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Breast segmentation and mass detection in medical images are important for diagnosis and treatment follow-up. Automation of
these challenging tasks can assist radiologists by reducing the high manual workload of breast cancer analysis. In this paper, deep
convolutional neural networks (DCNN) were employed for breast segmentation and mass detection in dynamic contrast-en-
hanced magnetic resonance imaging (DCE-MRI). First, the region of the breasts was segmented from the remaining body parts by
building a fully convolutional neural network based on U-Net++. Using the method of deep learning to extract the target area can
help to reduce the interference external to the breast. Second, a faster region with convolutional neural network (Faster RCNN)
was used for mass detection on segmented breast images. The dataset of DCE-MRI used in this study was obtained from 75
patients, and a 5-fold cross validation method was adopted. The statistical analysis of breast region segmentation was carried out
by computing the Dice similarity coefficient (DSC), Jaccard coefficient, and segmentation sensitivity. For validation of breast mass
detection, the sensitivity with the number of false positives per case was computed and analyzed.The Dice and Jaccard coefficients
and the segmentation sensitivity value for breast region segmentation were 0.951, 0.908, and 0.948, respectively, which were better
than those of the original U-Net algorithm, and the average sensitivity for mass detection achieved 0.874 with 3.4 false positives
per case.

1. Introduction

Breast cancer is one of the most common cancers amongst
women worldwide [1]. Early diagnosis and treatment are
proven to reduce the mortality rate [2]. Dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) is a
more reliable tool for early detection of breast cancer than
mammography and ultrasound [3].The correct resolution of
DCE-MRI image of the breast depends largely on the quality
of visualization, operation experience, and the time needed
for data analysis. Because manual analysis of MR series is
time-consuming and error-prone, several specific systems
have been developed to help radiologists detect and diagnose
breast lesions, which greatly improves clinicians’ work ef-
ficiency [4]. Although some computer-aided diagnosis
(CAD) systems are currently used in the clinic, fully

automatic detection of breast lesions is still an ongoing
problem [5].

Generally, a DCE-MRI image of the breast also includes
other organs such as the lung, heart, liver, and pectoral
muscles. Separation of the breast region from other organs is
necessary for further analysis. Manual segmentation of the
breast region is tedious; therefore it is impractical to segment
the entire breast region from a large number of diverse
datasets. Automatic segmentation of the breast region re-
duces result bias and can accelerate data processing. Con-
ventional breast region segmentation methods proposed in
the literature are based on threshold, morphology, and
fuzziness with specific connections between pixels. Thakran
et al. segmented the outer and inner breast tissue by
thresholding, morphological operation, and B-spline curve
fitting [6]. Wu et al. [7] combined edge enhancement and
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edge linking with candidate evaluation to detect the chest-
wall line in the sagittal plane. Jiang et al. [8] used dynamic
programing combined with preprocessing to segment the
breast region in fat-suppressed transverse DCE-MRI. While
these traditional methods have shown good performance,
the robustness of these algorithms is insufficient, in that they
tend to fail in some specific data because they can only
process the underlying information. In recent years, con-
volutional neural networks (CNNs) have been widely used in
biomedical semantic segmentation such as FCN [9], SegNet
[10], and U-Net [11].These deep networks can automatically
extract high-level features and complete pixel-wise seg-
mentation. Xu et al. used a 2D U-Net for automatic breast
region segmentation in DCE-MRI [12]. Adoui et al. built two
fully CNNs based on SegNet and U-Net for breast tumor
segmentation [13]. Building on the success of U-Net in
medical image segmentation, this study additionally used
U-Net++ [14] for comparison of DCE-MRI images for
breast region segmentation. Our results indicated the ef-
fectiveness and accuracy of this method in biomedical
segmentation tasks.

Because of the varying sizes, shapes, appearances, and
densities of masses, CAD for breast mass detection is a
challenging task [15, 16]. Conventional methods for breast
mass detection mainly rely on threshold values [17] or mass
templates [18] based on various kinds of filter operators.
Huang et al. used multiscale Hessian-based analysis for
breast mass detection [19], and Wang et al. detected breast
masses based on Gestalt psychology [20]. These traditional
detection algorithms are sensitive to image noise, and the
hand-designed features are not adequately robust to blurred
contrast and bias-field. Deep convolutional neural networks
(DCNNs) have significantly outperformed traditional
methods in recent years, owing to the strong feature ex-
pression ability that can further improve the detection ac-
curacy. With the development of deep learning, DCNN has
been widely used in medical image detection [21–23]. These
CAD systems can be used to migrate between breast cancer
and lung cancer. The application of a CAD system helps the
radiologist as a second reviewer to evaluate screening
medical images. A CAD system based on one of the most
successful object detection frameworks—Faster RCNN
[24]—could achieve high sensitivity with few false positive
results on the datasets of mammograms and tomosynthesis
[25, 26]. In the field of mammary MRI, the development of
deep learning frameworks is limited, because only a small
number of datasets are available. With this background, we
incorporated Faster RCNN into our DCE-MRI datasets for
detection of breast mass.

In this paper, DCNN-based frameworks were present for
computer-aided segmentation of breast region and detection
of breast masses. Breast region segmentation was first
performed by U-Net++ to remove other organs except the
breast region to eliminate interference. U-Net was also
implemented as a comparison of segmentation framework.
Given the limited amount of our datasets, data augmenta-
tion was used during training to reduce overfitting. Breast
mass detection was implemented by training Faster RCNN
with images preprocessed by segmentation network and

labels annotated by radiologists.The proposedmethods were
validated by a 5-fold cross validation technique to obtain
more reliable results than independent tests. Performance of
the automatic segmentation was evaluated using similarity
coefficients. The breast mass detection model was evaluated
using sensitivity at the number of false positives per case.

2. Materials and Methods

2.1. Data. The dataset consisted of 75 women (mean age, 47
years; age range, 18–68 years) with histopathologically
confirmed breast masses at the Sun Yat-sen University
Cancer Center (Guangzhou, China). Patients with suspi-
cious breast masses were recruited after they provided
written informed consent.The Ethics Committee of Sun Yat-
sen University Cancer Center approved the study. Patients
were scanned in the prone position with the bilateral breast
naturally hanging into the two holes of the coil. A 3.0 T
superconductive magnetic system (Discovery 750, GE
Healthcare) with a bilateral 8-channel phased-array breast-
specific surface coil was used for the imaging. Standard
imaging was performed, including axial fast spin echo (FSE)
T1WI, and axial and sagittal FSE T2WI. Subsequently,
diffusion-weighted images (DWI) were acquired in the axial
planes. The DCE-MRI data were acquired using the VI-
BRANT-FLEX technique in the axial orientation, after one
set of unenhanced baseline images were obtained using an
MRI-specific automatic power injector (Medrad Inc.,
Pittsburgh, PA, USA) to inject 0.1mmol/kg body weight
contrast medium (gadopentetate dimeglumine; Magnevist,
Bayer Schering Pharma, Berlin, Germany), with a hand
venipuncture technique at a rate of 3mL/s. Saline (10mL at
3mL/s) was then injected to wash the tube. Dynamic
scanning was initiated by simultaneously pushing the high-
pressure syringe button and the dynamic scan button. Eight
postcontrast sets were acquired under the following scan-
ning conditions: field of view, 32 cm; matrix, 320× 320;
section thickness without a gap, 1.4mm; repetition time,
3.9ms; echo time, 1.7ms; and flip angle, 5°. The patients had
not received any treatment before undergoing MRI. In this
study, only mass-like masses showed strong contrast.

Diagnosis was confirmed following pathological analysis
subsequent to core-needle biopsy or surgical excision, or
lesion not changed at a minimum follow-up of 2 years
defined as benign lesion.

All images were analyzed independently by two radi-
ologists with ten years of experience in breast MRI. The
images were assessed independently and any disagreements
were resolved by achieving consensus. All lesions were
assessed using the Breast Imaging Reporting and Data
System (BI-RADS). BI-RADS category 1 (negative) and
category 2 (benign) denote an essentially 0% likelihood of
cancer. BI-RADS category 3 (probably benign) assessment is
more intuitive and can be recommended in the case of a
unique focal finding for which the likelihood of malignancy
is ≥0% but ≤2%. BI-RADS category 4 (suspicious) and
category 5 (highly suggestive of malignancy) describe MRI
findings that are suspicious enough to warrant tissue di-
agnosis. BI-RADS category 6 (known biopsy-proven
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malignancy) describes MRI findings of biopsy-proven breast
cancer for which surgical excision is recommended when
clinically appropriate.

The objective of this study is to detect the mass. All
lesions with a BI-RADS score greater than 1 were used in the
dataset. According to statistics, the diameter of the mass
ranges from 1.07 to 6.69 cm.

3. Methods

Our fully automatic method consists of two parts: breast
region segmentation and breast mass detection. Automatic
segmentation of breast region is a challenging task because
of large variations in breast shapes, sizes, image artifacts, and
other noise-induced errors. Inspired by the success of
DCNN models on object segmentation tasks, we imple-
mented a U-Net++ framework for breast region segmen-
tation, along with a U-Net framework for comparison. Next,
we obtained images of the breast region without interference
from other organs/body parts as the input for Faster RCNN
to detect breast masses. Finally, the positions and sizes of the
breast masses were identified. The whole framework of this
proposed method is shown in Figure 1.

U-Net [11] was used in breast region segmentation for
comparison, and its architecture is shown in Figure 2. One
advantage of this method is its robustness even with small
training data. The architecture consists of downsampling
(left side) and upsampling (right side). The left side acts as
an encoder and extracts features through the network. It
contains a typical convolutional structure: two 3 × 3
convolution operations and one 2 × 2 max-pooling oper-
ation. Each convolution operation is followed by batch
normalization (BN) and a rectified linear unit (ReLU). The
right side acts as a decoder and also contains a typical
architecture: a 2 × 2 upsampling operation and two 3 × 3
convolution operations, each followed by BN and a ReLU.
Contracting paths are used to combine the high resolution
feature maps with the upsampling outputs to accurately
classify and locate each pixel. Every pixel of input image is
classified as breast region or background. To evaluate the
segmentation loss, we used the binary cross entropy (BCE)
loss function.

BCE Loss � −
1

M
􏽘

M

i�1
Yi · log 􏽢Yi􏼐 􏼑 +(1 − Y)i · log 1 − 􏽢Yi􏼐 􏼑􏼐 􏼑,

(1)

where Y is the ground truth and 􏽢Y is the predicted prob-
ability for all the M pixels.

U-Net++ [14] is an improved version of U-Net for
biomedical image segmentation. For the skip connection of
U-Net, U-Net++ adds modules to integrate the features of
different levels through superposition. Further, to ensure
gradient propagation, U-Net++ uses a deep supervision
scheme that connects the middle module to the final output,
finally forming a dense block structure as shown in Figure 3.
The loss function is a combination of binary cross entropy
and dice coefficient on each of the above four semantic
levels, which is described as

BCE&Dice Loss � −
1
N

􏽘

N

b�1

1
2

· Yb · log 􏽢Yb􏼐 􏼑 +
2 · Yb · 􏽢Yb

Yb + 􏽢Yb

􏼠 􏼡 ,

(2)

where Yb and 􏽢Yb denote the flattened ground truths and the
flattened predicted probabilities of the bth image, respec-
tively, and N indicates the batch size.

The object detection network named Faster RCNN [24]
is composed of two modules. The first module is a deep fully
CNN that proposes regions and the second module is the
detector that uses the proposed regions. Feature map is
extracted from input image by using ResNet-101 [27].
ResNet-101 has been proven to perform well on classifica-
tion tasks, which shows that it has good feature extraction
ability. A region proposal network (RPN) considers the
feature map as input and provides a set of rectangular object
proposals as the output, each with an objectness score. The
RPN structure in [24] is used in this paper without modi-
fication. The function of ROI Align is to map region of
interest (ROI) areas of different sizes to feature maps of fixed
sizes. ROI Align [28] can effectively solve the problem of
misalignment caused by twice quantization in ROI Pooling.
For the detection of large objects, the difference between the
two schemes is rare. If there are more small objects in the
picture to be detected, ROI Align is preferred, which is more
accurate. In this paper, the masses of breast MRI image are
taken as the research target, and the diameter of them is less
than 48 pixels, which belongs to small targets. Therefore,
ROI Align is selected for detection network. The feature is
shared by RPN and fully connected (FC) layers. The
structure is shown in Figure 4.

We computed four regression losses. Lreg was associated
with predicted mass coordinates, widths, and height, and Lcls
was the classification loss for the predicted mass probabil-
ities.The ground truth labels are determined for each anchor
as follows: If an anchor i overlaps with a mass with an
intersection over union (IOU) greater than 0.7, then it is
regarded as positive (p∗i � 1). On the contrary, if an anchor i

overlaps with a mass with an IOU less than 0.3, it is regarded
as negative (p∗i � 0). All other anchors do not contribute to
the loss, and only positive anchors contribute to the re-
gression loss.The final loss function for anchor i is defined as
follows:

L pi, ti( 􏼁 �
1

Ncls
􏽘

i

Lcls pi, pi
∗

( 􏼁 +
1

Nreg
􏽘

i

Lreg ti, ti
∗

( 􏼁.

(3)

Here, ti is a vector representing the four parameterized
coordinates of the predicted bounding box and ti

∗ is the
ground truth associated with a positive anchor. We used
binary cross entropy loss for Lcls and smooth L1 loss for Lreg.

3.1. Performance Evaluation. The performance of the pro-
posed method for breast region segmentation was tested
using the Dice similarity coefficient (DSC) [29], Jaccard
coefficient [30], and segmentation sensitivity described by
Udupa et al. [31], which are given by the following equations:
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Figure 1: The framework of breast region segmentation and breast mass detection. The entire framework is divided into two parts. The
upper part is image segmentation. Breast region mask is obtained by importing the image into segmentation network such as U-Net++ and
U-Net. The breast region can be segmented by masking the input image. The following part is the target detection. The breast region image
was input to Faster RCNN to obtain the location coordinates and probability of the mass.
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Figure 2: The architecture of U-Net. The network consists of two parts. The left half is feature extraction. After each pool layer, the scale of
feature changes.There are five scales in total.The right half is upsampling. Every time the feature is upsampled, it will be fused with the same
scale corresponding to the feature extraction part.
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Dice CoefficientDSC � 2 ·
|A∩B|

|A|+|B|
,

JaccardCoefficient Jaccard �
|A∩B|

|A|+|B| − |A∩B|
,

Segmentation Sensitivity SS �
|A∩B|

|B|
,

(4)

where A is the automatic segmentation result and B is the
ground truth.

For target detection tasks, performance is measured by
sensitivity with the average number of false positives per
sample. In the task of breast mass detection, the sensitivity,
also known as the true positive rate (TPR), represents the
proportion of the number of detected masses to the number
of all masses in the dataset. This is calculated using the true
positive (TP), false negative (FN), and false positive (FP). It

should be noted that true negative (TN) in target detection
tasks is meaningless.

True Positive Rate TPR �
TP

TP + FN
. (5)

The receiver operating characteristic (ROC) curve was
first invented by electronics and radar engineers during
WorldWar II to detect enemy vehicles on the battlefield, i.e.,
signal detection theory. Soon afterwards, it was introduced
into psychology to detect signal perception. Since then, it has
been introduced into the field of machine learning to
evaluate classification and test results and is a very important
and common statistical analysis method. However, the
classical ROC method cannot solve the practical problem of
evaluating target detection task on an image. In the 1970s,
the concept of FROC (free-response ROC) was proposed,
which allows the evaluation of arbitrary anomalies on each
image. The FROC curve considers the number of false
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Figure 3:The architecture of U-Net++. Every Xi,j includes two 3× 3 convolution operations, each followed by BN and a ReLU. Channels of
the same scale are connected in a dense manner for gradient propagation.
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Figure 4: The architecture of Faster RCNN. Using ResNet-101 as the feature extraction network, the target location and probability can be
obtained by processing the shared features.
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(a) (b) (c)

Figure 5: Samples of breast region segmentation dataset: (a) the original image, (b) the segmentation ground truth, and (c) (b)
superimposed on (a).The pixel value of the breast region is set to one and the pixel value of the background area is set to zero during training
of segmentation models.

6 Computational and Mathematical Methods in Medicine



0 10 20 30 40 50
Epoch

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

Er
ro

r

U-Net training error
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Figure 7: U-Net++ training error.

Table 1: Performance of breast region segmentation by U-Net on 5-fold cross validation.

Performance Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Average
DSC 0.949 0.952 0.926 0.938 0.938 0.941
Jaccard 0.905 0.908 0.869 0.886 0.885 0.891
Segmentation sensitivity 0.947 0.960 0.933 0.946 0.921 0.941

Table 2: Performance of breast region segmentation by U-Net++ on 5-fold cross validation.

Performance Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Average
DSC 0.959 0.960 0.945 0.948 0.942 0.951
Jaccard 0.921 0.924 0.897 0.904 0.894 0.908
Segmentation sensitivity 0.957 0.964 0.940 0.953 0.927 0.948
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positives in each sample as the x-axis and the recall as the y-
axis. The closer the curve to the upper left corner, the better
the performance of the model.

4. Results

4.1. Breast Segmentation. Owing to the uncertainty of breast
MRI, traditional methods cannot at times segment breast
region very well. Therefore, in this study, we adopted the
deep learning method for breast region segmentation.

We proposed breast region segmentation by training a
U-Net++ model, which removes interference from different
DCE-MRI series external to the breast region. We used the
dataset of DCE-MRIs from 75 patients. For the segmentation
task, we created breast region labels for each patient

(Figure 5). Because of the similarity in consecutive images in
the DCE-MRI series, we allocated one breast region label for
every 10 consecutive images. We employed patient-level, 5-
fold cross validation. Each subset contains 15 cases of DCE-
MRI. Moreover to illustrate the robustness of our algorithm,
we trained our model on four subsets and validated it on the
other subset. For data augmentation, the training sets were
flipped horizontally. We trained the U-Net++ model and the
U-Net model as comparison for 50 epochs using stochastic
gradient descent (SGD) as the optimizer and used the last
epoch to predict validation datasets.The batch size was set to
five given the limitation of GPU memory. The training
processes of U-Net and U-Net++ are shown in Figures 6 and
7, respectively, which show the final convergence of the
networks.

(a) (b) (c) (d)

Figure 8: Samples of breast region segmentation result: (a), (b) source images and ground truths, respectively, (c) the breast region
segmentation result of U-Net++, and (d) segmentation from U-Net.
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The segmentation performance was validated by DSC,
Jaccard, and segmentation sensitivity on the validation
dataset. We computed performance values of U-Net++ for
each validation image, and the average of them was 0.951,
0.908, and 0.948, respectively, which were better than those
of U-Net. Evaluation results are provided in Tables 1 and 2.
Exp 1 to 5 are experiments from 5-fold cross validation. The
performance of each experiment result was evaluated, and
mean values of the Dice coefficient (DSC), Jaccard coeffi-
cient, and segmentation sensitivity between segmentation
results and ground truths from 15 different cases are cal-
culated. The average performance was assessed. The breast
region segmentation results on the validation dataset are
shown in Figure 8. From the overall segmentation effect, the
integrity and robustness of U-Net++ segmentation were
better than those of U-Net.

4.2. Mass Detection. Encouraged by the overall success of
Faster RCNN and deep residual networks in natural images,
we used them in our study of breast mass detection. To
eliminate the impact of redundant information and external
noise, we first used the well-trained U-Net++ model to
preprocess images. After that, the training and validation
dataset only contained information pertaining to the breast
region. All the slices containing the mass were extracted, and
the central coordinates and the width and height of the mass
on the image were marked for training. In validation, the
whole case was segmented and processed. The detection
results obtained by the network were mapped to three-di-
mensional space, and the bounding boxes close to each other
in the space would be merged into one candidate. Candi-
dates would be evaluated as TP if the IOUs with ground
truth were greater than 0.5 while FP if less than 0.5. We
employed patient-level 5-fold cross validation. Each subset
contains 15 cases of DCE-MRI. Further, to illustrate the
robustness of our algorithm, we trained our model on 4
subsets and validated it based on the other remaining subset.
In the training subset, we used 30 epochs in total with SGD
optimization and a momentum of 0.9. Because of the lim-
itation of GPU memory, the batch size parameter was set to
8. We used a weight decay of 5 × 10− 4. The initial learning
rate was 0.001 and multiplied by 0.1 every 10 epochs. Before
training the network, the weights of pretrained ResNet-101
were loaded for transfer learning, which effectively
accelerated convergence.The training process of the network
is shown in Figure 9, which shows the final convergence of
the network.

We validated the Faster RCNN model based on the
validation dataset and the average mass-level sensitivity
achieved 0.874 at 3.4 false positives per case. The com-
parison of several detection results is shown in Figure 10.
The network outputs the specific location and size in-
formation of different kinds of mass, as well as the
probability. Regarding the 5-fold cross validation, Fig-
ure 11 shows the FROC curve of each experiment and
Figure 12 shows the average FROC curve for 5-fold cross
validation. The total size of the dataset is small so that it is
probable that a few samples are obviously different from

other cases, which affects the accuracy of the experi-
mental results. Therefore, the cross validation method is
used to make the experimental results more convincing
in small datasets. The performance of the curves supports
the proposed breast mass detection method as a useful
tool to assist doctors with the diagnosis.

5. Discussion

We proposed a method based on DCNN to effectively
segment breast region and detect breast masses on DCE-
MRI images. The success of the proposed method was
mainly dependent on two aspects. First, breast region seg-
mentation is necessary because other organs outside the
breast occupy most of the image area, which greatly in-
terferes with detection of masses. U-Net++ is a fully con-
volutional network applicable to various biomedical
segmentation problems. The network contains convolu-
tional layers and max-pooling layers and does not have any
fully connected layers. Specifically, there are dense blocks
between skip connections, which can make full use of
extracted features. Owing to the lack of datasets, 5-fold cross
validation was adopted. We used our own data to train
U-Net++ for 50 epochs, and the DSC, Jaccard, and seg-
mentation sensitivity values obtained were 0.951, 0.908, and
0.948, respectively, which were better than those obtained
with U-Net. The experimental results showed that U-Net++
segmentation of the breast region was more precise and
complete than the U-Net segmentation. As seen in Figure 8,
the segmentation of the end of the breast region was not very
accurate, but the key areas were well preserved, which was
helpful in mass detection. Second, Faster RCNN is a flexible
generic object detection framework that is easily extended to
biomedical detection tasks. This study used ResNet-101 as
the backbone of Faster RCNN to extract feature map from
the input image. Then, there were two parallel branches to
share the feature map, bounding box regression, and clas-
sification. We used the well-trained U-Net++ model to
preprocess the training dataset to eliminate interference.
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Figure 9: Faster RCNN training error.
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Before training the network, the weights of pretrained
ResNet-101 were loaded for transfer learning, which effec-
tively accelerated convergence. For the performance eval-
uation, Faster RCNN accurately found the position of the
breast mass and provided corresponding confidence in-
formation. We used 5-fold cross validation, and the average
sensitivity performance achieved 0.874 with 3.4 false posi-
tives per case. This meant that our results may have a

potential value for early diagnosis and treatment of breast
cancer, but more clinical cases are needed to carry out re-
search for verification.

Our study has some limitations, but it can verify the
feasibility of this method in our dataset. Future research
includes detection from multiple directions as well as using
3D CNN for extracting 3D feature map. The dataset used in
this paper is relatively small. We aim to establish a large-

(a) (b)

Figure 10: Ground truth and detection result: (a) the ground truth of breast mass detection and (b) the detection results of Faster RCNN,
including target position, size, and probability.
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scale open dataset for convenient performance comparison
of papers with different algorithms in future.

6. Conclusion

Herein, we presented an automatic method for breast region
segmentation and mass detection based on DCNN in DCE-
MRIs. Our method consists of the breast region segmen-
tation by U-Net++ and the breast mass detection by Faster
RCNN. The DCNNs were trained and validated in DCE-
MRIs from Sun Yat-sen University Cancer Center and
showed good performance. We believe that this method
provides a powerful clinical tool to help doctors accurately

and quickly diagnose breast masses. Future research will
include the establishment of larger open data and the
opinions of radiologists and surgeons in clinical practice.
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