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Abstract
1.	 Animal movement studies are conducted to monitor ecosystem health, understand 

ecological dynamics, and address management and conservation questions. In ma-
rine environments, traditional sampling and monitoring methods to measure animal 
movement are invasive, labor intensive, costly, and limited in the number of individ-
uals that can be feasibly tracked. Automated detection and tracking of small-scale 
movements of many animals through cameras are possible but are largely untested 
in field conditions, hampering applications to ecological questions.

2.	 Here, we aimed to test the ability of an automated object detection and object track-
ing pipeline to track small-scale movement of many individuals in videos. We applied 
the pipeline to track fish movement in the field and characterize movement behav-
ior. We automated the detection of a common fisheries species (yellowfin bream, 
Acanthopagrus australis) along a known movement passageway from underwater vid-
eos. We then tracked fish movement with three types of tracking algorithms (MOSSE, 
Seq-NMS, and SiamMask) and evaluated their accuracy at characterizing movement.

3.	 We successfully detected yellowfin bream in a multispecies assemblage 
(F1 score =91%). At least 120 of the 169 individual bream present in videos were 
correctly identified and tracked. The accuracies among the three tracking architec-
tures varied, with MOSSE and SiamMask achieving an accuracy of 78% and Seq-
NMS 84%.

4.	 By employing this integrated object detection and tracking pipeline, we demon-
strated a noninvasive and reliable approach to studying fish behavior by tracking 
their movement under field conditions. These cost-effective technologies provide 
a means for future studies to scale-up the analysis of movement across many vis-
ual monitoring systems.
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1  | INTRODUC TION

Computer vision, the research field that explores the use of com-
puter algorithms to automate the interpretation of digital images 
or videos, is revolutionizing data collection in science (Beyan & 
Browman,  2020; Waldchen & Mader,  2018). The use of remote 
camera imagery, such as underwater stations, camera traps, and 
stereography, has driven the uptake of computer vision because it 
can process and analyze imagery quickly and accurately (Bicknell 
et al., 2016; Schneider et al., 2019). In ecological studies, advances 
in computer vision have led to increased sampling accuracy and 
repeatability (Waldchen & Mader,  2018). For example, drones are 
being used to track grassland animals (van Gemert et al., 2015) and 
estimate tree defoliation (Kälin et  al.,  2019), underwater observa-
tories with computer vision are monitoring deep-sea ecosystems 
(Aguzzi et al., 2019), and computer vision-capable dive scooters are 
being used to monitor coral reefs at large spatial and temporal scales 
(González-Rivero et al., 2020; Kennedy et al., 2020).

In the past few years, we have seen an increase in the uptake 
of computer vision to study and monitor marine ecosystems. 
These applications are related to the two main computer vision 
tasks: object detection and object tracking. Object detection and 
object tracking automate data collection, including gathering in-
formation about the type, location, and movement of objects of 
interest. Object detection algorithms can count and identify spe-
cies of interest in underwater video footage (Christin et al., 2019) 
and have been applied to detect seals (Salberg,  2015), identify 
whale hotspots (Guirado et  al.,  2019), monitor fish populations 
(Ditria, Lopez-Marcano, et  al.,  2020; Jalal et  al.,  2020; Marini 
et al., 2018; Salman et al., 2016; Villon et al., 2016, 2018, 2020; 
Xiu et al., 2015), and quantify floating debris on the ocean surface 
(Watanabe et  al.,  2019). On the other hand, object tracking can 
locate and output the movement direction and speed of objects 
between video frames. In marine ecosystems, object tracking has 
been used to track on-surface objects (see topios.org) and un-
derwater objects such as fish, sea turtles, dolphins, and whales 
(Arvind et  al.,  2019; Chuang et  al.,  2017; Kezebou et  al.,  2019; 
Spampinato et al., 2008; Xu & Cheng, 2017).

There is evidence that automated monitoring of fish in under-
water ecosystems through the combination of object detection 
and object tracking is reliable and accurate (Lantsova et al., 2016; 
Mohamed et al., 2020; Spampinato et al., 2008). However, no stud-
ies have jointly applied object detection and object tracking for 
animal movement studies. Object detection can automatically col-
lect traditional presence/absence data of different species (Marini 
et  al.,  2018; Xiu et  al.,  2015) while object tracking simultaneously 
tracks individuals to provide fine-scale data to assess behavioral and 
animal movement patterns (Francisco et al., 2020). Combining ob-
ject detection and tracking in a single and noninvasive automated 
approach enhances the amount of ecologically relevant information 
extracted from videos. This subsequently improves, for example, 
our ability to quantify and evaluate environmental drivers of species 
abundance, diversity, movement, and behavior.

The utility of combining object detection and tracking is par-
ticularly useful for studying animal movement, which typically re-
quires large volumes of data for many individuals (Librán-Embid 
et  al.,  2020; Lopez-Marcano et  al.,  2020). Knowledge of animal 
movement is fundamental to many research objectives in marine 
science, as animal movement shapes predator–prey dynamics, nu-
trient dynamics, and trophic functions (Olds et al., 2018). For exam-
ple, the movement of herbivorous fish between seagrass and coral 
reefs helps maintain resilience by balancing fish abundances with 
algal growth rates that vary spatio-temporally (Pagès et al., 2014). 
Collecting movement data is, however, challenging and requires 
substantial resources. The development and applications of auto-
mated technologies (i.e., object detection and tracking pipelines) 
can overcome these restrictions and help advance our understand-
ing of animal movement across a broad range of spatio-temporal 
scales and ecological hierarchies (e.g., individuals, populations, 
communities).

In this study, we aimed to test the ability of deep learning algo-
rithms to track small-scale animal movement of many individuals 
in underwater videos. We developed a computer vision pipeline 
consisting of two steps, object detection and object tracking, and 
we used the pipeline to quantify underwater animal movement 
across habitats. To demonstrate the benefits of combining object 
detection and object tracking, we deployed cameras in a known 
coastal fish estuarine passageway and recorded the movement 
of a common fisheries species (yellowfin bream, Acanthopagrus 
australis). Ultimately, we demonstrate that these technologies 
can complement the collection and analysis of animal movement 
data and potentially contribute to the data-driven management of 
ecosystems.

2  | METHODS

2.1 | Object detection

Object detection is a field of computer vision that deals with de-
tecting instances of objects in images and videos (Zhao et al., 2019). 
Methods for object detection generally include traditional image 
processing and analysis algorithms and deep learning techniques 
(Zhao et  al.,  2019). Deep learning is a subset of machine learn-
ing that uses networks capable of learning higher dimensional 
representations and detect patterns within unstructured data 
(Lecun et al., 2015; Schmidhuber, 2015). In this paper, we used deep 
learning, and more specifically Mask Regional Convolutional Neural 
Network (Mask R-CNN) for fish detection (Cui et al., 2020; Ditria, 
Lopez-Marcano, et al., 2020; Jalal et al., 2020; Villon et al., 2020). 
Mask R-CNN is one of the most effective open-access deep learn-
ing models for locating and classifying objects of interest (He 
et al., 2017).

To develop and train the fish detection model, we collected 
video footage of bream in the Tweed River estuary, Australia 
(−28.169438, 153.547594) between May and September 2019. 
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We used six submerged action cameras (1080p Haldex Sports 
Action Cam HD) deployed for 1 hr in a variety of marine habitats 
(e.g., rocky reefs and seagrass meadows). We varied the camera 
angle and placement to capture diverse backgrounds and fish an-
gles (Ditria et al., 2020). We trimmed the original 1-hr videos into 
snippets where bream were present using VLC media player 3.0.8. 
The snippets were then converted into still frames at 5 frames per 
second. The training videos included 8,700 fish annotated across 
the video sequences (Supplementary A). We used software de-
veloped at Griffith University for data preparation and annotation 
tasks (FishID—https://globa​lwetl​andsp​roject.org/tools/​fishi​d/). We 
trained the model using a ResNet50 architecture with a learning rate 
of 0.0025 (He et al., 2017). We used a randomly selected 90% sam-
ple of the annotated dataset for the training, with the remaining 10% 
for validation. To minimize overfitting, we used the early-stopping 
technique (Prechelt, 2012), where we assessed mAP50 on the vali-
dation set at intervals of 2,500 iterations and determined where the 
performance began to drop. mAP50 is a measurement of the model's 
capacity to overlap a segmentation mask around 50% of the ground-
truth outline of the fish (Everingham et al., 2010). We used a confi-
dence threshold of 80%, meaning that we selected object detection 
outputs where the model was 80% or more confident that it was a 
bream. We developed the models and analyzed the videos using a 
Microsoft Azure Data Science Virtual Machine powered with either 
NVIDIA V100 GPUs or Tesla K80 GPUs.

2.2 | Object tracking

Tracking objects in underwater videos is challenging due to the 
3D medium that aquatic animals move through, which can be ob-
scured by floating objects, and which creates greater variation 

in the shape and texture of the objects and their surroundings in 
a video (Sidhu,  2016). Advances in object tracking are addressing 
these issues, and objects can now be tracked consistently despite 
natural variations of the object's shape, size, and location (Bolme 
et al., 2010; Cheng et al., 2018). We developed a pipeline where the 
object tracking architecture activated once the object detection 
model detected a bream. This approach resulted in an automated 
detection and subsequent tracking of fish from the underwater vid-
eos. Additionally, we benchmarked the performance of three ob-
ject tracking architectures: minimum output sum of squared errors 
(MOSSE) (Bolme et al., 2010), sequential nonmaximum suppression 
(Seq-NMS) (Han et al., 2016), and Siamese mask (SiamMask) (Wang 
et  al.,  2019) by using movement data gathered one month after 
the training dataset was collected from a different location in the 
Tweed River estuary, Australia. In this location, a 150-m long rocky 
wall restricts access to a seagrass-dominated harbor (Figure 1). The 
placement of the rock wall creates a 20-m wide passageway that fish 
use as a movement corridor to access a seagrass meadow. Multiple 
species of estuarine fish such as sand whiting (Sillago ciliata), river 
garfish (Hyporhamphus regularis), luderick (Girella tricuspidata), spot-
ted scat (Scatophagus argus), three-bar porcupinefish (Dicotylichthys 
punctulatus), and bream, move back and forth with the tides through 
this passageway. This environment suffers from frequent low vis-
ibility and currents that bring floating debris, presenting a relatively 
challenging scenario in which to showcase the capacity of computer 
vision to detect the target species in a multispecies assemblage and 
quantify the direction of movement.

We collected fish movement data by submerging two sets of three 
action cameras (1080p Haldex Sports Action Cam HD) for 1 hr during 
a morning flood tide in October 2019. We placed the sets of cam-
eras parallel to each other and separated by 20 m (Figure 1). Within 
each set, the cameras faced horizontally toward the fish corridor and 

F I G U R E  1   The study location in 
Tweed River Estuary, Australia, showing 
the camera array deployed in a fish 
passageway (two ended white arrow) 
between the rock wall channel and 
the seagrass meadow (green polygon). 
Each set of cameras consisted of three 
underwater cameras that recorded for 
1 hr during a flood tide. Set 1 faced north 
and set 2 faced south. The distance 
between cameras (~3 m) and between 
sets (20 m) ensured nonoverlapping field 
of views. Map data: NearMap 2020

https://globalwetlandsproject.org/tools/fishid/
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parallel with the seafloor and were separated by ~3  m. The camera 
placement allowed us to calculate horizontal movement (left or right) 
of fish through the corridor. The distance between the cameras and 
between the sets ensured nonoverlapping field of views. Set 1 cam-
eras faced north and Set 2 faced south (Figure 1). We placed the cam-
eras in a continuous line starting at the harbor entrance and ending at 
the border of the seagrass meadow, deployed at a depth of 2–3 m. We 
manually trimmed each video using VLC media player 3.0.8 into video 
snippets with continuous bream movement, resulting in 76 videos of 
varying durations (between 3 and 70 s), which we converted into still 
frames at 25 frames per second. All frames with bream were man-
ually annotated, and these annotations were used as ground-truth. 
We used the fish movement dataset to evaluate the object detection 
model and the object tracking architectures.

2.2.1 | Minimum output sum of squared error 
(MOSSE)

The MOSSE algorithm produces adaptive correlation filters over tar-
get objects, and tracking is performed via convolutions (process of 
combining outputs to form more outputs). MOSSE was developed 
between 2010 and 2016 and is robust to changes in lighting, scale, 
pose, and shape of objects (Bolme et al., 2010; Sidhu, 2016). Here, 
we modified the MOSSE tracking process by activating the tracker 
with the object detection output (Figure  2). The object detection 
model and the object tracking architecture interacted to maintain 
the consistency of the tracker on bream individuals. When a fish was 
detected, the entry was used to initialize the tracker. MOSSE tracked 
the fish for four frames, and a check was made on the subsequent 

F I G U R E  2   Interaction between the 
object detection model and tracking 
architectures. The object detection model 
activates all three tracking architectures. 
For MOSSE and SiamMask, the tracker 
continues for 4 frames after the initial 
detection. For Seq-NMS, the movement 
was determined by calculating the vector 
direction between two detections. For 
all architectures, a check was made 
to determine if the tracker continued, 
stopped, or a new tracker started. For 
MOSSE and SiamMask, the check was 
made after 4 tracking frames from the 
first detection. For Seq-NMS, the check 
was made for all frames after the first 
detection. The interaction between 
detections and tracker occurred through 
the whole length of a video where the 
object detection model detected a 
yellowfin bream and was carried for all 
frames, videos, and cameras. All trackers 
provided a direction of movement 
for each frame where the interaction 
between the detection and tracking 
occurred successfully
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frame to verify the accuracy of the tracker. In this check, if the de-
tection bounding box overlapped by ≥30% with the existing tracker 
bounding box, the tracker continues on the same object. If the de-
tection bounding box does not overlap with the existing tracker 
bounding box, a new tracker entry starts. This interaction between 
the detection and tracking occurred for every fish detected in a 
frame and stopped when no more detections were found.

2.2.2 | Sequential nonmaximum suppression 
(Seq-NMS)

Sequential nonmaximum suppression (Seq-NMS) was developed in 
2016 traditionally to improve the classification results and consist-
ency of deep learning outputs (Han et  al.,  2016). Seq-NMS works 
differently to the other trackers tested because it requires an object 
detection output for every frame containing a fish. Seq-NMS links 
detections of neighboring frames, which means that a detection 
in the first frame can be connected with a detection in the second 
frame if there is an intersection above a defined threshold. In our 
case, we used the principles of Seq-NMS to create detection link-
ages for object tracking of fish when there was an overlap (intersec-
tion over union) of bounding boxes in subsequent frames of ≥30% 
(Figure  2). If this is true, then the chain of detections continues. 
When the overlap is less than 30%, then a new detection link starts 
(i.e., the tracker will treat this detection as a new fish).

2.2.3 | SiamMask

SiamMask is a tracking algorithm developed in 2019 that uses out-
puts of deep learning models for estimating the rotation and location 
of objects (Wang et al., 2019). SiamMask is based on the concepts 
of Siamese network-based tracking. Similar to MOSSE, we slightly 
modified the tracking process by activating the tracker with the 
deep learning object detection model (Figure 2). The tracking with 
SiamMask started once a bream was detected (Figure 2).

We have made all object detection annotations, images, trackers, 
and data wrangling codes, as well as the movement dataset openly 
available (https://doi.org/10.5281/zenodo.4571760).

2.3 | Model evaluations and movement assessment

2.3.1 | Object detection evaluation

We evaluated the object detection against the movement data (man-
ually annotated and ground-truthed) described in section  2.2 and 
calculated precision, recall, and F1. The precision is the rate of true 
positives relative to total detections, and the recall is the rate of de-
tection of true positives. We used the F1 score (the harmonic mean 
of the precision and recall) to assess the performance of our object 
detection model in answering ecological questions on abundance.

Additionally, we determined the model's ability to fit a segmenta-
tion mask around the fish through the mean average precision value 
(mAP) (Everingham et al., 2010). We used the mAP50 value, which 
is the model's capacity to overlap a segmentation mask around 50% 
of the ground-truth outline of the fish. A high mAP50 value means 
that the model has high accuracy when overlapping a mask around 
the fish. We used the COCO evaluation python script to calculate 
mAP50 (Massa & Girshick, 2018).

2.3.2 | Object tracking evaluation

We evaluated the tracking architectures against the movement 
dataset by calculating precision, recall, and an F1 score and by as-
sessing the movement data. To calculate precision recall and an F1 
score, we manually observed every second of video and determined 
if the object tracking architecture was correctly tracking the bream 
individual (Supplementary B). We defined a true positive as a correct 
detection and accurate tracking of the individual for ≥50% of the 
time where bream appeared on frame (Supplementary B). A false 
negative occurred when a bream was not detected and tracked or if 
it was tracked <50% of the time when the fish appeared on frame. 
Additionally, we classified a false positive when a nonbream object 
was detected and tracked, or when a bream was detected but the 
tracking architecture tracked a nonbream object.

2.3.3 | Movement assessment

We conducted a movement assessment to evaluate the accuracy 
of the directions provided by the tracker. From all trackers, we 
obtained the bounding boxes and centroids of the boxes for fish 
that were detected and subsequently tracked. For each track-
ing output, the object tracking architecture provided a tracking 
angle of movement in 2 dimensions relative to the camera frame. 
Depending on the camera set (Figure  1), we summarized angles 
for north-facing cameras (Set 1) and south-facing cameras (Set 2). 
We grouped tracking angles using reference angles into four di-
rections: up, down, left, and right (Supplementary B). Because the 
cameras were facing horizontally toward the fish passageway par-
allel with the seafloor, we calculated horizontal movement of fish. 
Fish moving up meant that the fish movement had tracking an-
gles between 0°–44° and 315°–360°. Fish moving right had angles 

(1)Precision =
True Positives

True Positives + False Positives

(2)Recall =
True Positives

True Positives + False Negatives

(3)F1 = 2 ∗
precision ∗ recall

precision + recall

https://doi.org/10.5281/zenodo.4571760
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between 45° and 135°, whereas fish moving left between 225° 
and 315°. Finally, fish moving down had tracking angles between 
135° and 225°. The tracking angle for all object tracking architec-
tures was obtained from the tracker vector generated within each 
tracker's bounding box (Supplementary B). By grouping the direc-
tions, we can count and group the number of movement angles per 
camera and per set. For each camera set, we then calculated the 
proportion of each tracking direction and determined net move-
ment. We defined net movement as the movement angle with 
the highest proportion for a video. The data summary was gener-
ated in R with the packages ggplot and sqldf (Grothendieck, 2017; 
Wickham, 2009).

To ground-truth the tracking data, we manually observed all 
the videos and determined the direction of movement for each 
fish (fish moving mainly right or left). We determined the net 
movement of each video (direction with the highest proportion 
for the video) and compared the ground-truth output to the net 
movement direction from the three object tracking architectures 
(Supplementary B).

3  | RESULTS

3.1 | Object detection

Using the Mask R-CNN framework for detecting bream, we obtained 
an 81% mAP50 value and an F1 score of 91% (Table 1). The object 
detection model missed 21 bream (false negatives) and misidentified 
8 objects (e.g., algae or other fish) as bream (false positives) out of 
the 169 fish (ground-truth) that were observed.

3.2 | Object tracking

We simultaneously detected and tracked 1 to 30 individual bream 
per video. All three architectures detected and subsequently 
tracked more than 120 of the 169 individual fish that swam through 
the passageway (Table  2). Average precision values for all archi-
tectures were above 80%, with Seq-NMS the most precise at de-
tecting and tracking the bream (93%). Recall among architectures 
was very similar at around 73%. The architecture with the high-
est overall success at detecting and tracking bream was Seq-NMS 
(F1 = 84%) (Table 2).

3.3 | Movement assessment

We expected the cameras to detect and track fish moving in the pas-
sageway consistent with the direction of the tidal flow (i.e., bream 
moving to seagrass). The expected results were that bream would 
mostly move to the left (Set 1) and to the right (Set 2), and these pat-
terns were observed when manually analyzing the videos (ground-
truth). The movement direction with the highest proportion for all 
tracking architectures was left (Set 1) and right (Set 2) (Figure 3). For 
Set 1, Seq-NMS (0.53) was the closest to the ground-truth (0.65), 
and for Set 2, MOSSE (0.49) and Seq-NMS (0.41) were the closest to 
the ground-truth (0.71) (Figure 3).

4  | DISCUSSION

We demonstrate a computer vision-based method for detecting and 
tracking individual fish in underwater footage. Our study incorpo-
rates open-source computer vision methods into a pipeline that al-
lows scientists to assess animal movement in marine ecosystems. 
This method quantified animal behavior and detected the expected 
tidal movement in our case study. The experimental results show 
that the proposed method is an effective and noninvasive way to 
detect and track small-scale movement of many fish in aquatic 
environments.

Previous ecological work has tracked fish in controlled en-
vironments (Bingshan et  al.,  2018; Papadakis et  al.,  2014; Qian 
et  al.,  2016; Sridhar et  al.,  2019), used automated detections and 
counts as proxies for movement (Marini et al., 2018), and, most re-
cently, used automated movement tracking algorithms to quantify 
movement (Francisco et  al.,  2020). Automated approaches tested 
in “real-world” scenarios provide the best indication and evidence 
that computer vision is a robust technique for fish monitoring in 
aquatic ecosystems. When evaluating the object tracking architec-
tures, Seq-NMS had the best performance and was able to quantify 
the net movement of multiple individuals. The number of fish that 
were simultaneously detected and tracked by our framework ranged 
from 1 to 30 individuals per video. While the movement dataset did 
not contain videos with a very large number of individuals (e.g., >50 
fish in a single frame), previous research has shown that occlusion 
can influence the accuracy of both the object detection algorithms 
and Seq-NMS (Connolly et al., 2021). Moreover, Seq-NMS is not an 
object tracking algorithm and it requires a high-performing object 

TA B L E  1   Object detection mAP50 and the evaluation results of the Mask R-CNN yellowfin bream model. The confusion matrix is shown 
as counts of individual fish, where the true positives were the correct detection of yellowfin bream. Yellowfin bream not detected were false 
negatives and misidentified objects were false positives

Task mAP50

Confusion matrix
Average 
precision

Average 
recall F1Ground-truth True positives False positives False negatives

Object 
detection

81% 169 148 8 21 95% 88% 91%
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detection model because it uses the object detection outputs of 
every frame to create the detection links and track the movement 
direction.

A key benefit of camera-assisted applications and computer vi-
sion analysis to animal movement research, and science more broadly, 
is that these approaches can complement traditional data collection 
techniques (Lopez-Marcano et al., 2020). Cameras and computer vi-
sion can be deployed at many sites and cover large spatial extents, 
but are limited by environmental factors and are incapable of detect-
ing and classifying complex ecological parameters such as predatory 
interactions or the identification of morphologically similar, but tax-
onomically different, species (Christin et  al.,  2019). Traditional ap-
proaches (e.g., netting or in-water diver assessments) are superior at 

collecting the highest variety and complexity of ecological variables 
and parameters, but by combining cameras, automation, and tradi-
tional approaches, the spatial and temporal scope of monitoring can 
be increased. Moreover, computer vision approaches do not require 
specialized equipment to study animal movement and the rapid anal-
ysis of imagery can provide movement data that is accurate, valid, 
and consistent (Francisco et al., 2020; Weinstein, 2018).

The combination of object detection and object tracking can en-
hance animal movement ecology through the streamlined collection 
of several sets of ecological information (Botella et al., 2018; Christin 
et  al.,  2019), and this new data may revolutionize ecological stud-
ies. Traditional presence/absence data can be used, for example, to 
understand the environmental drivers of a species’ geographic dis-
tribution, and the collection of presence/absence data from videos 
can easily be automated (González-Rivero et  al.,  2020; Kennedy 
et  al.,  2020; Schneider et  al.,  2018, 2019). However, presence/ab-
sence data alone cannot inform about how multiple ecological pro-
cesses interact, and presence/absence data conflate movement of 
individuals with mortality (Zurell et al., 2018). Future studies could 
use our combined object detection and object tracking approach to 
simultaneously quantify species distributions and movement. The in-
tegration of movement data into species distribution models means 
that the models could accurately predict how the ranges of mobile 
species respond dynamically to environmental change through in-
dividual movement decisions and population-level parameters like 
mortality (Bruneel et al., 2018).

The capacity of our computer vision approach for monitoring 
fish populations is dependent on the underwater camera setup 
within the desired seascape. We deployed an array of cameras in 
a fish passageway to maximize the collection of movement data. 
However, each set and camera obtained unequal amounts of data 
and the array also resulted in repeated tracking of fish. Therefore, 
an important consideration when using camera-based technologies 
is to design and deploy an appropriate camera system to monitor 
animal interactions (Glover-Kapfer et  al.,  2019; Wearn & Glover-
Kapfer, 2019). While we demonstrate that the detection and track-
ing of fish can be automated in aquatic ecosystems, further research 
into methodological designs (e.g., the optimal number of cameras 
needed to detect movement) is still required. The development of 
standardized camera-based methodologies, such as methodological 
guides for baited remote underwater surveys (Langlois et al., 2020) 
or for camera traps (Rovero et al., 2013), but specific to computer 

Architecture

Confusion matrix

Average 
precision

Average 
recall F1

True 
positives

False 
positives

False 
negatives

MOSSE 123 23 46 84% 73% 78%

Seq-NMS 129 9 40 93% 76% 84%

SiamMask 121 19 48 86% 72% 78%

TA B L E  2   Confusion matrix for the 
three object tracking architectures 
(MOSSE, Seq-NMS, and SiamMask) are 
shown as counts of individual fish, where 
the true positive means a bream was 
detected and tracked correctly for ≥50% 
of the time when it appeared on a video 
frame, otherwise, it was false negative. 
False positives were misidentified objects 
(e.g., algae or other fish) that were 
detected and tracked

F I G U R E  3   Proportion of the movement angles (up, down, right, 
left) for the ground-truth and the three tracking architectures 
and for the two camera sets (Set 1: facing north and Set 2: facing 
south). The movement angles are spatial angles of horizontal 
yellowfin bream movement in two dimensions
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vision-ecology applications will help advance the applications of 
computer vision into movement ecology.

By utilizing a combination of computer vision frameworks, we 
demonstrated that automated tracking of fish movement between 
distinct seascapes (i.e., artificial and natural) is possible. We suggest 
that these methods are transferable to other types of fish passage-
ways and other habitats, such as the mangrove, seagrass, and coral 
reef continuum (Francisco et al., 2020; Olds et al., 2018; Spampinato 
et  al.,  2008). Further development of these models and architec-
tures, for example, integrated object detection and object tracking 
with stereo video (Huo et al., 2018) and pairwise comparisons of de-
tections (Guo et al., 2020), will likely lead to improvements in accu-
racy and for 3D triangulation of detections. Continual improvements 
in accuracy will provide a rigorous framework to study and quantify 
fish connectivity in the wild.

5  | CONCLUSION

Computer vision and automated techniques offer a new genera-
tion of methods for collecting and analyzing movement data. Our 
combined object detection and object tracking approach comple-
ments, rather than replaces, traditional techniques. Although cur-
rent computer vision techniques have limitations, we demonstrated 
that object detection and object tracking can monitor small-scale 
movement of many individuals from underwater footage. The com-
bination of object detection and object tracking has the capacity to 
provide several streams of ecological information that can inform 
data-driven decision that directly influence the health and produc-
tivity of marine ecosystems.
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