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ABSTRACT

Apolipoprotein C3 (apoC3) and angiopoietin-like protein 3 (ANGPTL3) inhibit lipolysis 
by lipoprotein lipase and may influence the secretion and uptake of various lipoproteins. 
Genetic studies show that depletion of these proteins is associated with improved lipid 
profiles and reduced cardiovascular events so it was anticipated that drugs which mimic 
the effects of loss-of-function mutations would be useful lipid treatments. ANGPTL3 
inhibitors were initially developed as a treatment for severe hypertriglyceridaemia including 
familial chylomicronaemia syndrome (FCS), which is usually not adequately controlled with 
currently available drugs. However, it was found ANGPTL3 inhibitors were also effective 
in reducing low-density lipoprotein cholesterol (LDL-C) and they were studied in patients 
with homozygous familial hypercholesterolaemia (FH). Evinacumab targets ANGPTL3 and 
reduced LDL-C by about 50% in patients with homozygous FH and it has been approved 
for that indication. The antisense oligonucleotide (ASO) vupanorsen targeting ANGPTL3 
was less effective in reducing LDL-C in patients with moderate hypertriglyceridaemia and 
its development has been discontinued but the small interfering RNA (siRNA) ARO-ANG3 
is being investigated in Phase 2 studies. ApoC3 can be inhibited by the ASO volanesorsen, 
which reduced triglycerides by >70% in patients with FCS and it was approved for FCS in 
Europe but not in the United States because of concerns about thrombocytopaenia. Olezarsen 
is an N-acetylgalactosamine-conjugated ASO targeting apoC3 which appears as effective as 
volanesorsen without the risk of thrombocytopaenia and is undergoing Phase 3 trials. ARO-
APOC3 is an siRNA targeting apoC3 that is currently being investigated in Phase 3 studies.

Keywords: Angiopoietin-like protein 3; Antisense oligonucleotides; Apolipoprotein C-III; 
Monoclonal antibody; Triglycerides

INTRODUCTION

Dyslipidaemia is a major risk factor for atherosclerotic cardiovascular disease (ASCVD).1 
Low-density lipoprotein cholesterol (LDL-C) is the primary target for treatment as the 
evidence from genetic, epidemiologic, and clinical studies overwhelmingly supports it being 
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a cause of ASCVD.2 The initial approach for all dyslipidaemias should involve dietary and 
lifestyle modification and optimal control of predisposing conditions, particularly obesity 
and diabetes. All current guidelines for the management of dyslipidaemias recommend 
treatment to reduce the LDL-C level to a target level depending on the overall cardiovascular 
risk, using statins initially and if necessary the addition of ezetimibe and/or proprotein 
convertase subtilisin/kexin type 9 inhibitors.1,3 Bempedoic acid, which inhibits ATP-citrate 
lyase, an enzyme upstream of 3-hydroxy-3-methyl-glutaryl-coenzyme A, the target of statins, 
has recently been shown to reduce cardiovascular events in statin intolerant patients.4 This 
offers an alternative treatment to statins or could be used in addition to statins and other 
medications if the LDL-C target has not been achieved.

Other lipid fractions which have been shown to contribute to ASCVD include triglyceride-
rich lipoproteins (TRL) and lipoprotein(a) [Lp(a)] and various treatments are available or in 
development to target these.5 Genetic and epidemiologic studies have shown TRL and their 
remnants are important contributors to ASCVD whereas severe hypertriglyceridaemia, with 
serum triglycerides (TG) >10 mmol/L (>880 mg/dL) in European guidelines, is a risk for acute 
pancreatitis.6,7 Mendelian randomization studies showed that genetic scores composed of 
TG-lowering variants in the lipoprotein lipase (LPL) gene and LDL-C-lowering variants in the 
LDL receptor (LDLR) gene were associated with similar lower risk of coronary heart disease 
(CHD) per 10 mg/dL lower level of apolipoprotein B (apoB), suggesting the clinical benefit 
of lowering TG and LDL-C levels may be proportional to the absolute change in apoB, which 
reflects the number of atherogenic particles.8

Similarly, a meta-regression analysis of 3 classes of lipid-lowering therapies that reduce TGs 
to a greater extent than they do LDL-C, fibrates, niacin, and marine-derived omega-3 fatty 
acids, showed the reduction for major vascular events was related to the change in non-high-
density lipoprotein cholesterol (non-HDL-C), which represents the cholesterol carried in 
LDL particles together with that in TRL particles and is usually strongly correlated with apoB 
levels.9 The benefits of omega-3 fatty acids, particularly high-dose eicosapentaenoic acid 
in the REDUCE-IT study,10 appeared to be greater than predicted from their lipid-lowering 
effects in that analysis.

Fasting TG levels >1.7 mmol/L (>150 mg/dL) are considered abnormal by most lipid 
guidelines, but in the European lipid guidelines pharmacotherapy is only recommended 
when TGs are >2.3 mmol/L (>200 mg/dL) for primary prevention patients or high-risk 
patients who are at LDL-C goal and then fenofibrate or bezafibrate may be considered in 
combination with statins.1 In high-risk patients with persistently elevated TGs at 1.5–5.6 
mmol/L (135–499 mg/dL) despite statin treatment, omega-3 fatty acids (icosapent ethyl 2×2 g 
daily) are recommended.1 American guidelines recommend adding a fibrate or omega-3 fatty 
acid to reduce the risk of acute pancreatitis in patients with severe hypertriglyceridaemia if 
TGs remain ≥5.6 mmol/L (≥500 mg/dL) after managing underlying conditions and following 
a very low fat diet.11

Genetic studies, such as the Mendelian randomization study mentioned above,8 have 
identified the genes for several proteins that influence TG levels and the risk of ASCVD. Many 
of these affect the activity of LPL and two that have emerged as targets for inhibition are 
apolipoprotein C3 (apoC3) and angiopoietin-like protein 3 (ANGPTL3).12
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ANGPTL3

1. Function of ANGPTL3
ANGPTL3 is a 460-amino-acid polypeptide that is expressed principally in the liver and 
was first identified in 1999.13 It was shown to inhibit LPL activity and increase TG-rich very 
low-density lipoprotein (VLDL).14 It can also increase high-density lipoprotein cholesterol 
(HDL-C) levels by inhibiting endothelial lipase (EL, encoded by LIPG) activity.15 ANGPTL3 
may also influence liver secretion of TG in VLDL and hepatic removal of LDL particles via 
either the LDLR or through endothelial lipase-dependent clearance of VLDL and remnant 
particles (Fig. 1).12,16,17

The reduced-function N396S mutation in LIPG results in a large increase in HDL-C and a 
much smaller increase in LDL-C and this was associated with a significant reduction in CAD 
in a recent Mendelian randomization study.18 Therefore, increasing activity of EL by removing 
ANGPTL3 inhibition should reduce LDL-C but may also reduce HDL-C levels so the overall 
benefit may vary in different patient groups.

Other angiopoietin-like proteins also influence LPL activity in an organ specific manner. 
Angiopoietin-like protein 4 (ANGPTL4) is produced in adipose tissue during fasting 
and inhibits the lipolytic action of LPL and the uptake of fatty acids in adipose tissue.19 
Angiopoietin-like protein 8 (ANGPTL8) is synthesized in the liver and adipose tissue and 
levels are low during fasting and increase during feeding, mediated by insulin, when it blocks 
the inhibitory effect of ANGPTL4 on adipose tissue LPL through formation of ANGPTL4/
ANGPTL8 complexes, and at the same time, ANGPTL8 increases the inhibitory effect of 
ANGPTL3 on LPL in muscle by forming ANGPTL3/ANGPTL8 complexes consequently 
increasing the uptake of fatty acids in adipose tissue and reducing uptake in muscle in the 
postprandial state.20
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Fig. 1. Action of ANGPTL3 in lipoprotein metabolism. ANGPTL3 inhibits 1) lipoprotein lipase and 2) endothelial 
lipase. It may also 3) inhibit the liver uptake of LDL particles and 4) stimulate release of VLDL particles from 
the liver. Inhibition of ANGPTL3 reduces triglycerides from chylomicron and VLDL remnants, reduces HDL-C, 
and in the absence of functioning LDL receptors, remnant particles and LDL can be taken up by the liver via an 
endothelial lipase-dependent mechanism. 
ANGPTL3, angiopoietin-like protein 3; CM, chylomicron; CMR, chylomicron remnant; EL, endothelial lipase; HDL, 
high-density lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; LDLR, low-density 
lipoprotein receptor; LPL, lipoprotein lipase; VLDL, very low-density lipoprotein.



Loss-of-function variants in the ANGPTL3 gene are associated with lower plasma levels 
of TGs, LDL-C and HDL-C and decreased odds of ASCVD, so it was assumed that drugs 
that inhibited ANGPTL3 would simulate the effects of these genetic variants and would be 
clinically useful, although the effect on HDL-C might reduce the benefit in some people.21,22

Carriers of inactivating mutations in the ANGPTL4 gene had lower levels of TGs and a lower 
risk of CHD than did noncarriers,23 and inhibition of Angptl4 in mice and monkeys with the 
monoclonal antibody (mAb) REGN1001 also resulted in corresponding reductions in these 
lipid values. However, in mice and monkeys treated with REGN1001 there was accumulation 
of lipids in the mesenteric lymph nodes with abdominal lymphadenopathy secondary to 
granulomatous lipid accumulation. Previous studies of Angptl4 knockout mice or treating 
mice with the anti-Angptl4 mAb 14D12 identified lipogranulomatous lesions of the intestines 
and their draining lymphatics and mesenteric lymph nodes.24 These findings suggested that 
ANGPTL4 may not be a useful target for therapy.

Studies with REGN3776, a fully human mAb that can bind monkey and human ANGPTL8 
with a high affinity, showed it could reduce plasma TG by up-regulating LPL activity in 
humanized ANGPTL8 mice and reduced body weight and fat content.25 In addition, blocking 
ANGPTL8 by this antibody reduced serum TG and increased serum HDL-C in dyslipidaemic 
cynomolgus monkeys suggesting that inhibition of ANGPTL8 may provide a useful 
therapeutic target.

Various strategies have been developed to pharmacologically inactivate ANGPTL3 for treatment 
of dyslipidaemia, which include the blocking mAb evinacumab, the antisense oligonucleotide 
(ASO) vupanorsen, and the small interfering RNA (siRNA) ARO-ANG3 (Table 1). Other 
strategies for pharmacological inactivation of ANGPTL3 might include a CRISPR genome 
editing system, such as base editor 3, and the development of oral, small-molecule inhibitors 
may be possible in the future.26

2. Evinacumab
Evinacumab (REGN1500, Evkeeza®, Regeneron Pharmaceuticals, Inc.) is a fully human mAb 
with a human IgG4 constant region. It was developed using Regeneron’s Velocimmune® 
technology platform.27 It has high affinity to ANGPTL3 from mouse, rat, monkey, and 
humans. It binds to ANGPTL3 in the circulation creating immune complexes and it is likely 
that the primary mechanism of action would be potentiation of plasma lipase activity.28 
Clinical studies at Phase 1 to 3 have been completed (Table 2).

A Phase 1 single ascending dose (SAD) study in 83 human volunteers with moderately high 
TG >1.7 but ≤5.1 mmol/L (>150 but ≤450 mg/dL) and/or LDL-C ≥2.6 mmol/L (≥100 mg/dL) 
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Table 1. Inhibitors of angiopoietin-like protein 3
Agent Mode of action Dose Efficacy Comments
Evinacumab Monoclonal 

antibody
15 mg/kg IV Q4W ↓ LDL-C up to 56% Approved for HoFH

↓ TG up to 88%
Vupanorsen ASO 80–160 mg SC Q4W ↓ LDL-C up to 33% Development discontinued

60–160 mg SC Q2W ↓ TG up to 63%
ARO-ANG3 RNAi 50–300 mg SC Q12W or less ↓ LDL-C up to 54% Phase 2 studies ongoing

↓ TG up to 65%
QnW, given every n weeks; IV, intravenous; LDL-C, low-density lipoprotein cholesterol; TG, triglycerides; HoFH, 
homozygous familial hypercholesterolaemia; ASO, antisense oligonucleotide; SC, subcutaneous; RNAi, RNA 
interference.



showed that evinacumab produced dose-dependent reductions in TG up to 76%, in LDL-C up 
to 23% and in HDL-C up to 25% compared to placebo (NCT01749878).22 Results of the SAD 
study in 83 subjects and a Phase 1 multiple ascending dose (MAD) study in 56 dyslipidaemic 
subjects (NCT02107872) were reported by Ahmad et al.29 Evinacumab 150/300/450 mg once 
weekly, and 300/450 mg every 2 weeks was given by subcutaneous (SC) injection or 20 mg/kg 
once every 4 weeks by intravenous (IV) injection. The maximum reduction in TG was 83.1% 
at day 2 with 20 mg/kg IV once every 4 weeks.29 There were reductions in LDL-C up to 25.1% 
in the MAD study and HDL-C was reduced to a variable extent with the SC doses and by 6.2% 
versus placebo with evinacumab IV at 20 mg/kg Q4W.

In a Phase 1 study comparing the pharmacokinetics, pharmacodynamics, safety, and tolerability 
of evinacumab in four dose cohorts between healthy Japanese and Caucasian adults with 
LDL-C ≥2.6 and <4.1 mmol/L (≥100 and <160 mg/dL), there were comparable pharmacokinetic 
profiles for both SC and IV doses of evinacumab in both ethnic groups and it was generally well 
tolerated with similar dose-related reductions in LDL-C and TGs in both groups.30

In a Phase 2 proof-of-concept, open-label study in 9 adults with homozygous familial 
hypercholesterolemia (HoFH) who were already taking aggressive lipid-lowering therapy, 
evinacumab was given as 250 mg SC x 1 on day 1, 15 mg/kg IV × 1 on day 15, and 450 mg 
SC weekly × 4, starting on day 85 (NCT02265952).31 At week 4, the mean (±SD) reductions 
in lipids levels were 49±23% in LDL-C, 46±18% in apoB, 49±22% in non-HDL cholesterol, 
36±16% in HDL-C and a median of 47% (interquartile range, 38% to 57%) in TGs. Further 
analysis of this study showed that evinacumab was effective in lowering LDL-C in the patients 
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Table 2. Evinacumab clinical development program
Study name, reference Patients and sample size Treatment Change in LDL-C (%) or other outcome
Phase 1

Dewey et al., 2017 
(NCT01749878)22

Healthy with high TG and/
or LDL-C n=83. SAD

SC 75, 150, 250 mg, IV 5, 10, 20 mg/kg,  
SC or IV placebo

−5.25% to −23.19% placebo corrected LS 
mean at day 15

Ahmad et al., 2019 
(NCT02107872)29

Healthy with high TG and/
or LDL-C n=56. MAD

SC 150, 300, 450 mg Q1W −22.0% with 300 mg Q1W SC, −25.1% 
with 20 mg/kg IV Maximum placebo 

corrected LS mean
SC 300, 450 mg Q2W

IV 20 mg/kg Q4W
Harada-Shiba M et al., 2020 
(NCT03146416)30

Healthy subjects 12 
Japanese; 12 Caucasian 

per cohort×4

SC 300 mg×1 −18.5%/−14.2%
SC 300 mg Q1W×8 −49.8%/−35.8%

SC placebo −5.0%/+11.0%
IV 5 mg/kg Q4W×2 −17.7%/−18.9%

IV 15 mg/kg Q4W×2 −28.6%/−40.2%
IV placebo +4.9%/13.7%

Japanese/Caucasian at wk 8
Phase 2

Gaudet et al., 2017 
(NCT02265952)31

9 HoFH 250 mg SC on day 1, 15 mg/kg IV on day 15 −49% (range, 25% to 90%) at wk 4

Rosenson et al., 2023 
(NCT03452228)32

Severe 
hypertriglyceridaemia. 

n=51

15 mg/kg Q4W for 12 wk Variable response depending on LPL mutations

Phase 3
Raal et al., 2020, ELIPSE-HoFH 
(NCT03399786)33

HoFH n=65 IV 15 mg/kg Q4W placebo −49.0% (95% CI, −65.0% to −33.1%)

Rosenson et al., 2020 
(NCT03175367)34

HeFH or refractory high 
LDL-C n=272

SC 450 mg Q1W −56.0% vs. placebo
SC 300 mg Q1W −52.9% vs. placebo

SC 300 mg Q2W SC placebo −38.5% vs. placebo
IV 15 mg/kg Q4W −50.5% vs. placebo

IV 5 mg/kg Q4W IV placebo −24.2% vs. placebo
Values given as mean with range or 95% confidence intervals where available.
LDL-C, low-density lipoprotein cholesterol; TG, triglycerides; SAD, single ascending dose; SC, subcutaneous; IV, intravenous; LS, least square; MAD, multiple 
ascending dose; QnW, every n weeks; HoFH, homozygous familial hypercholesterolemia; HeFH, heterozygous familial hypercholesterolemia.

http://clinicaltrials.gov/ct2/show/NCT01749878
http://clinicaltrials.gov/ct2/show/NCT02107872
http://clinicaltrials.gov/ct2/show/NCT02265952
http://clinicaltrials.gov/ct2/show/NCT01749878
http://clinicaltrials.gov/ct2/show/NCT02107872
http://clinicaltrials.gov/ct2/show/NCT03146416
http://clinicaltrials.gov/ct2/show/NCT02265952
http://clinicaltrials.gov/ct2/show/NCT03452228
http://clinicaltrials.gov/ct2/show/NCT03399786
http://clinicaltrials.gov/ct2/show/NCT03175367


with HoFH irrespective of the type of mutation in the LDLR and the mechanism appeared to 
be independent of the LDLR as LDLR activity was not affected.35

A Phase 2 trial in patients with severe hypertriglyceridaemia, with fasting TG ≥5.6 mmol/L 
(≥500 mg/dL) and with a history of hospitalization for acute pancreatitis, involved 17 
patients with familial chylomicronaemia syndrome (FCS), 15 patients with multifactorial 
chylomicronaemia syndrome with heterozygous loss-of-function LPL pathway mutations and 
19 patients with multifactorial chylomicronemia syndrome without LPL pathway mutations 
(NCT03452228).32 Treatment with evinacumab 15 mg /kg IV every 4 weeks for 12 weeks 
reduced TG to a variable extent in the 3 cohorts having the greatest effect versus placebo in 
those with no LPL mutations of median –81.7% versus +80.9%, a smaller effect in those with 
heterozygous LPL pathway mutations of –64.8% versus +9.4%, and no significant effect in 
those with FCS of −27.7% versus −22.9%.32

In the Phase 3 ELIPSE HoFH (Efficacy and Safety of Evinacumab in Patients With Homozygous 
Familial Hypercholesterolemia) trial, the efficacy of evinacumab was evaluated in 65 patients 
with HoFH on multiple lipid-lowering therapies (NCT03399786).33 Evinacumab 15 mg/kg every 
4 weeks (Q4W) reduced LDL-C by a mean of 49% compared with placebo after 24 weeks. There 
was also a 55% decrease in TG levels with evinacumab compared to a 4.6% reduction in the 
placebo group and a 30% reduction in HDL-C levels was seen with evinacumab. The effects 
on LDL-C were similar in patients with complete LDLR deficiency (null-null) as in those with 
residual LDLR activity (non-null). Adverse event rates were similar in the evinacumab and 
placebo groups. Based on this study the FDA approved evinacumab for HoFH, but it was noted 
that it is a very expensive treatment and may not be suitable for a wider application.36

In a substudy from ELIPSE HoFH, four patients with HoFH underwent apoB kinetic analyses 
which showed an increase in the fractional catabolic rate of IDL apoB and LDL apoB, 
suggesting that evinacumab lowers LDL-C predominantly by increasing apoB-containing 
lipoprotein clearance from the circulation (NCT03409744).37 Another substudy in two 
severely affected young HoFH patients who underwent coronary computed tomography 
angiography (CCTA) before and after 6 months of treatment, showed profound plaque 
reduction after intensive lipid lowering therapy with statins, ezetimibe, LDL apheresis, and 
evinacumab.38

In a meta-analysis of five randomized controlled trials (RCTs) with a total of 568 subjects, 
treatment with evinacumab, as compared with placebo, significantly reduced LDL-C by 
33%.39 Evinacumab reduced HDL-C by 12.8% compared with placebo which may limit the 
potential for wider application in dyslipidaemia.

There are ongoing open-label trials to assess the long-term safety and efficacy of evinacumab 
in adult and adolescent patients with HoFH (NCT03409744) and pediatric patients with 
HoFH (NCT04233918).

3. Vupanorsen
Vupanorsen (IONIS-ANGPTL3-LRx/AKCEA-ANGPTL3-LRx/ISIS 703802/ PF-07285557, Ionis 
Pharmaceuticals, Akcea Therapeutics, and Pfizer) is a N-Acetylgalactosamine (GalNAc)-
modified second generation ASO that selectively inhibits ANGPTL3 protein synthesis 
targeted to the liver. It was developed using Ionis’ advanced LIgand Conjugated Antisense 
(LICA) technology platform.40 An earlier non-GalNAc conjugated ANGPTL3 ASO was studied 
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in Phase 1 at doses up to 400 mg weekly but vupanorsen has about 30-fold higher potency and 
can be administered at a less frequent dosing interval and in lower doses.41

Phase 1 studies in human volunteers with elevated TG levels showed that multiple doses 
of 10, 20, 40, or 60 mg given SC once weekly for 6 weeks resulted in reductions in levels 
of ANGPTL3 protein from baseline of 46.6 to 84.5%, along with reductions of TG of 
33.2 to 63.1%, reductions of LDL-C of 1.3 to 32.9%, VLDL cholesterol of 27.9 to 60.0%, 
non-HDL cholesterol of 10.0 to 36.6%, apoB of 3.4 to 25.7%, and apoC3 of 18.9 to 58.8% 
(NCT02709850).42 There were no serious adverse events.

In a Phase 2 study in 105 patients with elevated fasting TG >1.7 mmol/L (>150 mg/dL), type 
2 diabetes, and hepatic steatosis treated for 6 months with 40 or 80 mg every 4 weeks or 20 
mg every week of SC vupanorsen, there were significant reductions in ANGPTL3 of 41%, 
59%, 56%, in the three groups, respectively, compared with 8% reduction with placebo and 
significant reductions in fasting TG of 36%, 53%, 47%, at six months in the three groups, 
respectively, compared with 16% reduction with placebo.43 There were also significant 
reductions in apoC3 (58%), remnant cholesterol (38%), total cholesterol (19%), non-HDL-C 
(18%), HDL-C (24%), and apoB (9%) compared to placebo, but there was no improvement 
in glycaemic parameters, or hepatic fat fraction. The most common adverse events were 
injection site reactions that were generally mild.

In the Phase 2b Vupanorsen in Statin-Treated Patients With Elevated Cholesterol: TaRgeting 
ANGPTL3 with an aNtiSense oLigonucleotide in AdulTs with dyslipidEmia (TRANSLATE-
TIMI 70, NCT04516291) study, adults on statin therapy with combined hyperlipidaemia 
(non-HDL-C ≥2.6 mmol/L [≥100 mg/dL] and TG 1.7 to 5.6 mmol/L [150 to 500 mg/dL]) were 
randomized to 7 vupanorsen dose regimens (80, 120, or 160 mg SC every 4 weeks, or 60, 
80, 120, or 160 mg SC every 2 weeks or placebo.44 There were dose-dependent reductions 
in non-HDL-C over placebo ranging from 22.0% to 27.7% and in TG ranging from 41.3% to 
56.8%. There were more modest reductions in LDL-C (7.9%–16.0%) and ApoB (6.0%–15.1%). 
There were elevations in liver enzymes alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) and increased hepatic fat.

Vupanorsen was also studied in various other patient groups including patients with familial 
partial lipodystrophy (NCT03514420), FCS (NCT03360747) and patients diagnosed with type 
2 diabetes, hypertriglyceridaemia and nonalcoholic fatty liver disease (NCT03371355) as well 
as a Phase 1 study in healthy, adult Japanese participants (NCT04459767) and in patients with 
FH (NCT02709850).

Although the TRANSLATE-TIMI 70 study met its primary endpoint of a significant reduction 
in non-HDL-C and showed significant reductions in TG and ANGPTL3, the magnitude 
of non-HDL-C and TG reduction observed did not support continuation of the clinical 
development program for CV risk reduction or severe hypertriglyceridaemia and there were 
also dose-dependent increases in liver fat, and higher doses were associated with elevations 
in ALT and AST. In January 2022 Pfizer announced that they would terminate the Pfizer-led 
clinical development program and return the rights for vupanorsen to Ionis.45

4. ARO-ANG3
ARO-ANG3 (Arrowhead Pharmaceuticals) is an RNAi-based therapy using Arrowhead 
Pharmaceuticals’ TRiM™ platform to durably reduce ANGPTL3 expression by hepatocytes. 
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In a Phase 1 study (AROANG31001, NCT03747224) single doses of ARO-ANG3 35, 100, 200 
or 300 mg or placebo were given SC to healthy volunteers who were followed for at least 4 
months post dose.46 In 24 subjects there were dose-dependent reductions from baseline in 
ANGPTL3 with mean maximal reductions of 79%–83% for the 200 and 300 mg doses. Mean 
maximal reductions in TG were up to 67% and in LDL-C up to 30%. HDL-C was reduced up 
to 19%. The changes were durable up to 16 weeks and there were no major adverse events and 
no discontinuations or dose related adverse laboratory changes.

The study was continued with doses of 100, 200 or 300 mg given SC to healthy volunteers on 
days 1 and 29.47 The mean nadir for ANGPTL3 levels of -83 to -93% occurred 2 weeks after the 
second dose and there was minimal change for 200 and 300 mg doses at week 16. The nadir 
for TG of -61% occurred at 3 weeks and that for LDL-C of −45% occurred 4–6 weeks after the 
second dose and the effects continued through week 16. HDL-C was reduced by 14%–37% 
at week 16. The drug was well tolerated without serious or severe adverse events or dropouts 
related to the drug.

Patients with heterozygous FH were also included in the Phase 1 study and the 3 doses of 
ARO-ANG3 reduced mean ANGPTL3 levels in a dose-dependent manner between 62%–92% 
at week 16 and there were significant reductions in LDL-C (23%–37%) and TG (25%–43%).48

Arrowhead recently completed enrolment in the Phase 2b study in more than 180 patients 
with elevated LDL-C and TG (ARCHES-2, AROANG3-2001, NCT04832971) to evaluate the 
efficacy and safety of ARO-ANG3 in participants with mixed dyslipidaemia. Participants will 
receive 2 SC injections of ARO-ANG3 or placebo.

An open-label Phase 2 clinical study (GATEWAY, AROANG3-2003, NCT05217667) is 
evaluating the efficacy and safety of ARO-ANG3 in 18 subjects with HoFH with two dose 
levels of ARO-ANG3 (200 mg and 300 mg) on day 1 and day 84 on top of continued standard 
of care. Initial data have been presented showing that at study week 20, with the two doses of 
ARO-ANG3 there were mean reductions in ANGPTL3 of 82.7% and 80.1%, in LDL-C of 48.1% 
and 44.0%, and in ApoB of 39.2% and 34.5%, respectively, along with reductions in HDL-C, 
non-HDL-C, and TG.49 The treatment was well tolerated.

5. Other treatments targeting ANGPTL3
Various other treatments targeting ANGPTL3 are in development. Solbinsiran (LY3561774, 
Eli Lilly) is another GalNAc-conjugated siRNA that specifically targets ANGPTL3 expression 
in the liver.50 A Phase 1 study of LY3561774 in participants with dyslipidemia (NCT04644809) 
was completed and a Phase 2b study in participants with mixed dyslipidaemia and on a stable 
dose of a statin (PROLONG-ANG3, NCT05256654) is in progress.

An anti-ANGPTL3/8 mAb developed by Eli Lilly and Company and acquired by Kyttaro was 
reported to be in development.51 Studies with an anti-ANGPTL3/8 antibody showed it reduced 
circulating TG in vivo in hypertriglyceridaemic transgenic mice.52 Vaccines targeting ANGPTL3 
have also been used in preclinical studies, including a virus-like particle-based vaccine targeting 
the LPL-binding domain of ANGPTL3 which reduced TGs in mice,53 and a peptide vaccine against 
ANGPTL3 which reduced TG, LDL-C levels, hepatic steatosis and atherosclerosis in mice.54 Gene 
editing therapy has also been tested in mice including a variation of the CRISPR/Cas9 genome 
editing delivered using an adenoviral vector,55 and a lipid nanoparticle delivery platform carrying 
Cas9 mRNA and guide RNA for CRISPR-Cas9-based genome editing of ANGPTL3.56
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APOC3

1. Function of apoC3
ApoC3 is a 79 amino acid glycoprotein of ~8.8 kDa synthesized principally in the liver 
and to a lesser extent in the intestine. It circulates on most lipid particles including 
VLDL, LDL, Lp(a), and HDL particles and can be present in multiple copies per particle. 
Plasma apoC3 concentrations correlate with TG levels and are associated with increased 
cardiovascular risk. ApoC3 expression is suppressed by insulin and is induced by glucose via 
transcriptional regulatory elements in the gene promoter region.57,58 Activation of peroxisome 
proliferator–activated receptor-α also reduces apoC3 expression, accounting in part for the 
hypotriglyceridaemic action of fibrates.59

Genetic studies show that loss-of-function mutations in APOC3 are associated with improved 
lipid metabolism and reduced cardiovascular risk.60-64 In the Exome Sequencing Project, 
heterozygous carriers of at least one of four mutations that disrupted APOC3 function were 
associated with a 46% lowering of apoC3 levels, a 39% lowering of TGs, a 25% increase in 
HDL-C, and a 40% reduction in CVD risk.63

ApoC3 not only inhibits the activity of LPL, but it also reduces hepatic clearance of TRL 
remnants via the LDLR, LDLR-related protein (LRP) and the heparin sulfate proteoglycan 
(HSPG) syndecan-1 (SDC1) (Fig. 2).65 This appears to involve an interaction with apoE on 
TRL remnants.66 The scavenger receptor B1 may also be involved in the liver uptake of TRL 
remnants which may be inhibited by apoC3.67 ApoC3 may also enhance the hepatic assembly 
and secretion of VLDL under certain conditions.68

Various inhibitors of apoC3 are in development including ASOs and an RNA interference 
compound (Table 3).

10https://doi.org/10.12997/jla.2024.13.1.2

Dyslipidaemia: New Treatments for ApoC3 and ANGPTL3

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis

VLDL
precursor

GI tract

Liver

CMR
CM

ApoC3

LDL

IDLVLDL

LPL

LDLR

ApoC3

ApoC3

LRP1

SDC1

SR-B1

Fig. 2. Action of apoC3 in lipoprotein metabolism. ApoC3 inhibits lipoprotein lipase and inhibits the liver uptake 
of remnants and LDL particles by the LDLR or LRP1, and possibly SDC1 and SRB1, by interfering with the binding 
of apoE to those receptors. It may also stimulate release of VLDL particles from the liver. When LPL activity is 
absent, inhibition of apoC3 facilitates hepatic uptake of particles by the LDLR and LRP1. 
ApoC3, apolipoprotein C3; CM, chylomicron; CMR, chylomicron remnant; IDL, intermediate-density lipoprotein; 
LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; LPL, lipoprotein lipase; LRP1, LDLR-related 
protein 1; SDC1, syndecan-1; SR-B1, scavenger receptor B1; VLDL, very low-density lipoprotein.



2. Volanesorsen
Volanesorsen (ISIS 304801/ISIS-APOCIIIRx/IONIS-APOCIIIRx, Waylivra®, Akcea/Ionis) is a 
20-nucleotide second generation 2’-O-methoxyethyl chimeric antisense inhibitor of apoC3 
mRNA developed for the very rare condition of FCS, as well as potentially for other forms 
of hypertriglyceridaemia and familial partial lipodystrophy.69 It was approved in the EU in 
May 2019 for the treatment of adult patients with FCS based on positive results from the 
multinational, Phase 3 APPROACH and COMPASS studies.70 It was not approved by the US 
FDA in 2018, mainly because of the high incidence of thrombocytopaenia.71 The clinical trials 
with volanesorsen are summarised in Table 4.

Pharmacokinetic studies show that volanesorsen is highly bound to plasma proteins and 
plasma concentrations declined in a multiphasic fashion, characterized by a relatively fast 
initial distribution phase and then a much slower terminal elimination phase following SC 
bolus administration.78 Volanesorsen is the major component in plasma, and it undergoes 
endo- and exonuclease-mediated metabolism with urinary excretion being the major 
elimination pathway for volanesorsen and its metabolites. It has been associated with 
thrombocytopaenia although the mechanism is not known.76 Patients with FCS may have 
splenomegaly which may predispose to thrombocytopaenia.

In a Phase 1 dose escalation study in 33 healthy volunteers, 6 multiple SC doses of 
volanesorsen at 50, 100, 200 or 400 mg over a five-week period resulted in dose-dependent 
reductions in plasma apoC3 up to >77.5% with concomitant lowering of TG levels by up to 
43.8% (ISIS 304801-CS1).72 There were small reductions in LDL-C with the 3 highest doses 
and variable increases in HDL-C.
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Table 4. Clinical trials with volanesorsen
Study name, reference Patients and sample size Treatment Change in TG (%) or other outcome
Phase 1

Graham et al., 201372 33 healthy subjects 50-, 100-, 200-, and 400-mg 
SC, SAD and MAD

Up to −43.8% 1 wk after last dose compared 
to +28.5% with placebo

Phase 2
Gaudet et al., 201473 3 FCS 300-mg Q1W ×13 −56% to −86%
Gaudet et al., 2015 (NCT01529424)74 TG 350–2,000 or 225–2,000 

mg/dL on fibrate. 
n=57

100-, 200-, 300-mg or 
placebo Q1W ×13

Up to −70.9% compared to +20.1% with 
placebo and −64.0% compared to −7.7% in 

the fibrate group
Digenio et al., 2016 (NCT01647308)75 T2D TG 200–500 mg/dL.  

n=15
SC 300 mg Q1W −69.1%
SC placebo ×15 −9.9%

Phase 3
APPROACH (NCT02211209)76 FCS.  

n=66
SC 300 mg Q1W −77% at 3 mon

SC placebo +18%
COMPASS (NCT02300233)77 FCS or TG ≥500 mg/dL.  

n=113
SC 300 mg Q1W −71% at 3 mon

SC placebo +1%
Values given as means.
TG, triglycerides; SC, subcutaneous; SAD, single ascending dose; MAD, multiple ascending dose; FCS, familial chylomicronaemia syndrome; QnW, given every n 
weeks.

Table 3. Inhibitors of apolipoprotein C3
Agent Mode of action Dose Efficacy Comments
Volanesorsen ASO 300 mg SC Q1W ↓ TG 50%–90% Approved for FCS (Europe)
Olezarsen ASO 10–50 mg SC Q12W ↓ TG 50%–90% GalNAc linked
ARO-APOC3 RNAi 50 mg SC Q12W ↓ TG 50%–90% GalNAc linked

Phase 3 studies
ASO, antisense oligonucleotide; SC, subcutaneous; QnW, given every n weeks; TG, triglycerides; FCS, familial 
chylomicronaemia syndrome; GalNAc, N-Acetylgalactosamine; RNAi, RNA interference.

http://clinicaltrials.gov/ct2/show/NCT01529424
http://clinicaltrials.gov/ct2/show/NCT01647308
http://clinicaltrials.gov/ct2/show/NCT02211209
http://clinicaltrials.gov/ct2/show/NCT02300233


In an open-label Phase 2 trial in three patients with FCS, including those with LPL-null 
mutations, volanesorsen reduced plasma ApoC3 levels by 71 to 90% and TG levels by 56 to 
86%.73 Studies in mice lacking LPL showed the mechanism of reduction in TG with an ApoC3 
ASO was dependent on LDLRs and LDLR-related protein 1 (LRP1).65 Hepatic HSPG receptors, 
predominantly SDC1 can also be involved in clearing TRLs.

In a Phase 2 trial in untreated patients with elevated fasting TG levels of 4.0–22.6 mmol/L 
(350–2,000 mg/dL) and in patients receiving stable fibrate therapy with fasting TG levels 
of 2.5–22.6 mmol/L (225–2,000 mg/dL) volanesorsen, 100, 200 or 300 mg given SC weekly 
produced dose-dependent reductions in apoC3 up to 80% in the single treatment group and 
up to 71% as an add-on to fibrates along with reductions of 31.3 to 70.9% in TG levels (ISIS 
304801-CS2, NCT01529424).74 There were dose-dependent increases in HDL-C up to 45.7% 
and significant dose-dependent LDL-C elevations and no overall change in non-HDL-C or 
ApoB levels.

In a Phase 2 placebo-controlled study, 15 patients with type 2 diabetes and 
hypertriglyceridaemia were given weekly SC volanesorsen 300 mg or placebo for 15 doses 
(ISIS 304801-CS4, NCT01647308).75 The mean reductions in ApoC3 and TG with volanesorsen 
were 87.5% and 69.1%, respectively, compared with 7.3% and 9.9% with placebo. There was 
a 57% improvement in whole-body insulin sensitivity and 3 months after the last dose there 
was 0.44% reduction in HbA1c with volanesorsen.

The APPROACH (A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Study of ISIS 
304801 Administered Subcutaneously to Patients With Familial Chylomicronemia Syndrome 
[FCS]) study included 66 patients with FCS randomised to receive volanesorsen 300 mg SC 
weekly or placebo over 52 weeks (ISIS 304801-CS6, NCT02211209).76 Mean baseline fasting 
TG levels were 25.0±13.6 mmol/L (2,209±1,199 mg/dL) and mean plasma apoC3 levels were 
30.2±14.2 mg/dL (normal <20 mg/dL). After three months of treatment, apoC3 levels were 
reduced by >80% and TG levels were lowered by 77% (mean reduction of 19.3 mmol/L [1,700 
mg/dL]) with volanesorsen. Injection site reactions were common and about half the patients 
had a mild degree of thrombocytopaenia (platelet count <100×109/L) and 2/33 had platelet 
count <25×109/L.

In the COMPASS (Efficacy and safety of volanesorsen in patients with multifactorial 
chylomicronaemia) Phase 3 trial, volanesorsen 300 mg or placebo SC once-weekly for 13 
weeks then every 2 weeks for a total of 26 weeks was given to 114 patients with fasting TG ≥5.7 
mmol/L (≥500 mg/dL) (ISIS 304801-CS16, NCT02300233).77 At 3 months, mean plasma TG 
were reduced by 71·2% with volanesorsen compared with an increase of 0.9% in the placebo 
group (p<0.0001). Injection-site reactions occurred in 24% with volanesorsen compared 
with 0.2% with placebo and one subject had a platelet count reduction to <50×109/L in the 
volanesorsen group.

After completion of the APPROACH study, patients had the option of enrolling in the 
APPROACH open label extension (OLE) study (ISIS 304801-CS7, NCT2658175). This was 
completed with participants with FCS rolling over from the APPROACH (ISIS 304801-CS6, 
NCT02211209) index study and participants with FCS rolling over from the COMPASS (ISIS 
304801-CS16, NCT02300233) index study. There were sustained reductions of plasma TG 
levels and common adverse events were injection site reactions and platelet count decrease, 
consistent with previous studies.79 In a combined analysis of these studies, volanesorsen 
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showed a significant reduction in pancreatitis, with 1 occurring pancreatitis in the 
volanesorsen group versus 9 cases of pancreatitis in the placebo group.

The Investigation of Findings and Observations Captured in Burden of Illness Survey in FCS 
Patients (IN-FOCUS) was a multinational web-based survey in 60 patients which showed they 
had multiple symptoms of a physical, emotional and cognitive nature and the diagnosis of 
FCS was often delayed.80 The Retrospective Findings and Observations Captured in Burden of 
Illness Survey in FCS Patients (ReFOCUS) study was a retrospective global web-based survey 
in 22 patients with FCS who received volanesorsen for ≥3 months in the APPROACH OLE 
study.81 The various symptoms were significantly reduced with volanesorsen treatment.

The long-term efficacy and safety of volanesorsen was assessed in the VOL4002 study in 22 
adults with genetically confirmed FCS with or without previous treatment in the APPROACH 
and/or APPROACH-OLE volanesorsen Phase 3 studies.82 The subjects self-administered 
volanesorsen 285 mg SC once every 2 weeks with individual patient volanesorsen exposure 
ranging from 6 to 51 months. In 12 treatment-naive patients, volanesorsen treatment resulted 
in a sustained median 52% reduction in TG levels and in 10 prior-exposure patients there 
was a 51% reduction from pre-treatment baseline. There was a 74% reduction in pancreatitis 
event rates found during volanesorsen treatment compared with the 5-year period before. 
Platelet declines were consistent with observations in Phase 3 clinical trials and no patient 
recorded a platelet count <50×109 /L.

A Phase 2 study was performed in 5 patients with partial lipodystrophy in a 16-week placebo-
controlled, randomized, double blind study of volanesorsen, 300 mg weekly, followed by 
1-year open label extension (NCT02639286).83 Volanesorsen decreased apoC3 and TG, partly 
through an LPL dependent mechanism, and it appeared to improve insulin resistance and 
hepatic steatosis.

The BROADEN Study (A Study of Volanesorsen (Formerly IONIS-APOCIIIRx) in Participants 
With Familial Partial Lipodystrophy) was a Phase 2/Phase 3 study that included 40 patients 
with familial partial lipodystrophy and concomitant hypertriglyceridaemia and diabetes 
treated with weekly SC volanesorsen 300 mg or placebo for 52 weeks (NCT02527343).84 
TG were reduced from baseline at 3 months by least squares mean (LSM) −88% in the 
volanesorsen group versus −22% in the placebo group, with a difference in LSM of −67%. 
There was a significant LSM relative reduction in hepatic fat fraction (HFF) of 53% at month 
12 with volanesorsen versus placebo. Data evaluated from the COMPASS, APPROACH, and 
BROADEN trials showed that volanesorsen reduced HFF and there was a strong inverse 
correlation between the baseline HFF and the change in HFF in the volanesorsen groups.85

3. Olezarsen
Olezarsen (ISIS 678354, IONIS-APOCIII-LRx, AKCEA-APOCIII-LRx, Akcea/Ionis) is a GalNAc-
conjugated ASO targeted to hepatic APOC3 mRNA to inhibit apoC3 production.

In a Phase 1/2a study in healthy volunteers with elevated TG it was well tolerated and 
effectively reduced apoC3 and TG levels (NCT02900027).86 Single SC doses of 10, 30, 60, 
90, or 120 mg of olezarsen resulted in median reductions of in apoC3 of 0, −42%, −73%, 
−81%, and −92%, respectively, and reductions in TG of −12%, −7%, −42%, −73%, and 
−77%, respectively, at 14 days after dosing. Multiple SC doses of 15 and 30 mg weekly and 
60 mg every 4 weeks resulted in median reductions in apoC3 of −66%, −84%, and −89%, 
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respectively, and in TG of −59%, −73%, and −66%, respectively, at 1 week after the last dose. 
There were also significant reductions in total cholesterol, apoB, non-HDL-C, VLDL-C and 
increases in HDL-C.

In a Phase 2, dose-ranging, randomised, double-blind, placebo-controlled study in 114 
participants with raised fasting serum TG of 2.26–5.65 mmol/L (200–500 mg/dL) and 
established CVD or at a high risk for CVD, doses of SC olezarsen (10 or 50 mg every 4 weeks, 
15 mg every 2 weeks, or 10 mg every week) or placebo were given for 6–12 months (ISIS 
678354-CS2, NCT03385239).87 Reductions in TG were 23% with 10 mg every 4 weeks, 56% 
with 15 mg every 2 weeks, 60% with 10 mg every week, and 60% with 50 mg every 4 weeks, 
compared with an increase by 6% in the pooled placebo group. There were significant 
decreases in apoC3, VLDL-C, non-HDL-C, and apoB and there were no platelet count, liver, 
or renal function changes in any of the olezarsen groups.

There are several ongoing Phase 3 studies with olezarsen. The BALANCE study (ISIS 678354-
CS3, NCT04568434) is an ongoing Phase 3 clinical study evaluating olezarsen SC once 
every 4 weeks in 66 people with FCS. The CORE study (ISIS 678354-CS5, NCT05079919) is 
a Phase 3 study in up to approximately 540 participants with severe hypertriglyceridaemia 
and fasting TG ≥5.65 mmol/L (500 mg/dL). ISIS 678354-CS6 (NCT05552326) is a Phase 3, 
multi-center, randomised, double-blind, placebo-controlled study in up to approximately 
390 participants with severe hypertriglyceridaemia with a 53-week treatment period, and a 13-
week post-treatment evaluation period or transition to OLE study with up to 1-year treatment. 
ISIS 678354-CS7 (NCT05185843) is a study with olezarsen in up to 30 participants with FCS 
previously treated with volanesorsen.

ISIS 678354-CS8 (NCT05355402) is a placebo-controlled study in approximately 112 
participants with hypertriglyceridaemia and established or at increased risk for ASCVD, and/
or with severe hypertriglyceridaemia. ISIS 678354-CS9 (NCT05610280) is a Phase 3, multi-
center, placebo-controlled study with a 53-week treatment period in up to 1312 participants 
with hypertriglyceridaemia and ASCVD.

ISIS 678354-CS13 (NCT05130450) is a multi-center, open-label extension study with a 53-
week treatment period in up to 60 participants with FCS rolling-over from Study ISIS 678354-
CS3 (NCT04568434). ISIS 678354-CS15 (NCT05681351) is a multi-center, open-label study 
in up to 700 participants with severe hypertriglyceridaemia who would be rolled over from 
studies ISIS 678354-CS5 (NCT05079919) or ISIS 678354-CS6 (NCT05552326) with a 53-week 
treatment period.

4. ARO-APOC3
ARO-APOC3 (Arrowhead Pharmaceuticals) is an investigational RNAi therapeutic targeting 
APOC3 being developed as a treatment for patients with severe hypertriglyceridaemia 
(SHTG), mixed dyslipidaemia (MD), and FCS. ARO-APOC3 is being investigated in the Phase 
2 SHASTA-2 clinical study (NCT04720534) in patients with SHTG, the Phase 2 MUIR clinical 
study (NCT04998201) in patients with MD, and in the Phase 3 PALISADE clinical study 
(NCT05089084) in patients with FCS.

A Phase 1 study of ARO-APOC3 in healthy volunteers involved single SC doses of 10, 25, 
50 or 100 mg ARO-APOC3 or placebo and participants were followed for 16 weeks post 
dose (AROAPOC31001, NCT03783377).88 The treatment was well tolerated and there were 

14https://doi.org/10.12997/jla.2024.13.1.2

Dyslipidaemia: New Treatments for ApoC3 and ANGPTL3

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis

http://clinicaltrials.gov/ct2/show/NCT03385239
http://clinicaltrials.gov/ct2/show/NCT04568434
http://clinicaltrials.gov/ct2/show/NCT05079919
http://clinicaltrials.gov/ct2/show/NCT05552326
http://clinicaltrials.gov/ct2/show/NCT05185843
http://clinicaltrials.gov/ct2/show/NCT05355402
http://clinicaltrials.gov/ct2/show/NCT05610280
http://clinicaltrials.gov/ct2/show/NCT05130450
http://clinicaltrials.gov/ct2/show/NCT04568434
http://clinicaltrials.gov/ct2/show/NCT05681351
http://clinicaltrials.gov/ct2/show/NCT05079919
http://clinicaltrials.gov/ct2/show/NCT05552326
http://clinicaltrials.gov/ct2/show/NCT04720534
http://clinicaltrials.gov/ct2/show/NCT04998201
http://clinicaltrials.gov/ct2/show/NCT05089084
http://clinicaltrials.gov/ct2/show/NCT03783377


reductions from baseline in apoC3 by ≥87% and TG by a maximum of 64%. Stable reductions 
lasted 12 weeks after the dose. There was a mean maximal increase in HDL-C of up to 69%. 
The study continued with doses of 10, 25 or 50 mg given SC to healthy volunteers on days 
1 and 29 with follow up for up to 16 weeks.88 There were dose-dependent reductions in 
apoC3 up to 94% and TG were reduced up to 74% with smaller reductions in LDL-C. HDL-C 
increased up to 84%.

The same study involved participants with hypertriglyceridaemia (fasting TG ≥3.4 mmol/L 
[300 mg/dL]) or multifactorial chylomicronaemia (MCM), with fasting TG ≥9.9 mmol/L (880 
mg/dL) and without biallelic pathogenic variants, who received single SC doses of 50 mg 
ARO-APOC3.89 Preliminary results in 9 subjects showed mean reductions in apoC3 levels by 
96% and in TG by 78% 4 weeks after treatment. Two MCM patients had a transient elevation 
in ALT to >3 × ULN.

Four genetically confirmed FCS patients were given 50 mg ARO-APOC3 and 26 patients 
with MCM received 10, 25, 50, or 100 mg ARO-APOC3 on Days 1 and 29.90 Mean apoC3 was 
reduced by 98% in FCS patients and by 96% in MCM patients and both groups had similar 
maximum median reductions in TG of 91% and 90%, respectively. HDL-C was markedly 
increased and the doses were well tolerated.

In the Phase 3 study in patients with FCS (PALISADE, A Phase 3 Study to Evaluate the 
Efficacy and Safety of ARO-APOC3 in Adults With Familial Chylomicronemia Syndrome, 
AROAPOC3-3001, NCT05089084), participants will be randomized to receive 4 SC doses 
of ARO-APOC3 or matching placebo and those who complete the randomized period will 
continue in a 2-year open-label extension period where all participants will receive ARO-
APOC3.

5. Other treatments targeting apoC3
Lilly have APOC3 siRNA which is being studied for the treatment of CVD. A mAb to apoC3 
has also been described which could inhibit apoC3 from the liver and the intestine but apoC3 
is present in large amounts in the plasma which may make the mAb approach difficult.91

CONCLUSION

Drugs with various modes of action are in development to target apoC3 and ANGPTL3 and 
some have been approved for limited indications. Whilst these inhibitors might be expected 
to primarily reduce TG, the ANGPTL3 inhibitors are effective in reducing LDL-C in HoFH and 
evinacumab has been approved for this indication. Whether evinacumab will be suitable for 
more common types of dyslipidaemia remains to be seen and it is currently very expensive, 
which would limit its usage. Vupanorsen was studied in mixed hyperlipidaemia and reductions 
in LDL-C and apoB were modest and there was a tendency for liver fat accumulation and 
increase in liver enzymes, so the development program was halted. Also, ANGPTL3 inhibitors 
generally reduce HDL-C, the significance of which remains to be determined.

The inhibitors of apoC3 are effective in reducing TG and the rate of acute pancreatitis in 
the severe hypertriglyceridaemia of FCS and volanesorsen has been approved in Europe for 
this indication. Thrombocytopaenia is a concern with this ASO which is not conjugated 
with GalNAc and olezarsen appears not to cause this adverse effect and may have a wider 
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indication. Volanesorsen treatment did increase LDL-C in some patients with high TG with 
no overall change in non-HDL-C or apoB, which might suggest there would be a lack of 
benefit in reducing ASCVD. This has not been reported with olezarsen but it may depend 
on the type of patient treated and the results of ongoing studies are awaited. The siRNA 
compounds inhibiting both ANGPTL3 and apoC3 look promising and further study results 
should help to define their role. All of these drugs are likely to be expensive which will limit 
their application.
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