated in which NK cells act as bioreactors and shelters for the highly
efficient systemic tumor-targeted delivery of adenoviruses. As feedback, adenovirus
infection offers NK cells an enhanced antitumor immunity by activating type I interferon
signaling. Ad@NKs were proven to have excellent antitumor and antimetastatic functions
both in vitro and in vivo [163]. CAR-T therapy and oncolytic viruses are also combined
to increase the efficacy in solid tumors. In vitro preloading of CAR-T cells with oncolytic
vesicular stomatitis virus or reovirus allows a further in vivo expansion and reactivation
of T cells and leads to a prolonged survival of mice with subcutaneous melanoma and
intracranial glioma [164].

Recently, bacteria have also been found to be able to assist in oncolytic virotherapy.
It have shown that bacteria have a much higher homing capacity than that of oncolytic
viruses, while there are also limited effectiveness and dose-dependent toxicity [165–167].
Sun, etc., proposed the concept of bacteria-assisted targeting of oncolytic viruses to tu-
mors [168]. Liposome-cloaked oncolytic adenoviruses are conjugated onto tumor-homing
Escherichia coli BL21. Compared with intravenously injected bare oncolytic adenoviruses,
the enrichment of bacteria-assisted viruses in NSCLC was potentiated by more than 170-
fold. Enhanced antitumor immunity was also demonstrated in vivo [168]. This suggests
that bacteria with a higher tumor-homing capacity can be a potent platform for delivering
oncolytic viruses.

6. Challenges and Perspectives

Oncolytic viruses are a novel immunotherapy, and numerous studies have been carried
out preclinically and clinically, demonstrating the great potential of oncolytic virotherapy.
However, some unsatisfactory data regarding clinical efficacy suggest that there are certain
limitations that still need to be addressed. Patients with extensive small-cell lung cancer
receiving platinum-based chemotherapy do not benefit from the oncolytic virus NTX-010.
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There was no difference in PFS between the NTX-010 and the control group [169]. The phase
III trial of Pexa-Vec investigating the benefit of oncolytic virus combined with sorafenib
was stopped recently because the primary endpoint of OS did not appear to be significantly
different (ClinicalTrials.gov Identifier: NCT02562755). Although the combination of on-
colytic reovirus Pelareorep with FOLFOX6/bevacizumab was well tolerated and led to
an increased ORR, the PFS was inferior [75]. Even for T-VEC, which has been approved
and widely recognized, the efficacy of its monotherapy is not superior to that of traditional
chemotherapy or ICIs in melanoma. Further analysis found that the treatment of oncolytic
virotherapy is better in the injected lesions but poor in distant lesions [136]. Recently, G47∆
brings great advances in the treatment of recurrent or progressive glioblastoma. It was
also observed that the treated lesions are better controlled than distant ones. However,
repeated burr hole surgeries to inject G47∆ into glioma lesions would be relatively painful
for patients [31,33].

These limitations regarding treatment efficacy in clinical trials may be due to biological
barriers, tumor heterogeneity, and the immunosuppressive TME [10]. Biological barriers
constituted by the endodermis and interstitial hypertension in tumor due to abnormal
lymphatic networks, vascular hyperpermeability, and dense extracellular matrix would
also limit the viral invasion [170,171]. The preexisting or treatment-induced neutralizing
antiviral antibodies in the host block the replication of oncolytic viruses and thus attenuate
their ability to lyse tumor cells [172]. In addition, sequestration may occur via uptake to
nontarget organs such as the spleen and liver [135]. Because the TME is characterized by
immunosuppression for the convenience of tumor cells to escape the immune surveillance,
especially a ‘cold’ TME, it is difficult for oncolytic viruses to recruit immune cells to kill
tumors in such an immunosuppressive microenvironment [10].

Several approaches have been proposed to enhance oncolytic virotherapy. Combin-
ing with other therapies, such as chemotherapy or ICIs, is common sense and has been
discussed in the above section of T-VEC. In addition, the combination with CAR-T cells
is also of research interest [173]. Currently, genome engineering of oncolytic viruses with
PD-L1-related elements has shown extremely significant therapeutic advantages [118].
Oncolytic viruses can also integrate other functional elements through genome engineering
to exert a synergistic antitumor effect. However, numerous attempts have been made in
the genome engineering of oncolytic viruses, with few results from phase III clinical trials
have been published, most of which are limited to early clinical trials. It still needs to
be validated carefully that which regimen of combination therapy would yield improved
treatment efficacy with satisfactory side effects.

Efforts to improve the specificity and oncolytic abilities of the virus itself should also
be considered. One possibility is the selection of suitable viral vectors. It is a foundation
to select an appropriate vector to develop oncolytic virotherapy which determines the
efficacy of elements’ expression, interactions with the TME and additional payloads during
the delivery. Adenovirus and HSV are the most common, and many others, such as the
vaccinia virus, reovirus, and measles virus, have all entered in clinical trials and been ap-
proved for safety and preliminary efficacy. Selection of viral vectors with a comprehensive
understanding of their characteristics and, on the basis of that, reasonable modifications
and methods for administration, could produce better therapeutic effects. As an example,
vaccina virus is usually applied in intravenous routes due to its wide tropism and the
particular form of extracellular enveloped virion which can escape from neutralizing anti-
bodies and complement clearance, resulting in the delivery of multiple payloads without
compromises of replication and cytotoxicity [174,175].

The other is improvement of methods to deliver the oncolytic virus to tumor lesions
more effectively, to maximally exert its antitumor effects. Either endogenous cells or exoge-
nous bacteria have been used as transporters for oncolytic viruses and shown promising
results. However, there are obvious limitations of cell carriers because of the need for
ex vivo infection of cells and the manufacturing cost to bring two very complex biologic
therapeutics into one product [3]. As mentioned before, novel chemical modifications and
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materials such as PEG, cationic polymers, hydrogels, and the use of ultrasound could also
be applied to enhance the systemic delivery of oncolytic viruses in preclinical studies. As
a result, although oncolytic viruses in the clinic are currently mainly delivered directly
through intratumor/venous, injection, or intracavity perfusion, an increasing number of
studies on the method innovations of delivery predict more efficient and less toxic ways
to deliver oncolytic viruses in the future, which would greatly broaden the prospects of
oncolytic virotherapy.

7. Conclusions

Oncolytic virotherapy is a promising immunotherapy for malignancies and has also shown
promising therapeutic potential in clinical trials. As we move forward with transforming
research to clinical application, sophisticated subgroup analysis of clinical trials to identify
the appropriate therapeutic intervention time of oncolytic viruses, as well as to understand
the underlying mechanisms for its interactions with tumor and the host, would help us to
develop more powerful products toward more effective treatments. Additionally, response
criteria currently in use for oncolytic virotherapy are those being established in the solid tumor
guidelines (RECIST) regardless of new patterns of response that have been observed. Thus,
a new concept of criteria should be assessed for future clinical trials. Moreover, the efforts to
define biomarkers that can stratify patient populations would also be important to examine the
response to new oncolytic virotherapy strategies. Importantly, the advanced nanotechnology
innovation would also bring oncolytic virotherapy to a new landscape.
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