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Abstract
Purpose: Current knowledge-based planning methods for radiation therapy
mainly use low-dimensional features extracted from contoured structures to
identify geometrically similar patients. Here, we propose a knowledge-based
treatment planning method where the anatomical similarity is quantified by the
rigid registration of the three-dimensional (3D) planning target volume (PTV)
and organs at risks (OARs) between an incoming patient and database patients.
Methods: A database that contains PTV and OARs contours from 81 cervical
cancer radiation therapy patients was established. To identify the anatomically
similar patients, the PTV of the new patient was registered to each PTV in the
database and the Dice similarity coefficients were calculated for the PTV,rectum,
and bladder between the new patient and database patients. Then the top 20
patients in the PTV match and top 3 patients in the subsequent bladder or rec-
tum match were selected. The best dose–volume histogram parameters from
the top three patients were applied as the dose constraints to the automatic
plan optimization. A fast Fourier transform algorithm was developed to accel-
erate the 3D PTV registration process run through the database. The entire
treatment planning process was automated using in-house customized Pinna-
cle scripts.The automatic plans were generated for 20 patients using leave-one-
out scheme and were evaluated against the corresponding clinical plans.
Results: The automatic plans significantly reduced rectum and bladder V50 Gy
by 11.79% ± 5.2% (p < 0.01) and 2.85% ± 3.16% (p < 0.01), respectively. The
dose parameters achieved for the PTV and other OARs were comparable to
those in the clinical plans. The entire planning process, including both dose pre-
diction and inverse optimization, costs about 6 min.
Conclusions: The direct 3D contour match method utilizes the full spatial infor-
mation of the PTV and OARs of interest and provides an intuitive measurement
for patient plan anatomy similarity. The proposed automatic planning method
can generate plans with better quality and higher efficiency.
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1 INTRODUCTION

Intensity-modulated radiation therapy (IMRT) is a
broadly utilized radiation treatment technique that can
provide conformal coverage to the planning target vol-
ume (PTV) while sparing organs at risk (OARs). IMRT
treatment planning usually starts with a universal tem-
plate that specifies dose constraints for both the PTV
and OARs following a given clinical protocol such as the
often used Radiation Therapy Oncology Group proto-
cols or institute-specific guidelines. The planners often
have to either tighten or loosen the dose constraints to
adapt any individual patient’s anatomy, particularly, the
geometrical relationship between the PTV and OARs.To
what extent the constraints are modified depends on the
planner’s experience. Therefore, the plan optimization
step is a trial-and-error process in which the planner
has to iteratively probe the achievable dose objectives
until the plan satisfies the attending physician’s spec-
ification. This process is tedious and time-consuming,
because it is difficult to tell when the plan quality is
optimized and whether the optimization process should
be stopped.

Various approaches, including knowledge-based
planning, atlas-based planning, and deep learning
methods, have been proposed to improve IMRT plan-
ning quality and efficiency.1–4 In knowledge-based
planning approaches, the plan for a new patient is
optimized using dose objectives achieved by previous
clinical patients bearing similar PTV and OAR geo-
metrical relationships. The geometric relationships are
represented by one- (1D) or two-dimensional (2D) met-
rics, including distance-to-target histogram,5–7 surface
distance,8,9 overlap volume histogram (OVH),10–17 and
contour beam’s-eye-view (BEV) projection match.18,19

However, the low-dimensional metrics may oversim-
plify the three-dimensional (3D) patient anatomy and
result in a suboptimal selection of anatomically similar
patient. Recently, deep learning methods also have
been investigated to predict dose distribution20–24

and to automatically generate machine deliverable
treatment plans,25–29 so as to improve the treatment
planning quality and efficiency. The deep learning
method, however, requires a sufficiently large dataset
and a nontrivial network training process, which may
have to be retrained once the dataset is expanded.

In this work, we proposed a knowledge-based auto-
matic treatment planning method using direct 3D patient
anatomy match to select anatomically similar patients
from an established plan database. The anatomical
match was quantified with the degree of the PTV and
OARs registration between a new patient and those in
the plan database.The effectiveness of this method was
validated on cervical cancer radiation therapy patients.
This work is to provide an intuitive method to quantify the
patient anatomical similarity and a practical approach for
knowledge-based automatic treatment planning.

2 METHODS

2.1 Cervical radiation therapy

We collected 81 clinical treatment plans for cervical can-
cer patients treated in the First Affiliated Hospital of
USTC. A prescription dose of 50 Gy was delivered to
the PTV in 25 fractions using seven 6-MV photon beams
with 180, 140, 90, 30, 330, 275, and 220◦ fixed beam
angles. IMRT treatment plans were generated in a Pin-
nacle treatment planning system (Version 16.2, Philips
Healthcare, Andover, MA). The PTV objectives were a
uniform dose of 50 Gy, a minimum dose of 49.5 Gy, a
maximum dose of 52 Gy, and at least 96% PTV volume
receiving 50 Gy. The OARs considered for dose sparing
were rectum, bladder, left and right femoral head, small
intestine, and spinal cord. The dose objectives used in
plan optimization are listed in Table 1. The dose goals
used in plan evaluation are listed in Table 2. Specifically,
the dose constraints for rectum and bladder were both
V50 Gy < 50%.

Twenty patients were randomly selected from the
database as test cases for automatic planning. Using
the leave-one-out method, meaning each test case was

TABLE 1 Dose objectives in plan optimization

Structure Parameter Value

PTV Minimum V50 Gy 96%

Dmax 52 Gy

Dmin 49.5 Gy

Uniform dose 50 Gy

Rectum V45 Gy 45%

Bladder V45 Gy 45%

Left femoral head V45 Gy 5%

Right femoral head V45 Gy 5%

Small intestine V45 Gy 10%

Dmax 50 Gy

Spinal cord Dmax 42 Gy

Abbreviation: PTV, planning target volume.

TABLE 2 Dose goals in plan evaluation

Structure Parameter Value

PTV V50 Gy >96%

Rectum V50 Gy <50%

Bladder V50 Gy <50%

Left femoral head V50 Gy <10%

Right femoral head V50 Gy <10%

Small intestine V50 Gy <10%

Dmax <52 Gy

Spinal cord Dmax <45 Gy

Abbreviation: PTV, planning target volume.
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F IGURE 1 An anatomy match example of a test patient and a database patient. The PTV, rectum, and bladder of test and database case
were used for patient anatomy match. There were two steps: step 1 was PTV registration, and step 2 was similarity measurement using DSC for
the PTV, rectum, and bladder. DSC, Dice similarity coefficient; PTV, planning target volume

compared against the remaining 80 patients in the
database, the best anatomical match was identified.The
automatic plans generated with the proposed method
were compared with the corresponding clinical plans.

2.2 Direct 3D anatomy registration

The best anatomical match between the test patient and
the database patients was identified through rigid struc-
ture registration which, as shown in Figure 1, was a two-
step approach. First, the PTV was aligned to each case
in the database by minimizing the pixel value difference
using the squared error (SE) term:

SEt,m (u, v, w) =
M−1∑
x=0

N−1∑
y=0

L−1∑
z=0{

Itest (x, y, z) − Imatch (x + u, y + v, z + w)
}2

(1)

where Itest and Imatch are the 3D binary intensities (1
inside PTV, 0 outside PTV) for the test and compared
case, respectively.

The SE can be written as30,31

SEt,m (u, v, w) = Ct − 2cort,m + Cm (2)

where

cort,m =

M−1∑

x=0

N−1∑

y=0

L−1∑

z=0

Itest (x, y, z) Imatch

(x + u, y + v, z + w) (3)

Ct =

M−1∑

x=0

N−1∑

y=0

L−1∑

z=0

{
Itest (x, y, z)

}2
(4)

Cm =

M−1∑

x=0

N−1∑

y=0

L−1∑

z=0

{
Imatch (x + u, y + v, z + w)

}2

=

M−1∑

x=0

N−1∑

y=0

L−1∑

z=0

{
Imatch (x, y, z)

}2
(5)

The Ct and Cm in Equation (2) are constants, inde-
pendent of the candidate motion vector (u, v, w),and are
not required to be computed, because we are interested
only in finding u, v, and w where the SE function has
minimum,not the actual minimum value itself.Thus,min-
imizing SE can be regarded as maximizing the following
term:

S (u, v, w) = co rt,m =

M−1∑

x=0

N−1∑

y=0

L−1∑

z=0

Itest (x, y, z)

× Imatch (x + u, y + v, z + w) (6)

The previous equation can be viewed as a spatial cor-
relation between Itest and Imatch.Equation (3) can be also
computed using the fast Fourier transform (FFT) algo-
rithm as follows:

S (u, v, w) = IFFT
[
FFT ×

(
Itest

)
FFT

(
Imatch

)]
(7)

where IFFT is the inverse FFT, and the asterisk indi-
cates the complex conjugation.To perform multiplication
in the transform domain, the images must be padded
with zeros up to the same size. To improve computing
efficiency, parallel computing was used on a MATLAB
platform.

Second, the similarities of PTV, rectum, and bladder
between test and each compared patient were evalu-
ated by Dice similarity coefficient (DSC) after the PTV
was registered. The DSC equation was
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DSC = 2 × Itest∩Imatch

Itest+Imatch
(8)

Then, the best anatomical match was selected based
on the DSC value. For the PTV similarity match, 20
patients with highest DSC scores were chosen for sub-
sequent OAR similarity match. After that, three patients
with highest DSC scores for each OAR were selected,
and the smallest dose–volume histogram (DVH) param-
eter V50 Gy of the three was used as the achievable dose
constraint in the automatic planning process. The dose
optimization objectives for the rest of OARs were from
our institute protocol as shown in Table 1.

2.3 Automatic treatment planning

For an incoming patient, the automatic planning process
follows five steps: (1) The patient PTV, rectum, and blad-
der contours were extracted; (2) the patient was regis-
tered with the database based on the PTV structure; (3)
the best anatomical match patients were found and the
dose constraints were derived; (4) an initial plan was
automatically generated and the personalized objec-
tives were applied; and (5) start plan optimization.

We developed a series of scripts to further automate
the execution procedures. The scripts are applied to (1)
generate the ring structures surrounding the PTV and
spinal cord to limit the dose falloff outside the PTV and
OAR, (2) set seven radiation beams, and (3) apply all
PTV and OAR dose objectives. An example workflow of
automatic planning is shown in Figure 2.

2.4 Plan data analysis

The automatic plan was compared with its clinical coun-
terpart for the evaluation of achieved target cover-
age and OARs sparing. The homogeneity indices (HI),
D98, D95, D2, and V50 Gy, were used for target coverage

F IGURE 2 Automatic planning flowchart

evaluation. The definition of HI is as follows:

HI = D2−D98

DRx
× 100% (9)

where D2 and D98 are the dose value corresponding to
2% and 98% of the PTV on the DVH, respectively, and
DRx is the prescription dose 50 Gy. The dose parame-
ters used in comparison included: V50 Gy for rectum and
bladder,V50 Gy for left and right femoral head,V50 Gy and
max dose for small intestine, max dose for spinal cord.

The paired t-test was used for comparison with signif-
icance determined at the level of p < 0.05.

3 RESULTS

The PTV DSC distributions against remaining 80
patients in the database for 20 test patients are shown
in Figure 3a.The average median DSC was 0.66 ± 0.04,
with a highest median DSC of 0.73 and a lowest median
DSC of 0.60. Considering the limited database size, we
empirically chose the top 20 patients in the PTV match
instead of setting a constant Dice threshold.The rectum
and bladder DSC distributions for the chosen 20 patients
are shown in Figure 3b,c. The average median DSC for
rectum and bladder were 0.43 ± 0.08 and 0.58 ± 0.10,
respectively. The top three patients with highest rectum
or bladder DSC values were selected as best matched
patients for the following dose constraint determina-
tion. Each test patient’s DSC results used for anatom-
ically similar patient selection are listed in Table 3.
The results indicate that the rigid structure registration
is capable of identifying anatomically similar patients
from which the DVH parameters were extracted for
automatic planning.

As an example, Figure 4 illustrates the anatomy
registration results of one patient. The best matched
patients’ V50 Gy dose constraints were used as auto-
matic plan optimization objectives. Figure 5 compares
the DVHs and dose distributions for the automatic
and clinical plan of this patient. The PTV (dark blue)
V50 Gy coverage of both plans meets the protocol (clin-
ical 96.95% vs. automatic 96.54%). The DVH curves
for the PTV, right femoral head, and small intestine
are very similar between the two plans. The DVHs for
the rectum, bladder, and spinal cord are slightly bet-
ter at the high-dose region, whereas the DVH for the
left femoral head is slightly worse in the automatic
plan.

Table 4 compares the PTV dose metrics between
the clinical and automatic plans. The automatic plans
achieved an average PTV V50 Gy of 97.3% ± 0.62%,
whereas the clinical plans achieved an average of
97.03% ± 0.55%, with no significant difference in
between (p = 0.14). The automatic plans were sig-
nificantly lower than clinical plans in D98 (p = 0.03),
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F IGURE 3 Box plot of DSC distributions in similarity match for the 20 test patients: (a) The PTV DSC distribution against the remaining 80
patients in the database. (b) The rectum DSC distribution against the top 20 PTV-similar patients. (c) The bladder DSC distribution against the
top 20 PTV-similar patients. DSC, Dice similarity coefficient; PTV, planning target volume

TABLE 3 The DSC results in anatomically similar patient selection

Pt. No. 20 PTV DSC 3 Rectum DSC 3 Bladder DSC 6 PTV DSC

1 0.79 ± 0.02 0.65 ± 0.02 0.69 ± 0.03 0.79 ± 0.01

2 0.82 ± 0.02 0.61 ± 0.03 0.78 ± 0.01 0.83 ± 0.03

3 0.79 ± 0.02 0.63 ± 0.01 0.77 ± 0.03 0.78 ± 0.01

4 0.73 ± 0.03 0.56 ± 0.05 0.80 ± 0.03 0.73 ± 0.03

5 0.75 ± 0.03 0.65 ± 0.04 0.59 ± 0.07 0.75 ± 0.02

6 0.82 ± 0.02 0.65 ± 0.02 0.74 ± 0.04 0.83 ± 0.02

7 0.77 ± 0.02 0.61 ± 0.06 0.66 ± 0.06 0.78 ± 0.02

8 0.74 ± 0.03 0.64 ± 0.01 0.81 ± 0.02 0.74 ± 0.01

9 0.75 ± 0.04 0.41 ± 0.07 0.75 ± 0.08 0.80 ± 0.03

10 0.77 ± 0.03 0.48 ± 0.04 0.71 ± 0.01 0.80 ± 0.02

11 0.78 ± 0.03 0.62 ± 0.05 0.81 ± 0.05 0.80 ± 0.01

12 0.78 ± 0.04 0.60 ± 0.04 0.78 ± 0.05 0.78 ± 0.03

13 0.79 ± 0.03 0.54 ± 0.06 0.75 ± 0.00 0.80 ± 0.04

14 0.74 ± 0.04 0.58 ± 0.02 0.78 ± 0.05 0.76 ± 0.05

15 0.78 ± 0.03 0.53 ± 0.01 0.62 ± 0.08 0.78 ± 0.03

16 0.73 ± 0.05 0.54 ± 0.02 0.60 ± 0.05 0.74 ± 0.03

17 0.75 ± 0.03 0.51 ± 0.04 0.71 ± 0.01 0.76 ± 0.02

18 0.78 ± 0.03 0.57 ± 0.06 0.80 ± 0.04 0.78 ± 0.03

19 0.71 ± 0.04 0.48 ± 0.06 0.59 ± 0.01 0.75 ± 0.03

20 0.79 ± 0.03 0.59 ± 0.02 0.74 ± 0.04 0.79 ± 0.03

Mean ± SD 0.76 ± 0.04 0.57 ± 0.07 0.72 ± 0.08 0.78 ± 0.38

Median 0.77 0.59 0.75 0.78

Abbreviations: DSC, Dice similarity coefficient; PTV, planning target volume.

although the average dose difference was only
0.15 ± 0.29 Gy. Moreover, there is no significant dif-
ference for D95, D2, and HI values between the two
groups. These imply that both sets of plans achieved
similar PTV coverage.

The dose comparisons for OARs are provided
in Table 4. The rectum V50 Gy in the automatic
plans was significantly reduced by 11.79% ± 5.46%
(23.22% ± 6.2% vs. 35.01% ± 5.67%, p < 0.001). The

bladder V50 Gy in the automatic plans was significantly
reduced by 2.85% ± 3.33% (36.43% ± 4.62% vs.
39.28% ± 5.61%, p = 0.001). For the rest OARs, the
value differences for the evaluated dose parameters
were relatively small and were within 0.5% or 0.5 Gy.
As observed in Figure 6, the V50 Gy values for the rec-
tum and bladder were reduced in the automatic plans
for almost all 20 test patients (100% for rectum, and
90% for bladder). The spinal cords Dmax for automatic
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F IGURE 4 An example of the anatomical similarity for rectum
and bladder: (a) The most similar patient for rectum dose prediction;
(b) the most similar patient for bladder dose prediction

plans were significantly higher than the clinical plans.
However, all the max doses for spinal cord were under
45 Gy.

For each new patient, the registration process took
an average of 2 min. In addition, the treatment plan
optimization took an average of 4 min. For each test

patient, the entire automatic planning process took
about 6 min.

4 DISCUSSION

We have developed a direct 3D anatomy match method
to search geometrically similar patients from a database
base on the proposed structure similarity. The achiev-
able dose constraints for a new patient were obtained
from those clinical plans in the database corresponding
to anatomically most similar patients and applied as per-
sonalized optimization objectives. In addition, we devel-
oped a workflow to automate the planning process and
minimized the number of manual interactions. The vali-
dation results show that the plans created with the pro-
posed method had quality comparable to their clinical
counterparts.

The direct 3D anatomy match measures the similarity
between patients using their original volume and loca-
tion, which preserves both the geometric relationship

F IGURE 5 An example for the clinical and automatic treatment plan comparison: (a) DVHs of PTV, rectum, bladder, femoral heads, small
intestine, and spinal cord; (b) dose distributions of the two plans. DVHs, dose–volume histograms; PTV, planning target volume
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TABLE 4 Comparison of the PTV/OAR dose metrics between the clinical and automatic plans

Structures Metrics Automatic plan Clinical plan p-Value

PTV V50(%) 97.03 ± 0.55 97.30 ± 0.62 0.14

HI(%) 8.00 ± 1.00 8.00 ± 1.00 0.25

D98(Gy) 49.63 ± 0.21 49.78 ± 0.19 0.03

D95(Gy) 50.50 ± 0.15 50.51 ± 0.19 0.82

D2(Gy) 53.73 ± 0.21 53.78 ± 0.25 0.31

Rectum V50(%) 23.22 ± 6.20 35.01 ± 5.67 <0.001

Bladder V50(%) 36.43 ± 4.62 39.28 ± 5.61 0.001

Left femoral head V50(%) 1.98 ± 2.00 1.56 ± 1.08 0.31

Right femoral head V50(%) 1.42 ± 0.93 1.73 ± 1.00 0.02

Small intestine V50(%) 8.69 ± 3.64 8.30 ± 3.72 0.02

Dmax(Gy) 53.86 ± 0.41 53.84 ± 0.37 0.90

Spinal cord Dmax(Gy) 43.99 ± 0.60 43.65 ± 0.79 0.02

Note: Table values bolded when statistically significant (p < 0.05).
Abbreviations: HI, homogeneity index; OAR, organs at risks; PTV, planning target volume.

F IGURE 6 Automate planning results of 20 patients compared with clinical ones. The red triangle markers are the automatic plan results,
and the black square markers are the clinical results: (a) the rectum V50 Gy of 20 patients; (b) the bladder V50 Gy of 20 patients

and anatomical features of the PTV and OARs as much
as possible. In the 1D OVH method,10,12 the absolute
volume of either PTV or OARs is not considered. In
addition, the relative direction between the PTV and
OAR is not considered either. In the 2D BEV projection
method,18,19 the depth information, that is, the closeness
between the PTV and OAR along the beam direction, is
not considered.

Data-searching efficiency is critical in database-
associated knowledge-based planning. There is a
tradeoff between the searching efficiency and the com-
pleteness of data used in patient anatomy match. In
this study, a feature-based rigid registration method is
developed where the PTV and key OARs are used as
the alignment landmark. This method to a large extent
reduces the unessential anatomy information for patient
match otherwise employed in image-based registration
and, thus, improves the searching efficiency. Besides, as
we want to quantify the actual differences in geometrical

relationships between the two patients, including the
rotational difference, only a translation registration was
used and reduces computational difficulty. Furthermore,
the feature registration is optimized with an FFT-based
technique that dramatically enhances the calculation
speed. Using the current program developed in MAT-
LAB, the patient searching through the database of 80
patients takes about 2 min. In future, parallel computing
with GPU can further accelerate the patient searching
process to the order of 1 s or even less.

This study has several limitations. First, like all other
KBP methods, the quality of the automatic plan is deter-
mined by both the diversity of the patient anatomy and
the quality of the clinical plans in the database. Cur-
rently, the number of patients included in the database
is 81 and is relatively small, which may render out sub-
optimal patient anatomy match. So, we chose to select
a similar rectum and bladder independently instead of
in combination for more strict constraints to improve
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the plan quality as much as possible. In the future,
we would expand our patient database and examine
the results difference when combined evaluation is
used in similarity search. Despite the small number,
the database can be improved through self -iteration
by updating each individual plan against the rest plans
with the leave-one-out strategy. To keep improving the
database, it may be decided that only the new plan with
quality better than its anatomically matched counterpart
in the database can be included. Regardless, how to
quantify the diversity of patient anatomy in a database
is still an open question. Moreover, the method is tested
on 7-field IMRT plans on cervical cancer patients that
are relatively simple. VMAT plans and other treatment
sites should also be tested in the future. In addition,
it is worth noting that this method is not intended to
generate a plan with best quality. Rather, it aims to
achieve the best quality that has been achieved by the
anatomically similar patients in the database.

5 CONCLUSIONS

An automatic treatment planning method based on
direct 3D patient anatomy match has been developed
and validated on cervical cancer IMRT. Using an FFT-
accelerated PTV registration method, the anatomically
similar patients could be selected from a database con-
taining 80 patients in around 2 min. Taking the dose
parameters achieved in the anatomically similar patients
as the dose constraints for the new patient, this auto-
matic planning method improves the planning efficiency
without compromising the plan quality. The rectum and
bladder doses were significantly reduced for the auto-
matic plans compared to their clinical counterparts.
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