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Cut from the Same Cloth: Similarities between Hypersensitivity
Pneumonitis and Idiopathic Pulmonary Fibrosis

Hypersensitivity pneumonitis (HP) is a clinically andmolecularly
heterogeneous immune-mediated interstitial lung disease (ILD).
Although newer classification of HP into fibrotic HP (fHP) and
nonfibrotic HP has simplified diagnostic objectivity (1), the molecular
pathways driving fHP have yet to be fully defined. This is important,
as fHP is associated with worse outcomes compared with nonfibrotic
HP (2). Furthermore, although fHP and idiopathic pulmonary
fibrosis (IPF) are believed to be pathologically distinct, recent reports
suggest they may have clinical and pathophysiologic similarities
(3–5). Further insight of shared mechanisms between these ILDs
may have practice implications for fHP as well as other inflammatory
or fibrotic ILDs.

In this issue of the Journal, De Sadeleer and colleagues
(pp. 60–74) sought to characterize the molecular determinants of fHP

and whether they are shared with IPF (6). To achieve this goal, lung
transcriptomic data were compared between control, IPF, and
multiple samples within the same fHP lung to account for
heterogeneity in regions of disease severity. Novel micro–computed
tomography technology was used to stratify fHP samples by disease
severity into mild, moderate, and severe groups as a proxy for
morphological disease progression. Gene expression profiles were
validated using publicly available data and BAL and computed
tomography data from a separate fHP cohort. Distinct patterns of
differential gene expression were defined, including those with an
overall increase in fHP compared with controls but decreasing with
local severity (degressive increase), an increase in fHP and increase
with local severity (progressive increase), or an overall decrease in
expression in fHP but further decrease with local severity (progressive
decrease). These distinctions identified pathways implicated in fHP
(disease specific) as well as implicated in the progression of fibrosis
(disease severity specific).

Six molecular traits were associated with fHP. There was a
degressive increase in extracellular matrix (ECM) genes and collagen
functions, which have been previously implicated in HP as well as
fibrotic lung diseases (7, 8). A similar pattern was seen in T cell
signatures, including increased antigen presentation and T
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cell–mediated sensitization, primarily in the regions of mild disease.
The authors argue this may be an early transgressor of disease, as
studies have reported T cell–associated genes to be uniquely
upregulated in mild fHP compared with IPF (9). There was a
progressive increase in B cell functions, including more cluster of
differentiation 201 cells and in honeycombing associated signatures,
which aligns with increasing fibrotic severity. A progressive decrease
of cell adhesion and endothelial functions as well as intracellular
homeostasis functions were identified in fHP lungs. When comparing
with IPF, although there were disease-specific signals, the six
molecular traits of the fHP transcriptome were active in IPF as well.

This study advances understanding of the molecular
mechanisms of fHP especially as they pertain to evolving
morphologic severity of fibrosis. Elucidating early disease
mechanisms is of particular importance as they are optimal targets for
therapeutic intervention to prevent disease progression. This
manuscript highlights two predominantly active pathways in early
disease: ECM remodeling and T cell activation. Although aberrant
ECM is a well-established feature of fHP (10), the presence of early
ECM accumulation suggests it may be an early driver of fibrosis
rather than exclusively a consequential outcome (8). Similarly, the
presence of early T cell activation suggests immune-mediated
pathways continue to be active despite transition to a fibrotic phase of
disease (9). Collectively, these findings support the idea that fHP
progression may involve both inflammatory and epithelial drivers of
disease; however, how the relative contribution of these mechanisms
interact and whether they impact other cellular pathways over time to
cause progressive lung remodeling requires further clarification.

Although recognizing fHP as a separate clinical entity, this study
demonstrates converging pathways between IPF and fHP suggesting
shared mechanisms in lung remodeling and fibrosis, especially as fHP
progresses. The findings in this study echo those of Furusawa and
colleagues, who found that of 730 differentially expressed genes in
fHP, 471 shared genes with IPF, including epithelial cell pathways,
ECM, and collagen organization (10). Notably, many pathways
highlighted in this paper are also implicated in other forms of ILD.
Systemic sclerosis (SSc)–associated ILD has been shown to have
activation of collagen formation and ECM organization as well as
enhanced B cell activation and infiltration in diseased tissue (11).
Although the initial insult is believed to be immune-mediated, the
fibrotic lung remodeling in fHP, SSc-ILD, and other progressive
fibrosing ILDs appears to eventually proceed through common
profibrotic molecular pathways. It raises the possibility that molecular
differences may be more due to disease severity rather than disease
etiology.

As data are gathered about lung fibrosis, there appear to be more
similarities than differences between IPF and other fibrotic ILDs,
including fHP. Clinically, the INBUILD study, of which fHPmade up
about a quarter of patients and included SSc-ILD and other
connective tissue disease–ILDs, noted similar rate of FVC decline
between progressive fibrosing (PF) ILDs and similar responses to
nintedanib therapy, further supporting commonalities between IPF
and PF-ILDs (12). Treatment implications are important as they
expand the treatment repertoire, although the optimal timing to
initiate interventions remains to be defined. Another shared
mechanism between IPF and PF-ILDs is the influence of aging on
fibrosis progression. In this study, the authors found lung telomere

length was shorter in fHP and associated with disease severity. This is
consistent with data implicating telomere dysfunction and senescence
reprogramming as molecular drivers of lung remodeling and fibrosis
in many clinical contexts, including IPF, fHP, and SSc-ILD (5,
13–15).

Another impactful finding from this paper is the role lung
heterogeneity may play in the study of lung remodeling. Although
uncertainty of whether spatial heterogeneity is synonymous with
disease progression is a study limitation, the disparate findings within
local disease severity, as well as those previously demonstrated in IPF
(16), suggest that investigating different morphologic states, even
when taken at a single time-point, may yield insights into the
trajectory of disease pathogenesis. This approach may be especially
useful in diseases where lung sampling only occurs at transplantation.

The pathogenesis of fHP among other progressive fibrosing
ILDs remains elusive and difficult to target therapeutically. The
findings of this well-designed study further understanding of the
disease mechanisms underlying fHP through using a novel
methodology applied to a well-characterized cohort. This study,
although focused on fHP, strengthens the evolving concept that there
are common threads underlying lung remodeling and the
development of fibrosis distinct of the underlying etiology. Future
studies should leverage more granular technology to validate and
refine disease pathways on a cellular level, which will allow for further
clarity and guide therapeutic development and intervention.�
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The Future of Outcome Prediction for Preterm Infants in the
Neonatal ICU

Outcome prediction for prognosis or risk stratification is particularly
important in the neonatal ICU as critically ill neonates are at high risk
of mortality or long-termmorbidity. There are several commonly
used outcome prediction tools in neonatology. The majority of these
tools use static measures such as data available at birth or within 24
hours of birth to predict the risk of subsequent mortality or
neurodevelopmental impairment (1–3). Gestational age and birth
weight are among the best predictor variables (4), such that clinical
trials in preterm infants frequently use one or both of these variables
for stratification to ensure balanced allocation. As early predictors do
not take into account risk factors and complications that become
apparent later during the hospitalization, tools incorporating
respiratory support and selected postnatal morbidities were
developed to better predict mortality, bronchopulmonary dysplasia,
and neurodevelopmental impairment (5, 6). The use of prediction
tools in neonatology to guide clinical decisions has not been tracked
formally, and the impact on clinical care is unknown. A limitation of
most of the currently available prediction models in neonatology is
their reliance on data available at birth with limited or no sequential
clinical and/or laboratory data.

In this issue of the Journal, Lavilla and colleagues (pp.
75–87) examined the discriminatory power of hourly changes in
neonatal sequential organ failure assessment (nSOFA) scores

from birth to predict death among 436 extremely preterm and
extremely low-birth-weight infants. Hourly kinetics of the
nSOFA score were strong predictors of mortality before
discharge and within 24 hours after birth (7). The average score
over the first 28 days was also associated with hospital mortality
and major morbidities. Although mortality is rightly considered
the most important outcome in neonatology, it is imperative to
acknowledge that neurodevelopmental assessment at a later age
was not addressed in the current prediction study.
Neurodevelopmental impairment may be as important or
more than some of the outcomes reported, including severe
intraventricular hemorrhage, bronchopulmonary dysplasia,
sepsis, necrotizing enterocolitis, and retinopathy of
prematurity.

The nSOFA scoring system is based on the presence of
mechanical ventilation and oxygen saturation as measured by
pulse oximetry:FIO2

ratio for respiratory dysfunction, presence of
vasoactive medications and/or corticosteroids for cardiovascular
dysfunction, and platelet count for hematologic dysfunction. These
measures may be dependent on clinical practice. For example, the
nSOFA scores may be artificially lower in a clinical setting where
hypotension is managed more conservatively (8). Similarly, in
centers with more use of mechanical ventilation rather than
continuous positive airway pressure, use of lower rather than
higher oxygen saturation targets (9), or avoidance of higher FIO2

in
favor of higher mean airway pressures, the model may not be as
applicable. Thus, the generalizability of the results of this study
may be limited and center-specific and may need to be validated
externally.

The study by Lavilla and colleagues does not define if these are
the best variables or weighting to predict the risk of adverse
outcomes. It is possible that prediction might be improved using
optimization of cutoff values or more granular continuous respiratory
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