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Although the use of the surgical robot is rapidly expanding for various medical treatments, there still exist safety issues and
concerns about robot-assisted surgeries due to limited vision through a laparoscope, which may cause compromised situation
awareness and surgical errors requiring rapid emergency conversion to open surgery. To assist surgeon’s situation awareness and
preventive emergency response, this study proposes situation information guidance through a vision-based common algorithm
architecture for automatic detection and tracking of intraoperative hemorrhage and surgical instruments. *e proposed common
architecture comprises the location of the object of interest using feature texture, morphological information, and the tracking of
the object based on Kalman filter for robustness with reduced error.*e average recall and precision of the instrument detection in
four prostate surgery videos were 96% and 86%, and the accuracy of the hemorrhage detection in two prostate surgery videos was
98%. Results demonstrate the robustness of the automatic intraoperative object detection and tracking which can be used to
enhance the surgeon’s preventive state recognition during robot-assisted surgery.

1. Introduction

Surgical robot technology has become a significant en-
hancement to laparoscopic surgery and ideally been suited for
surgeries requiring minimal invasiveness and a high degree of
dexterity [1–4]. However, current commercial surgical robot
systems represented by da Vinci® (Intuitive Surgical, Inc.,
USA) have limitations such as limited vision through a lap-
aroscope, absence of force or tactile feedback, and difficulties
in agile tool maneuvering and exchange during emergency
situations due to the bulky and complex configuration [5].
*ese limitations cause delayed perception and troubles in
immediate responsive reconfiguration of the robot setting
which may result in unsafe surgery. Two of representative
surgical complications influenced by limited awareness of the

surgical state are an acute hemorrhage and an instrument
collision [6–8]. *e use of additional monitoring techniques
to facilitate faster awareness of the surgical state is particularly
critical because an unexpected hemorrhage can occur due to
the collision between the instrument and organs and lead to
tissue perforation [6–8]. According to Blum et al. [9], un-
controllable bleeding from the cystic artery in cholecystec-
tomy results in conversion from laparoscopic to open
cholecystectomy. In addition to the complications, comput-
erized endoscopic video analysis that provides new types of
extra-anatomical information to surgeons can be beneficial
for quantitative operation analysis of the surgery and the
information archiving [4]. To contribute in endoscopic video
analysis, we propose a novel method for object labeling
technique using an efficient vision-based object classification
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algorithm framework that can be applied to various objects in
the robot-assisted endoscopic surgery videos.

Although automatic object detection in endoscopic
videos or other medical vision modalities has been studied in
various applications, researches on common frameworks or
universal algorithms for concurrent detection of multiple
objects are limited. Furthermore, most studies pertaining to
the application of vision techniques have focused only on the
image-based instrument tracking methods which involve
physical modification of the instruments mostly for analysis
of the surgical workflow for skill evaluations during robot-
assisted surgeries [10–17]. Conventional techniques re-
garding the surgical instrument position estimations utilize
semantic information in images through segmentation
technique [10, 16–18] or physical modifications in the
surgical instruments which include attaching extra marker
objects at the end of the instruments or adding color patterns
at the tip of the instruments [19–22]. Recent methods in-
clude detections through convolutional neural network
(CNN) [23, 24]. Given the training data sets of the surgical
instrument images, the CNN processes and retrieves the
presence and the location of the surgical instruments at the
inference stage. However, the neural network algorithm is
dependent on the training dataset. Additional consider-
ations or training methods may be needed when an in-
strument with different shape that was not included in the
training data or an object with shape changing over time
such as hemorrhage is to be detected. *e proposed algo-
rithm utilizes only color properties of the object and can be
applied to both rigid and deformable object, which we expect
to provide a kind of common framework for the object
detection and tracking in the surgical videos.

Tracking using the universal method proposed in this
study can also offer better outcomes in terms of process
performance than conventional methods when various ob-
jects should be detected during robot-assisted surgery. For
higher performance of estimating positions in noisy and
occluded environment, we chose to use a federated Kalman
filter (FKF) [25], a filtering technique with a combination of
a local andmaster filter, rather than using one Kalman filter. A
combination of the proposed detection and tracking algo-
rithms could act as a foundation for morphological change
tracking of various objects in laparoscopic surgery videos.

*e development of a machine vision system that enables
robust segmentation and tracking of objects in laparoscopic
images is a challenging task because the observed scenes are
captured under time-varying lighting conditions andmay have
a moving background because of organ pulsation and
breathing. In addition, a hemorrhage region can be tempo-
rarily occluded by the surrounded organs or the surgical in-
struments so that the region could be misidentified by the
surgeons. To cope with difficulties in the processing of lapa-
roscopic images that contain high speculation noise and
nonuniform background, the proposed universal object
tracking algorithm was structured with two characteristic
stages: (1) feature extraction and (2) object tracking. In the first
stage, features of objects for each sequential image are extracted
using texture information and similarity measure, and the
objects are tracked for the position optimally estimated by an

improved Kalman filter in the second stage. *us, we propose
a surgical vision system using both the adaptive filter and the
computer vision techniques to provide a reliable, fast, and
robust detection and tracking which may enhance the ro-
bustness and the reliability of robotic laparoscopic surgery [13].

2. Materials and Methods

2.1. Algorithm Description. *e method to identify objects in
two-dimensional laparoscopic surgery images was based on
local image features such as the texture and morphological
properties of the objects. Figure 1(a) shows the concept of the
proposed method. Here, we identified the three main pro-
cessing phases: (1) segmentation using specific texture prop-
erties of each image frame, (2) localization of the object using
the correlation between image frames, and (3) optimal esti-
mation of the current object locations using the Kalman filter.

In the first stage of the algorithm, the contrasted color
signatures of the object were used to distinguish it from other
environments so that the blood and the instruments could be
differentiated from other organs. Under reasonable lighting
conditions, the hemorrhagic blood had a distinct color sig-
nature different from other body tissues and the instruments,
and the surgical instruments had metallic characteristics such
as gray color. After processing images to enhance the textures
of the blood and the instruments, the canny edge detection
technique and the entropy filtering were thereafter applied to
find a closed contour and decrease the background noise.
*en, using binary edge detection, we were able to eliminate
the irrelevant image details and maintain the shape features.
Finally, the segmented boundaries of each blood region and
the surgical instrument were marked on the original image.

If the objects to be detected are occluded by the noise or
the detection was done under time-varying light conditions,
the segmentation process might fail. To give robustness to the
detection in such situations, the template-based matching
algorithm that uses the average of previously identified re-
gions for 0.5 s as a template was applied simultaneously. *is
method was strong to track the regions that might be
neglected or falsely identified by methods using only local
color features. It was expected that the combination of the
color feature localization and the template matching would
yield more accurate result than the use of only the former. To
determine the best location of the test data that the samples
match, a template-based approach that uses a sum-comparing
metric, sum-of-squared difference (SSD), represented as

d(u, v) � 􏽘(f(x, y)− t(x− u, y− v))
2
, (1)

where f(·) denotes the original candidate image, t(·) de-
notes the template image provided after local color feature
localization, and x, y, u, and v denote position parameters
for the former and latter, respectively, was implemented.*e
minimum value of the SSD which elicited to be the highest
correlated position was selected as the template matching
algorithm in this paper. To improve the computation speed,
we employed a calculation algorithm based on the fast
Fourier transform (FFT) and downsized data by converting
the spatial domain image into frequency domain signals.
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2.2. Hemorrhage Recognition. In order to correctly distin-
guish a hemorrhage region from the environment during the
segmentation process, the image contrast was enhanced using
histogram equalization in each Red Green Blue (RGB) space.
*e problem due to similar color characteristics of the
hemorrhage and organs was resolved by increasing the color
contrast of the image. Using this contrasted image, a mutually
inclusive threshold technique was implemented to identify the
hemorrhage. Mutually inclusive algorithm is a semantic la-
beling technique, where different threshold is applied to each
RGB space, and the positively labeled pixels that overlap in all
RGB space are combined to form a target object mask image.
Using this technique, blood regions were extracted.

At the final stage, followed by the template matching
process, a federated Kalman filter (FKF) [25] was applied to
the results of the segmentation and template matching
processes to estimate the location of the hemorrhage region.
*e FKF, consisting of two local filters and one master filter,
was a model-based method to estimate the measurement data
containing noise and other inaccuracies. *e filtering tech-
nique distributed estimation problems through a local and
a master filter and hence reduced the calculation load and
provided independent faulty measurement detection [25].

*e first part of the FKF, an estimator from the local filters
that were applied to segmentation and template matching,
was implemented to detect and reduce tracking outliers
during the operation. *e outputs from the local filters were
then applied to the master filter for tracking the final location
of the hemorrhage region as shown in Figure 1(b).

2.3. Surgical InstrumentRecognition. Before the segmentation
process, instruments and organs were classified into different
categories using k-means clustering under LAB space, where L
stands for luminance and A and B for two color channels. *e
k-means clustering technique was used to classify the different
objects based on the image intensity variances. *e best results
have been provided under LAB space because of its advantages
for the image sharpening. Histogram equalization applied in
the hemorrhage detection was not needed in the surgical in-
strument detection because the instruments and the organs
could be easily differentiated by the intensity characteristics.
After a chain of image processing techniques, the output was
combined with the results from the instrument motion sub-
traction, which is the movement computed by subtracting
interframe images. Finally, each instrument was labeled.
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Figure 1: (a) Block diagram of the computational steps for various object detection including the structure of the proposed Kalman filter for
optimal estimation. (b) FKF-based hemorrhage region tracking.
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After completing the segmentation stage, the numbered
labels were assigned to the instruments as each was first
detected. Once an instrument was identified, the center
location of the instrument on the image was saved and
compared with the result by the Kalman filter algorithm in
the final stage.

*e Kalman filter technique was used to compensate for
the identification or the tracking failures due to the oc-
clusion. When the both segmentation and the template
matching failed to detect the instrument correctly, the
Kalman filter functioned as an estimator of the instrument
position. *e gain was continually adjusted with respect to
the calculated Euclidean distance between the center points
of the instrument in the current and the previous image
frames. *e instruments were given their lifetime when they
were first detected.*e continual recognition of instruments
increases their lifetime by 20%. When the instruments
vanished and could not be recognized, the lifetime was
decreased. *e lifetime of 0% stated that the instrument did
“not exist.” In addition, the distances of each labeled location
and their previous locations for the instrument were cal-
culated as the Euclidean distance to find the correct label.
*e proposed FKF method provided more accurate de-
tection and reduced the tracking failures by continuously
adjusting gains of the master Kalman filter built on the prior
knowledge acquired from each stage of segmentation and
template matching, than without filtering.

3. Results

For this study, four videos for the laparoscopic surgical
operation with resolutions of 640× 480 pixels and
10 frames/s in MPEG format were used. Each video of
approximately 20 s consisted of a sequence of the different
surgical tasks under different lighting conditions, and two of
them contained the hemorrhage events. *e processing and
the analysis steps were implemented using MATLAB
(MathWorks, Natick, MA, USA). *e identified object re-
gion was marked at its geometric center, indicating the
median of the detected boundary pixels, and the hemorrhage
area was measured by counting the pixels in the entire
hemorrhage region. *e ground truth data sets for the
hemorrhage were prepared by manually inspecting and
marking the hemorrhage region, and for the surgical in-
struments, the centers were calculated by marking their
boundaries in each image. *e ground truth data were
prepared by a beginner medical analyst and confirmed by an
expert surgeon. To evaluate the performance of the proposed
method, recall and precision were measured:

Recall �
TP

TP + FN
,

Precision �
TP

TP + FP
.

(2)

True positive (TP) was counted when the distance of
centroids between the detected object and the ground truth
was less than 1/15 of an image size 640× 480, which cor-
responded to average 42mm× 25mm in the physical unit.

Since the surgical instrument size normally occupied 1/8 of
an image, the centroid distance of 1/15, approximately
2.8mm in the physical unit, was reasonable. False negative
(FN) refers to the missing object where the object was not
detected, but the ground truth object was present. False
positive (FP) was a false alarm where an object was detected,
but no ground truth objects was present. FP was also
counted when the centroid distance difference between the
detected object and the ground truth was over 1/15 of an
image size.

*e distance error, root mean square error (RMSE),
between the estimated and the reference centroids for the
hemorrhage region and the surgical instrument were
computed as in (3), where [􏽢x(i), 􏽢y(i)]T denotes the esti-
mated center position, [xr(i), yr(i)]T denotes the reference
center position, and N denotes the number of hemorrhage.
*e blood flow was also analyzed with the area calculated by
the number of the pixels inside the boundary of the detected
blood region in each frame:

RMSE �

��������������������������������

1
N

􏽘

N

i�1
􏽢x(i)−xr(i)( 􏼁

2
+ 􏽢y(i)−yr(i)( 􏼁

2
􏽮 􏽯

􏽶
􏽴

. (3)

3.1.HemorrhageRecognition. *e average RMSE values over
the entire time period for the segmentation-only method,
the output of the segmentation stage where the semantic
information of an image was used to extract the hemorrhage
region, and the proposed method were 5.6 and 3.6 pixels,
and the accuracy were 87% and 98%. *e accuracy refers to
counting the presence of the hemorrhage frames out of total
frames in a video.

Figure 2 displays the RMSE profiles for the proposed
method and the segmentation-only one for an approxi-
mately 20 s time period. Between frame numbers 100 and
120, the segmentation-only method was unable to detect the
blood region that was temporarily hidden by obstructing
objects, resulting in maximum RMSE values. Moreover, the
average computation time per frame was 0.89 s, which is
adequate for processing the hemorrhage detection in reality
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Figure 2: RMSE profiles of the proposed method and the seg-
mentation-only method. In both cases, centroids of the manually
traced bleeding region were used as ground truth values.
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(a)

(b)

(c)

(d)

Figure 3: Selected frames of hemorrhage region detection and instrument detection results. In (a), (b), and (c), the left figures display the
manual detection of the hemorrhage, and the right figures display the automatic detection by the proposed method: (a) both the seg-
mentation-only method (red boundary) and the proposed technique (square mark) correctly detected the hemorrhage region; (b) manually
undetectable hemorrhage has been detected accurately by the proposed technique using the previous frame information, but falsely
segmented by the segmentation-only method; (c) the hemorrhage was not detected by the segmentation-only method, but accurately
detected by the proposed method. (d) Sample frames of multiple instrument detection.
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when the hemorrhage does not flow massively within 10
frames, as shown in Figure 2.

Figure 3 shows that the FKF in the proposed method
produced a more stable RMSE profile even during the oc-
clusion period. As a result, the proposed method yielded
lower tracking errors as well as robustness to occlusion.

3.2. Hemorrhage Flow Analysis. Figure 4 shows the area
variation analysis that classifies types of the hemorrhage into
flowing or stagnant. *e overall scheme is provided by the
red line, which is plotted by calculation of peaks of area
increase and decrease. After several frames, this operation
can specify dangerous targets by warning signs. Figure 4(a)
shows a stagnant hemorrhage with a very slow increase in
blood volume due to insufficient stanch operation. Other
than frames 40 to 80 where the blood area was reduced due
to smoke and occlusions, the overall peak area tended to
keep at its level. Due to the little variation, this can be

considered as nonpersistent bleeding and thus classified as
a nonwarning target. Figure 4(b) shows an acute hemorrhage
that rapidly flows around the surgical view, which was
controlled by the surgeons after the situation awareness. *e
fast increase in the first 50 frames describes rapid blood flow
due to an unintended agitation. *e linear decrease after
frame 60 shows that the hemorrhage was treated and removed
by the surgical tools such as forceps and suction. As inter-
preted in Figure 4, the calculated area analysis depicts the
surgical events that occur during the surgery. *erefore, the
blood-flow profile can be used in actual surgery for surgeons
to be warned of the state of the blood flow and control blood
flow rapidly before they become aware of the situation.

3.3. Surgical Instrument Recognition. *e instrument tra-
jectories using the three different position identification
methods—one with only segmentation, one with the simi-
larity measure analysis added to the former, and the
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Figure 4: Hemorrhage flow classification by area variation analysis where the red line indicates linearity of the hemorrhage flow and the blue
line indicates the calculated the hemorrhage area: (a) stagnant hemorrhage; (b) hemorrhage flow following stanch.
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Figure 5: Continued.
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proposed one with the additional Kalman filter—were cal-
culated in the test video and are shown in Figure 5. As the
figure depicts, the proposed method was the closest to the
identified ground truth value. *e proposed method out-
performed the other two methods which contained noise
peaks and failed to accurately detect the instrument locations.
*e result of the proposed method was also quantified
through the recall and precision measurements, where each
surgical instrument detection rate was 96% and 86% in the
four robot-assisted laparoscopic videos. Additionally, the
RMSE analysis for the instrument 1, 2, and 3 resulted in 39,
15, and 74 pixels, respectively. *e average RMSE of 42 pixels
was approximately 1/16 of the image size, about 2.6mm in the
physical unit, which was sufficient for the instrument local-
ization where the instrument usually took 1/8 of the image
size. *e instrument tracking system on a laparoscopic sur-
gery video was implemented as shown in Figure 3(d).

4. Discussion

Surgeons often face difficulty in environmental perception
during robot-assisted surgery, and this may indirectly lead to
delayed maneuvering of the tools [8]. Despite the impor-
tance of the timely detection and the management of the
incidental hemorrhage, the automatic recognition and the
localization of objects during laparoscopic surgery have not
yet been widely and fully studied. Most existing object
recognition methods work only with the defined objects. To
elaborate, the algorithms that are studied to detect the
surgical instruments do not normally work for the hem-
orrhage detection. For example, the neural network algo-
rithm would work only on the defined objects that have been
trained, and the conventional techniques that were used for
the surgical instrument detection focus only on the rigid

objects. With our proposed algorithm, deformable object
such as the hemorrhage could also be detected because we
consider texture rather than the shape in object detection.
*us, we developed a novel algorithm to detect and track
both the hemorrhage and the surgical instruments in lap-
aroscopic video images taken during real robot-assisted
surgery. By extending our method, extra information and
control such as organ tracking could also be obtained.

*e performance of the algorithmwas evaluated with the
actual video data from a surgery. For the hemorrhage de-
tection, the segmentation-only method provided the average
RMSE values of 5.6 pixels, which is about 1.5% of the image
size. *e percentage means that the distance error was
considerably small. However, this error was further reduced
to 3.6 pixels when the proposed method was applied. *e
measurement of flow of the hemorrhage also demonstrated
its effectiveness by depicting the surgical situations, which
displayed a linear increase when blood was flowing and
a decrease when the hemorrhage was stanched. From our
inferenced surgical videos, the average computation time
was approximately 1.1Hz, which is sufficient for the hem-
orrhage detection and the fast state recognition since the
blood does not flow massively within 1 s. *e process time
can also be decreased through an improvement in software
programming and hardware with higher computation speed.

In addition to the hemorrhage detection, the surgical
instrument recognition made simultaneous multiple in-
strument tracking without additional hardware feasible and
resulted in the recognition rate of over 80%. Due to test
dataset differences, recent works with the neural network
instrument detection [24] and our algorithm cannot directly
be compared. However, our algorithm showed higher ex-
tension of implementation and higher precision than that of
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Figure 5: Instrument tracking: (a) the proposed method validation using multiple instrument path trajectories in comparison with
manually traced values, x and y pixel positions of instruments 1, 2, and 3; (b) path position distance error of instrument 1; (c) path position
distance error of instrument 2; (d) path position distance error of instrument 3.
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Choi et al. [24] which resulted in mean average precision
(mAP) of 72.26% and was limited to 8 instruments. One
limitation in the current implementation is the dependency
of segmentation accuracy on instrument color and surface
texture characteristics. As depicted in Figures 5(c) and 6(c),
the irrigation instrument with holes on the surface is prone
to relatively higher identification error; however, it might be
less likely to cause accidental injuries such as grabbing or
cutting tissues, compared to other instruments.

Overall, the proposed method provided more accurate
detection results using mathematical filters built on
knowledge acquired from previous object locations. It
outperformed the segmentation-only technique, which fails
to accurately detect bleeding and instrument locations
mainly because of environmental distortions such as smoke,
camera motion, or organ occlusion. *e analytic tools such
as RMSE and area measurement showed that the proposed
method can provide surgeons with information about object
movement and unsafe situations that may occur during
surgery.

5. Conclusion

In a complicated environment such as that in a robot-
assisted laparoscopic surgery, in which the surgeon expe-
riences limited vision through a laparoscope, the proposed
automatic object recognition function will help surgeons
rapidly handle emergency situations through fast robot arm
control. *e system using the method can be used as
a concept to further extend to warn the surgeon if the

hemorrhage flow occurs out of sight due to the movement of
the camera or if the surgical instruments are about to collide.
Also, using the concept of localizing the center points of the
object, the endoscopic camera may be able to automatically
reach the focused surgical site.

With the proposed method, additional functionality to
increase the safety of robotic control and the surgical pro-
cedure was implemented without additional hardware such
as extra artificial markers, specialized instruments, or sep-
arated cameras or detectors. Warnings of the surgical
unsafety through the automatic detection of bleeding and
instrument positions will provide useful information to
surgeons so that they can perform safer surgeries and reduce
overall surgery time. *is method will also be extended to
other surgical state recognition applications in which spatial
and temporal accuracies of feature location are critical.
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Figure 6: Validation of the surgical instrument position trajectories in time domain.*e plot shows x and y position of the (a) instrument 1,
(b) instrument 2, and (c) instrument 3 as reported by manually traced values (dashed line) and the proposed tracking algorithm (solid line).
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