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Abstract

The advent of high-throughput metagenomic sequencing has prompted the development of

efficient taxonomic profiling methods allowing to measure the presence, abundance and

phylogeny of organisms in a wide range of environmental samples. Multivariate sequence-

derived abundance data further has the potential to enable inference of ecological associa-

tions between microbial populations, but several technical issues need to be accounted for,

like the compositional nature of the data, its extreme sparsity and overdispersion, as well as

the frequent need to operate in under-determined regimes.

The ecological network reconstruction problem is frequently cast into the paradigm of

Gaussian Graphical Models (GGMs) for which efficient structure inference algorithms are

available, like the graphical lasso and neighborhood selection. Unfortunately, GGMs or vari-

ants thereof can not properly account for the extremely sparse patterns occurring in real-

world metagenomic taxonomic profiles. In particular, structural zeros (as opposed to sam-

pling zeros) corresponding to true absences of biological signals fail to be properly handled

by most statistical methods.

We present here a zero-inflated log-normal graphical model (available at https://github.

com/vincentprost/Zi-LN) specifically aimed at handling such “biological” zeros, and demon-

strate significant performance gains over state-of-the-art statistical methods for the infer-

ence of microbial association networks, with most notable gains obtained when analyzing

taxonomic profiles displaying sparsity levels on par with real-world metagenomic datasets.

Author summary

The importance of associations in the structuring and dynamics of community members

is widely acknowledged, but we are currently unable to co-culture most of the micro-orga-

nims sampled from the environment. Computational methods to predict microbial asso-

ciations can therefore be of practical interest, in particular given the large amounts of

multivariate microbial abundance data generated by metagenomics. This data can in the-

ory be leveraged to infer association networks, but with limited success so far, as several of

its attributes lead to technical difficulties, including its extreme sparsity, compositionality

and overdispersion among others. In particular, structural zeros (as opposed to sampling
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and technical zeros) corresponding to true absences of biological signals frequently fail to

be properly handled, and such non-random absences can lead to high levels of false posi-

tives. Given their prevalence, zero values should be properly handled by the modeling pro-

cess by accounting for the zero generating process in the first place. We describe here a

truncated log-normal graphical model that specifically addresses zeros originating from

biological absences, and discuss consistent methods for estimating sparse and high-

dimensional association networks. We also show that this model generates sparse multi-

variate counts more close to those derived from real-world microbiomes.

This is a PLOS Computational Biology Methods paper.

1 Introduction

Metagenomics has increased our awareness that microbes most often live in communities

structured by both environmental factors and ecological associations between community

members. Understanding the structure and dynamics of microbial communities thus requires

to be able to detect such associations, and is of both fundamental [1] and practical importance

as it may ultimately enable the design and engineering of consortia of interacting organisms in

order to fulfill various needs (e.g. improving the efficiency of wastewater treatment plants [2,

3] and designing more robust fecal transplants [4]).

Interactions within these microbial systems can have a positive, negative or null impact on

the involved organisms, leading to a typology of pairwise interactions based on combinations

of these win or loss outcomes, e.g. Lidicker [5] distinguishes the mutualism (+/+), competition

(-/-), predation or parasitism ((+/-) or (-/+)), amenalism ((0/-) or (-/0)) and commensalism

((+/0) or (0/+)) interaction types. However, because of the current inability to co-culture most

of the microbes sampled from the environment [6, 7], computational methods play a key role

in predicting microbial associations. The advent of high-throughput sequencing and metage-

nomics resulted in the production of large amounts of multivariate microbial abundance data

that could in theory be leveraged to reconstruct microbial association networks [8]. In practice

however, only limited success has been met in terms of robust structure inference of real-

world microbial association networks, and different methods frequently yield quite different

results [9].

In principle, methods that consider the conditional dependency structure of microbial net-

works (like probabilistic graphical models) should perform better than methods using only

univariate associations to predict pairwise associations, because the former has the power to

resolve direct from indirect associations (e.g. associations between two species mediated

through a third species). For example, ref [10] showed that “univariate networks” (i.e. net-

works based on pairwise associations predicted from univariate statistical associations) include

high proportions of false-positive predictions when there is a substantial level of dependence

between the samples, while the number of false positives was highly reduced when conditional

networks were computed.

In the framework of Gaussian Graphical Models (GGMs), the structure of the inverse

covariance matrix S−1 (also known as the precision matrix) encodes an undirected graph

whose edges represent conditional dependencies between variables [11]. Powerful graph infer-

ence algorithms for the latter include the graphical lasso (glasso) [12] and neighborhood selec-

tion [13]. However and importantly, the Gaussian assumption does not accomodate the excess

of zeros typical of metagenomic datasets.
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Indeed, a key difficulty for the statistical methods is the extreme sparsity and overdispersion

of real-world sequence-based abundance data, including non random absences (structural

zeros) that can lead to high levels of false positive results. Early population-level metagenomic

studies highlighted extreme sparsity patterns in the human microbiome, with a large propor-

tion of taxa being rare and absent in the majority of subjects, resulting in far more zero counts

for each taxon than expected on the basis of Poisson, negative binomial, or Dirichlet-multino-

mial distributions [14].

Given their prevalence, zero values need to be properly handled by the modeling approaches,

which requires accounting for the zero generating process in the first place. Zero values are often

considered resulting from either the stochastic nature of sampling (sampling zeros), failed mea-

surements arising from technical bias (technical zeros) or zero values resulting from a true absence

of signal (structural or “biological” zeros) [15]. Previous work addressing technical zeros (absence

of data) include [16], while [17] is an example of recent work dealing with sampling zeros.

Most of the existing work focuses on Gaussian graphical models, which also includes Pois-

son log-normal models where counts follow Poisson distributions with parameters sampled

from a latent multivariate gaussian variable (network inference proceeds in the latent space) as

illustrated in [17–20]. Methods based on log-normal models in the GGM framework include

gCoda [21], Banocc [22], and Gaussian copulas with zero-inflated marginals [23, 24]. Outside

the realm of GGMs, previous work on Poisson graphical models include [16] and [25]. How-

ever, there is currently no consistent multivariate Poisson distribution to model dependencies

between count variables, as Poisson graphical models fail to have proper joint distribution [25,

26] or to have both marginal and conditional Poisson distributions [27].

While there is an abundant literature about models developed for the reconstruction of eco-

logical networks from microbial occurrence or abundance data, these typically make strong

assumptions about the zero generating process (e.g. that all zeros are explained by a common

probability model) and don’t investigate the consequences of deviating from these assumptions.

Yet, the classical distinction between sampling zeros and structural zeros is not refined enough

to describe the assumptions underlying commonly used models, like zero-inflated ones, which

can lead to substantial biases under both simulated and real-world data settings [15].

We present here a truncated log-normal graphical model for inferring microbial association

networks that accounts for both the compositionality of microbial abundance data and specifi-

cally addresses zeros originating from biological absence (structural zeros), and discuss consis-

tent methods for estimating sparse and high-dimensional inverse covariance matrices.

Regarding the generative aspect of the model, which is important for producing realistic

abundance data (e.g. for benchmarking purposes), an attractive approach (implemented in the

popular Spiec-Easi toolkit [23]) relies on Gaussian copulas coupled with count distribution

marginals in order to generate multivariate count distributions. Dependencies between vari-

ables can be simulated with a latent multivariate Gaussian distribution, which is then com-

posed with count distributions, typically zero-inflated negative binomials. This protocol yields

multivariate zero-inflated negative binomial distributions, but it does not produce composi-

tional data, nor does it generate realistic count distributions when the proportion of zeros and

the variances are large. We propose a zero-inflated log normal model for generating sparse

multivariate counts, and demonstrate that it produces more realistic counts (Fig 1).

2 Motivation of the proposed model

The key motivation to use a multivariate zero-inflated model with a latent multivariate normal

variable to account for the dependency structure of the model is partly inspired by the work of

Lee et al., in the context of variable selection [14], with the following specific motivations:
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• to have a better representation of real counts (e.g. improving over commonly used zero

inflated negative binomial models) (Fig 1)

• to have a truly compositional data generator

• to take structural (biological) zeros into account at the network inference level

• to leverage the vast literature and experience available on log-normal models (e.g. [17, 18,

21], among others)

3 Materials and methods

We describe next the zero inflated log-normal model and a corresponding network inference

method. Observed counts are noted yij where i = 1‥n indexes the samples and j = 1‥p the vari-

ables (taxa). We denote the vector yi of size p the observation of counts for sample i and more

generally in bold letters vectors of size p. The count vectors are gathered into a n × p matrix Y.

3.1 The model

Our model is derived from the multivariate Poisson log-normal model [29] to which a zero-

inflated component is added. We consider a latent multivariate normal variable zi and a vari-

able ai representing the real (unknown) abundances. We define the multivariate distribution

of ai as following:

zi � N ðμ;SÞ

aij ¼ 1zij>dj
ezij

ð1Þ

where N ðμ;SÞ represents the multivariate normal distribution with mean μ and covariance S

and 1 is the indicator function (with δ determining the zero probability).

Fig 1. (A) Global feature by feature difference between the real (LifeLines-Deep cohort) and simulated counts measured by Kolmogorov-Smirnov

statistics. (B) Top: histograms showing real and simulated count data. Real counts obtained from shotgun sequencing the microbiomes of the LifeLines-

Deep cohort are shown in red; green, purple and blue represent synthetic counts generated respectively by metaSPARSim [28], spiec-easi [23] and our

model (Poisson Zero Inflated Log Normal). The different panels show results for different randomly selected taxa. Down: quantile-quantile (QQ)-plots

showing the logarithm of real counts vs the logarithm of synthetic counts.

https://doi.org/10.1371/journal.pcbi.1009089.g001
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In Gaussian Graphical Models, the structure of S−1 encodes an undirected graph with

edges representing conditional dependencies between variables [11]. In this model, zeros are

interpreted as biological zeros and are related to a latent gaussian variable.

In metagenomics, the observed counts yi reflect the abundance proportions πi of microbes

present in the sample: pij ¼
aijP
j
aij

. The number of reads observed for each sample is generally

variable, and we will note it Ni. The counts can then be modeled with a Poisson or multinomial

distribution whose parameter is proportional to πi:

yi �MðNi; πiÞ ð2Þ

For example, [28] describes a method for simulating 16S rRNA gene count data based on

gamma distributions, but it only moderately fits real data when sparsity and overdispersion

are high, as shown in Fig 1. The same figure makes apparent that the zero-inflated negative

binomial distribution is neither a good fit when parameters of the distribution are adjusted to

real-world metagenomic data by using the data generation protocol of [23].

3.2 Network inference method

We next describe a network structure inference method suitable for metagenomic data consis-

tent with the generative model presented above.

We will first present a centered log-ratio (clr)-like data transformation preserving scale

invariance in the presence of zeros, and then propose an inference method for learning the

sparse structure of S−1 that is inspired by the work of [18].

3.2.1 Data transformation. Because of variations in sequencing depths across samples,

the total number of reads in a sample only reflects the relative proportion of microbes it con-

tains [30]. This compositional nature of sequence data prevents naive correlation-based analy-

ses without appropriate correction [29], of which log-ratio based methods are the most

commonly used. In the latter, the handling of zeros by adding a fixed pseudocount (i.e., irre-

spective of the sequencing depth of the various samples) has been shown to introduce impor-

tant biases when the datasets include rare taxa and/or are inhomogeneous in coverage [10].

Downsampling or ignoring samples to level off sequence depth, or aggressive thresholding to

remove rare taxa, can somewhat alleviate this bias, although this has been criticised as statisti-

cally unsound [31] and is performed at the cost of discarding large amounts of possibly biolog-

ically relevant data.

One way to address this difficulty, as originally shown by Aitchison [29] and implemented

in popular toolkits (e.g. [23]), is to apply a centered-log-ratio (clr) transformation to the

counts:

yclrij ¼ logðyijÞ �
1

p

Xp

k¼1

logðyikÞ ð3Þ

An important property of this transformation is scale-invariance, which guarantees that two

samples with similar read proportions will have similar transformed count data. Indeed, if

counts represent absolute abundances with a scaling factor ai� λyi, then we would have

aclr
i � yclri .

As clr is not defined in zero, a typical workaround consists in adding a unit pseudocount to

the original data in order to avoid numerical problems. However, doing so breaks the scale

invariance property, as shown in S2 Text. We therefore propose a slightly different version of
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clr, preserving scale invariance in the presence of zeros and defined as following:

~yij ¼

(
logðyijÞ �

P
k; yik 6¼0

logðyikÞ

jk; yik 6¼0j
if yij 6¼ 0

0 if yij ¼ 0

ð4Þ

where |k, yik 6¼ 0| denotes the number of non zero entries of yi. A proof that this transforma-

tion preserves scale invariance in the presence of zeros can be found in S2 Text.

3.2.2 Effect of clr transformation on the estimation of S−1. In “canonical” (non zero-

inflated) log-normal models, when ai � LN ðμ;SÞ, we have aclr
i � N ðFμ; FSFÞ, where F ¼

I � 1

p J and J is a p × p matrix filled with ones. Even though there is no guarantee that FSF is

close to S (in the sense of the Frobenius norm) when p>> 0, as shown in S1 Text, the approx-

imation appears reasonably good in practice (see e.g. [23]).

In the zero inflated log-normal model, we will assume similarly that if ai follows a distribu-

tion as defined in Eq 1, then ~ai follows a zero inflated normal distribution defined as:

zi � N ð~μ; ~SÞ

~aij ¼ 1zij>~d j
zij

ð5Þ

and assume that ~S is a good approximation of S.

3.2.3 Sparse network inference. We will assume that ~yi � ~ai follows the zero inflated nor-

mal distribution defined in Eq 5. For network structure inference, we follow a procedure simi-

lar in spirit to [18] and [24], with distinct data transformation steps to estimate the latent layer,

whose key steps can be summarized as follows:

• obtain initial estimates of parameters m̂ j, Ŝ ¼ ðŜ11; Ŝ22; . . . ; ŜppÞ and d̂ j

• transform data to posterior mean of Zj~Y to obtain ~Z

• infer the structure of S−1 with either the graphical lasso (glasso) [12] using the empirical cor-

relation matrix of ~Z , or neighborhood search (Meinshausen and Bühlmann, MB) [13] on ~Z .

The glasso [12] solves a penalized likelihood maximization problem for the multivariate

normal distribution, and Ambroise and Chiquet have shown (personal communication and S4

Text) that the MB algorithm solves a penalized pseudo-likelihood maximization problem. On

the other hand, [18] showed that this last step is therefore the maximization step of an EM

algorithm, the two first steps yielding the expectation step.

3.2.4 Initial parameter estimates. We describe here how to obtain initial estimates for

the model parameters δ̂; μ̂; Ŝ. As shown in [18], a diagonal estimation of S can be made in

order to reduce the computational burden of the method (note [32] provides an algorithm for

maximizing the penalized likelihood without the diagonality assumption). Under the con-

straint that Ŝ is diagonal, all variables are independent and marginal parameters m̂ j and Ŝ jj can

be estimated separately for each variable. We have the following likelihood from the marginal

distributions, which have both a continuous and a discrete part:

Lðmj;Sjj; djj~yiÞ ¼
Y

i

ð1~yij¼0Fmj;Sjj
ðdjÞ þ 1~yij 6¼0fmj ;Sjj

ð~yijÞÞ ð6Þ

where fmj;Sjj
and Fmj ;Sjj

are respectively the normal distribution and the cumulative normal dis-

tribution of mean μj and variance Sjj.
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The solution for d̂ j is straightforward and independent of other parameters:

d̂ j ¼ min
i; yij 6¼0

~yij ð7Þ

The other parameters can be obtained by maximizing the log-likelihood:

m̂ j; Ŝ jj ¼ argmax
m;s2

X

i;~yij¼0

logðFm;s2ðd̂ jÞÞ

þ
X

i;~yij 6¼0

logðfm;s2ðlogðyijÞÞÞ
ð8Þ

We will note Ŝ ¼ diagðŜ11; Ŝ22; . . . ; ŜppÞ.

3.2.5 Posterior mean transformation. Following [18], we use the algorithm on the

inferred latent Gaussian variable ~zi . ~Z is obtained by posterior mean transformation:

~Z ≔ Eδ̂ ;μ̂ ;Ŝ ½Zj~Y � ð9Þ

As Ŝ is diagonal, each value of ~Z can be computed separately (see S3 Text),

~zij ¼ Ed̂ j ;m̂ j;Ŝ jj
½zijj~yij� ð10Þ

for which the computation is easy:

~zij ¼

R d̂ j
� 1

y:fm̂ j ;ŝ j ðyÞdy

Fm̂ j ;ŝ j ðd̂ jÞ
if ~yij ¼ 0

~yij if ~yij 6¼ 0

8
>><

>>:

ð11Þ

Interestingly, we noticed that fixing a small inaccuracy in [18] during data transformation at

the level of the diagonal terms of ~S in Equation (8) of S3 Text did not increase the support of

inferred networks. Our correction actually leads to increased variance of individual observa-

tions with less covariance information being shifted across variables, therefore possibly leading

to poorer support for the network structure.

3.3 Synthetic datasets

In order to compare the performance of various methods without knowing the true underlying

associations among taxa in real datasets, we designed synthetic datasets with a controlled

ground truth.

For our simulations, we tested two generative models. The first is the model described

in section 3.1 with Eqs (1) and (2) (ZiLN). The second is the model implemented in [23]

using Gaussian copulas and zero-inflated negative binomial marginals (combined in the

NorTA protocol). The covariance matrix S associated to a given graph topology is generated

using the Spiec-Easi framework [23], with condition number κ = 100 and the number of

edges e equal to the number of variables p (the sparsity assumption of the association graph

is translated into the scaling of the number of taxon-taxon associations with the number of

taxa).

3.3.1 Synthetic networks for Simulation 1. In the first simulation, we used the ZiLN

generative model in conjunction with different network topologies (band, Erdos-Renyi and

scale-free), and varying sample numbers n = 50, 100, 300, 1000, 2000 and taxa numbers

p = 100, 200, 500. The library sizes Ni were drawn from negative binomial distributions
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Ni � NBðmean ¼ 1:5� 106; size ¼ 5Þ. The sparsity levels of taxa sj (i.e. the expected propor-

tion of zeros) was drawn from a uniform distribution sj� unif(0, 0.9), bringing the total num-

ber of zeros to 45% of count values. The correspondence to the parameter δ is given by:

dj ¼ F� 1

mj ;s
2
j
ðsjÞ, and the mean of the Gaussian distribution was also chosen randomly from a

uniform distribution: μj� unif(0, 3).

3.3.2 Synthetic networks for Simulation 2. In the second simulation, the sparsity level of

the variables is varied while p and n are fixed to p = 300 and n = 100 respectively. We used a

deterministic formulation for s: sj ¼
j
d
t

where t is chosen so that the mean of sj is equal to the

target global proportion of zeros which can take values from 0, 10, 50, 70 and 90%. The param-

eters μ and Ni are chosen as in Simulation 1.

For this second simulation, we also used the NorTA framework from [23] for comparative

purposes, with a latent normal distribution zi � N ð0;SÞ and count values generated by

composition with marginal inverse cumulative distribution functions (cdf)

yi ¼ ðF
� 1
1
ðF0;S11

ðzi1ÞÞ; F� 1
2
ðF0;S22

ðzi2ÞÞ; ; F� 1
p ðF0;Spp

ðzipÞÞÞ, where Fj are cdf of zero-inflated

negative binomial distributions. As parameters for those distributions, we took means as

meanj ¼ emj , a size ν fixed to ν = 10, and a probability of zero equal to sj.

4 Results

4.1 Accounting for sparsity and overdispersion

In order to assess the ability of our model to deal with the high levels of sparsity and overdis-

persion that are inherent to natural microbial abundance datasets, we compared the extent to

which synthetic count data generated under our model and two other model-based approaches

are able to reproduce abundances of taxonomic profiles generated from human gut micro-

biomes of the population-based LifeLines-Deep cohort [33]. This cohort includes 1,135

individuals (474 men and 661 women) from the general Dutch population, whose gut micro-

biomes were shotgun sequenced using the Illumina short-read technology, generating an aver-

age of 32 million reads per sample (EBI dataset EGAD00001001991). We phylogenetically

profiled the sequences from the LifeLines-Deep cohort using the metapalette software [34],

and several samples by taxa matrices corresponding to different taxonomic ranks were con-

structed from these results, e.g. the raw species-level matrix contains 3957 taxa (variables) and

about 90% of zero entries.

The performance of our model was compared to two other methods generating synthetic

count data by integrating information from experimental count distributions in their model-

based generative process: spiec-easi [23] and metasparsim [28]. Spiec-easi implements a Nor-

mal to Anything (NorTA) approach [35] to generate correlated count data by coupling Gauss-

ian copulas with count distribution marginals (typically zero-inflated negative binomials)

fitted on real-world count data [23], while metasparsim is a tool designed to generate 16S

rRNA gene counts based on a two-step gamma multivariate hypergeometric model [28].

Fig 1 provides different views of the performance of the three methods, with the top panel

of Fig 1B showing count histograms for different randomly selected taxa, while the bottom

panel presents the same results in the form of quantile-quantile plots (QQ-plots). Both repre-

sentations make apparent that the zero inflated log-normal model provides a better fit to the

very sparse and overdispersed data extracted from the real-world microbiomes. In order to

provide a more global assessment of the differences between real and simulated counts, we

measured the feature by feature differences between these distributions with the Kolmogorov-

Smirnov statistic (i.e. the largest absolute difference between the observed cdf of the real and

PLOS COMPUTATIONAL BIOLOGY A zero inflated log-normal model for inference of sparse microbial association networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009089 June 18, 2021 8 / 17

https://doi.org/10.1371/journal.pcbi.1009089


simulated taxa abundances), thus providing a distance between them. Fig 1A shows that the

proposed method achieves a smaller per-feature difference with the real distribution.

This observation also hints that state of the art methods (Spiec-Easi [23] and metaSPARSim

[28]) used to simulate multivariate count data from rRNA amplicons fail to properly account

for counts derived from shotgun metagenomic data, probably because of higher overdisper-

sion in the latter.

4.2 Accuracy of microbial network inference

We compared our method against four state of the art methods for inferring microbial associa-

tion networks. Magma [24] is a method for detecting microbial associations specifically aiming

to deal with an excess of zero counts, while also taking compositionality and overdispersion

into account; it is based on Gaussian copula models with marginals modeled with zero-inflated

negative binomial generalized linear models, and the core algorithm for network structure

inference is the graphical lasso, with its inference procedure relying on the estimation of the

latent data by a specific medium imputation procedure [24]. Spiec-easi [23] is a popular and

widely used toolkit for inferring microbial ecological networks; it is designed to deal with both

compositionality and sparsity, and relies on algorithms for sparse neighborhood and inverse

covariance selection (i.e. the graphical lasso) for network structure inference. SparCC is a rela-

tively older but widely used method dealing with compositional data and measuring the linear

relationship between log transformed abundances [36]. Flashweave [37] is a recently developed

tool based on the HITON [38] constraint-based conditional independence solver and leverages

the so-called local-to-global learning framework to infer directly associated neighborhoods of

variables in large systems [37].

We performed a comparison of these three model-based methods in terms of their ability

to accurately recover the structure of controlled networks of different dimensions, topologies

and sampling regimes (described in the subsection 3.3.1 of the Material and Methods). The

performance of the methods was quantified by the area under precision-recall curves (AUPR,

which should be preferred over ROC-AUC on imbalanced datasets with a lot of true negatives

like microbiome taxonomic data), and is displayed in Fig 2 for synthetic datasets encompass-

ing different topologies (band, Erdos-Renyi, scale-free), dimensions (p = 100, 300, 500) and

sample numbers (n = 50, 100, 300, 1000, 2000). We also initially measured these performances

using AUROC (shown in S3 Fig), and assessed the precision of the methods on the 50 most

confident edge predictions (shown in S2 Fig), both of which are largely consistent with the

AUPR results shown in Fig 2.

In practice, this comparison process does not rely on the inference of a single graph but of a

series of graphical models of varying sparsity (including the empty and complete network as

extremes), which together constitute the solution path. Each of the decreasing values of the

sparsity-controlling parameter in the solution path leads to a graph solution, including its set

of edges. If we denote the latter by Ei for graph solution i, we therefore have E1� E2� Ei‥�
En, which provides a natural ordering of the edges in these sets, e.g. edges associated to elevated

sparsity-controling parameters are more reliable than edges appearing ectopically under low

sparsity settings. This provides a rationale for ordering the edges and computing AUPR values.

Besides the expected dependence of the results on network topology, dimension and sample

number, this figure makes apparent significant performance gains of the proposed method, in

particular for the recovery of networks endowed with scale-free topologies that were shown to

be the most difficult to reconstruct accurately in previous studies [23]. It should be noted how-

ever that all methods show only limited accuracy for this network topology when operating in

the under-determined regime, where the number of variables (taxa, p) exceeds the number of
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Fig 2. Effect of the number of samples (n), number of taxa (p) and network topology on the performance of the various methods, measured with the area under

precision-recall curve (AUPR), on synthetic datasets. Bars represent the median over 10 runs, and error bars + 25% and −25% quantiles. Each method (Spiec-Easi

(blue) [23], MAGMA (gray) [24] and ours (ZiLN, orange), as well as no transformation at all (green)), was tested with two structure inference algorithms (glasso and

neighborhood selection). Two other orthogonal (i.e. based on distinct rationales) network inference methods, sparcc (dark-brown) [36] and Flashweave (dark-red) [37],

were included to broaden the comparisons.

https://doi.org/10.1371/journal.pcbi.1009089.g002

PLOS COMPUTATIONAL BIOLOGY A zero inflated log-normal model for inference of sparse microbial association networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009089 June 18, 2021 10 / 17

https://doi.org/10.1371/journal.pcbi.1009089.g002
https://doi.org/10.1371/journal.pcbi.1009089


samples (n). It should also be noted that the MB algorithm appears to perform better than the

graphical lasso. A similar figure, presenting network reconstruction accuracy metrics for a dis-

tinct dataset generated using the NorTA protocol with zero inflated negative binomials, is

shown in the Supplemental Information (see S1 Fig).

On the other hand, the experiments designed to probe the effects of increasing levels of spar-

sity (using the datasets described in the subsection 3.3.2 of the Material and Methods) make clear

that all five methods are strongly affected by increasing proportions of zeros, as shown in Fig 3,

with no method performing accurately under very high levels of sparsity (i.e., 90% of zeros).

4.3 Inference of real-world microbial association networks

We finally applied our method to infer microbial association networks from real-world taxo-

nomic profiles generated from healthy gut microbiomes of the LifeLines-Deep [33] population

cohort.

Fig 3. Effect of the amount of zeros in the data (vertical panels) on method performance. Top panel: network reconstruction accuracy for various methods using

synthetic data generated with the NorTA protocol using zero inflated negative binomial marginals (see Methods). Bottom panel: network reconstruction accuracy using

data generated under the zero inflated log-normal (ZiLN) model. Notations are as in Fig 2, and results are shown for the Erdos-Renyi topology.

https://doi.org/10.1371/journal.pcbi.1009089.g003
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Even though confirmed ecological associations within natural microbial communities are

only scarcely known, several global network properties have been reproducibly documented,

including the salient observation of preferential associations among phylogenetically close

organisms [39, 40]. This property, known as assortativity, is manifest at the level of highly con-

nected components in our analysis, and is displayed for the species taxonomic level in Fig 4.

To provide a more quantitative support for the observed assortativity phenomenon, we

computed assortativity coefficients (homophyly of the graph) for the different methods at vari-

ous phylogenetic levels using the igraph R package [41] (shown in S1 Table).

In order to assess the extent to which the taxa association predictions are shared among the

five methods, we measured the amount of common edges predicted by the different methods.

In order to get comparable edge sets predicted by the different methods, we decided to pick

the 1200 top edges for each method (e.g. this entails using a sparsity-controlling parameter for

glasso yielding 1200 detected edges). Fig 5 illustrates the overlap between the different edge

sets, and makes apparent the substantial and still problematic differences that exist among the

various predictions. On one hand, this is partly expected and consistent with previous observa-

tions [9]. On the other hand, the figure shows that our method has the highest ratio (239/100)

of edges predicted unanimously among all methods versus predictions unique to the individ-

ual methods.

Fig 4. Species-level association network inferred from the LifeLines-Deep microbiomes. Nodes represent species and are colored according to their

taxonomic order.

https://doi.org/10.1371/journal.pcbi.1009089.g004
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5 Discussion

Accurate inference of microbial association networks is necessary in order to gain a deeper

understanding of the functioning of microbial consortia and to take advantage of the increas-

ingly large body of data that is generated worldwide through environmental genomics initia-

tives. The formalism of Gaussian graphical models naturally lends itself to the problem of

network reconstruction, but despite attractive mathematical attributes and the availability of

powerful inference algorithms, application of this framework to the identification of robust

microbial associations has only been met with moderate success. It appears unlikely though

Fig 5. Venn diagrams displaying the overlap between the species associations sets predicted by the different methods on the human gut

taxonomic profiles of the LifeLines-Deep cohort [33]. To simplify the plot, a threshold was applied here to remove taxa absent in more than 20% of

the samples, leading to a total of 565 species. It can be seen that our method has the highest ratio (239/100) of edges predicted by all methods versus

idiosyncratic ones, but that overall substantial differences remain among the predictions of the various methods.

https://doi.org/10.1371/journal.pcbi.1009089.g005
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that the problem lies in the GGM formalism itself or in inherently flawed inference algorithms;

instead, it is most likely rooted in difficulties to properly account for the idiosyncrasies of bio-

logical data. Beyond compositionality and overdispersion, high levels of sparsity are common

attributes of real-world biological datasets, which are challenging to account for in a statisti-

cally sound manner. In particular, an important distinction between sampling zeros and

structural zeros is often neglected, and nearly all of the actual analyses of multidimensional

metagenomic count data perform some form of aggressive thresholding to discard rare but

possibly biologically relevant data.

We presented here a simple statistical model specifically aimed at accounting for large

amounts of structural (biological) zeros in the network inference process, and provide evi-

dence of its usefulness by showing performance gains with respect to several state of the art

methods for microbial network inference. Unoptimized code as well as scripts to replicate the

figures can be accessed at https://github.com/vincentprost/Zi-LN.
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Investigation: Vincent Prost, Stéphane Gazut, Thomas Brüls.
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