
membranes

Communication

Electrically Polarized Graphene-Blended Spacers for Organic
Fouling Reduction in Forward Osmosis

Numan Yanar 1, Yejin Liang 1, Eunmok Yang 1, Hosik Park 2,*, Moon Son 3,* and Heechul Choi 1,*

����������
�������

Citation: Yanar, N.; Liang, Y.; Yang,

E.; Park, H.; Son, M.; Choi, H.

Electrically Polarized

Graphene-Blended Spacers for

Organic Fouling Reduction in

Forward Osmosis. Membranes 2021,

11, 36. https://doi.org/10.3390/

membranes11010036

Received: 14 December 2020

Accepted: 29 December 2020

Published: 4 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST),
123-Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; numanyanar@gm.gist.ac.kr (N.Y.);
liangyejin@gist.ac.kr (Y.L.); yang1990@gist.ac.kr (E.Y.)

2 Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology (KRICT),
Daejeon 34114, Korea

3 School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50,
UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Korea

* Correspondence: hspark@krict.re.kr (H.P.); moonson619@unist.ac.kr (M.S.); hcchoi@gist.ac.kr (H.C.);
Tel.: +82-62-715-2441 (H.C.); Fax: +82-62-715-2423 (H.C.)

Abstract: In membrane processes, a spacer is known to play a key role in the mitigation of membrane
fouling. In this study, the effect of electric polarization on a graphene-blended polymer spacer
(e.g., poly(lactic acid), PLA) for organic fouling on membrane surfaces was investigated. A pristine
PLA spacer (P-S), a graphene-blended spacer (G-S), and an electrically polarized graphene-blended
spacer (EG-S) were successfully fabricated by 3D printing. Organic fouling tests were conducted by
the 5-h filtration of CaCl2 and a sodium alginate solution through commercially available membranes,
which were placed together with the fabricated spacers. Membranes utilizing P-S, G-S, and EG-S
were characterized in terms of the fouling amount on the membrane surface and fouling roughness.
Electrostatic forces of EG-S provided 70% less and 90% smoother fouling on the membrane surface,
leading to an only 14% less water flux reduction after 5 h of fouling. The importance of nanomaterial
blending and polarization was successfully demonstrated herein.

Keywords: organic fouling; electrically polarized spacer; 3D printed spacer; forward osmosis;
graphene-blended spacers; nanomaterial-blended spacers

1. Introduction

Membrane treatment methods have been playing a crucial role in providing potable
water [1]. As a result of the depletion of fresh water sources due to global warming [2],
these methods are gaining increasing importance. However, energy efficiency, which is
directly related to membrane permselectivity, must be maintained well even after long-term
use [3,4]. Fouling, concentration polarization, and mechanical damage of the membranes
are the most critical factors that directly affect the membrane performance and energy
efficiency [5–8]. Among these factors, membrane fouling in membrane systems is the most
crucial issue that needs to be considered, especially because brackish water, wastewater
and seawater comprise a number of foulants that can block the membrane surface and
pores, thereby reducing the productivity of treated water [5,9].

Various types of membrane fouling include crystalline fouling, organic fouling, parti-
cle fouling, colloidal fouling, and biofouling [10,11]. Among these types, organic fouling
serves as the major constraint due to the presence of relatively high concentrations of
organics in water [12]. Organic fouling is a critical issue for all types of filtration mem-
branes, including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse
osmosis (RO), and forward osmosis (FO). Organic fouling results from the aggregation of
organic materials such as proteins, sugar, humic-acid-like substances and polysaccharides
on the membrane surface [13,14]. Proteins creating organic fouling are present in a high
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ratio in wastewater, which aggregate on the membrane surface due to hydrogen bond-
ing between the molecules [13]. This aggregation leads to severe fouling, which in turn
decreases the performance, i.e., water production capacity.

FO membranes demonstrate immense potential and extensive applications to reduce
the total energy consumption during desalination and waste water treatment. As a result
of benefitting from the draw solution with a high osmotic concentration, FO systems can
filter water with foulants without the use of any external pressure through high-pressure
pumps [15]. As FO is responsible for handling water contaminants rather than desalting,
organic fouling is highly critical for this system. Previously, Zhao et al. reported that
organic fouling is more severe and irreversible in FO systems [16]. FO fouling results
from effects of chemical and hydrodynamic interactions. A fouling layer is developed
on the membrane surface by major factors, including calcium binding, permeation drag,
and hydrodynamic shear force [17]. In this regard, approaches including the use of fouling-
resistant novel membranes, change in the hydrodynamic conditions, use of membrane feed
spacers, and pre/post-treatment are mainly employed to mitigate organic fouling. Among
these approaches, feed spacers have been extensively investigated thus far as spacers for
an FO membrane module are essential for maintaining a flow channel and providing
hydrodynamic conditions [18]. An effective feed spacer also should work well for reducing
foulant deposition and concentration polarization [19].

Various studies on feed spacers have focused on the spacer shape [19,20]. Previ-
ous studies employed computational fluid dynamics (CFD) to investigate the effect of
spacer shapes, including nonwoven, woven, middle layer, and fully woven spacers [21];
30◦, 45◦, 62◦, and 90◦ spacer filaments [22]; hairy spacers [23]; saw-tooth spacers [24];
zigzag spacers [25]; multi-layer spacers [26]; and sinusoidal spacers [27], on the mem-
brane performance. In addition, with the boost of 3D printing, the design of spacers was
affected [28,29], i.e., column-type spacers [30], triply periodic minimal surfaces (TPMS)
spacers [31], symmetric perforated spacers (1-Hole, 2-Hole, and 3-Hole) [32], and hon-
eycomb spacers [33], were fabricated by 3D printing. In addition, 3D printing provides
material selection for spacer fabrication. Previously, our group investigated the perfor-
mance of 3D printed spacers comprising acrylonitrile-butadiene-styrene, (poly(lactic acid),
PLA), and polypropylene. Spacers composed of different materials exhibit different per-
formances [34]. Benefitting from recent developments in 3D printing, our group also
recently introduced a graphene-blended membrane spacer and investigated the effect of
electric polarization on the graphene-blended spacer [35]. Through that work, we reported
the performance of the electrically polarized graphene-blended spacer as a draw spacer
for flux enhancement, and as a feed spacer for membrane scaling. Apart from scaling,
organic fouling is also a critical issue that has to be addressed due to its sticky nature.
By considering the importance of mitigating organic fouling of FO membranes, the electri-
cally polarized graphene spacer was further investigated in this study. To the best of our
knowledge, this is the first study of an electrically polarized graphene-blended polymer
spacer for the mitigation of organic fouling.

2. Materials and Methods

Three fabricated spacers prepared by 3D printing after computer-aided design (CAD)
modelling were used for experiments. One PLA and two graphene-blended PLA spacers
were fabricated by using the same structural parameters (i.e., spacer filament thickness
of 1.27 mm, with a vertical and horizontal spacer hole distance of 7 mm) (Figure 1).
All spacers were fabricated by using a fused deposition modelling (FDM)-type 3D printer
(OpenCreators-Almond, Gyeonggi, Korea). PLA spacer was fabricated by using a PLA
filament (PLABS, Gyeonggi, Korea) which has 1.24 gm/cm3 specific gravity, 26.4 MPa
tensile strength, 2.3 GPa tensile modulus and elongation break at 4%, and graphene-
blended PLA spacers were fabricated by using conductive graphene blended PLA filaments
which has 1.11 gm/cm3 specific gravity, 53 MPa tensile strength, 2.9 GPa tensile modulus
and elongation break at 5.1% (Graphene Laboratories, Ronkonkoma, NY, USA) [36]. Later,
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one of the graphene-blended PLA spacers was electrically polarized under an electric field
of 1.5 kV/cm for 2 h. Further details regarding the fabrication of the spacers by using
FDM type 3D printer as well as electric polarization were reported in another article by
our group [35]. In this article, PLA, graphene-blended poly(lactic acid), and electrically
polarized graphene-blended PLA spacers were denoted as P-S, G-S, and EG, respectively.
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Figure 1. CAD model; 3D printed poly(lactic acid) (P-S); graphene-blended poly(lactic acid) (G-S); and electrically polarized
graphene-blended poly(lactic acid) (EG-S).

Flux measurements were conducted for pure water flux/reverse solute flux measure-
ments and fouling-based flux reduction. For the performance investigation of the spacers,
commercial membranes (Porifera, San Leandro, CA, USA) were used, which were extracted
from a commercial membrane module. An engineered osmosis system (Figure S1) with an
effective filtration area of 19.35 cm2 was utilized in the continuous filtration mode at a cross
flow rate of 200 cm3/s for the draw and feed sides (Figure 2). For the pure water flux and
reverse solute flux measurements, a 0.6 M NaCl (Sigma-Aldrich, Burlington, MA, USA)
solution was prepared as the draw solution, and deionized (DI) water (Synergy, Millipore,
Billerica, MA, USA) with a resistivity of 18.2 mΩ-cm at 25 ◦C was used as the feed solution.
Filtration was conducted for 1 h for each sample, with 5 times repetition. For the fouling
experiment, an alginate-based feed solution was prepared, while 0.6 M NaCl was used
as the draw solution. As the fouling solution, 200 ppm of C6H9NaO7 (sodium alginate,
Sigma-Aldrich, Burlington, MA, USA) and 1 mM of CaCl2 (Sigma-Aldrich, Burlington,
MA, USA) were dissolved in DI water [37]. Here, CaCl2 was used as the Ca2+ source to bind
alginate molecules. Filtration was conducted for 5 h after flux stabilization was performed
for 1 h. Data obtained by the weight change in the feed solution in pure flux and fouling
experiments, as well as feed conductivity for only pure flux experiments, were recorded
every minute by a connected computer. From these recorded values, the water flux, Jw,
and the reverse solute flux, Js, were calculated by using the following formulas [38,39]:

Jw =
V

Am∆t
(1)

Js =
VtCt − V0C0

Amt
(2)

In the first formula, Jw is the water flux, V is the volume of permeated water (L), Am is
the effective membrane area (m2), and ∆t is the permeation time (min). The reverse solute
flux was calculated from the electrical feed conductivity per minute [39]. In the second
formula, Ct is the concentration (g/L) at time t, Vt is the volume (L) of the feed solution
at time t, C0 is the initial concentration (g/L), and V0 the initial volume (L) of the feed
solution. The resulting values were converted into Lm−2h−1 (LMH) for water flux and
gm−2h−1 (gMH) for reverse solute flux.
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Figure 2. Organic fouling test of 3D printed spacers through a forward osmosis system.

Surface roughness of fouled membranes, foulant volume on membranes, and vi-
sual topographic images of fouled membranes were obtained by a Surface Nano-Profiler
(Nanomap-D/Alpha-steps, HTSK, Gyeonggi, Korea) measurements. 3D measurements
were performed with an x–y scanning distance of 500 µm and a scanning speed of 50 µm/s
at 10 steps for each sample. These measurements were repeated 10 times for each sample.
Notably, characterization was performed for surface areas that were not in contact with
the spacers.

The amounts of foulant adsorbed on the G-S and EG-S spacers were investigated by
dipping the spacers in 200 mL of an alginate solution for 12 h (same solution as mentioned
above) at room temperature. Spacer weights were measured before and after the dipping
process (after drying in an oven at 40 ◦C for 2 h). Later, spacers were cleaned in an
ultrasonicator (B8510-MT, Branson, Brookfield, CT, USA) by dipping in DI water. After
cleaning in an oven at 40 ◦C for 2 h, the spacer weight was measured again. Finally, the
amounts of foulant adsorbed on G-S and EG-S spacers (before and after cleaning) were
obtained. Notably, the resistance of spacers against heating and sonication was repetitively
tested by using non-fouled spacers. G-S and EG-S spacers did not exhibit any deformation,
while the P-S spacer exhibited weight loss and structural deformation. Therefore, the P-S
spacer is not included in this investigation.

3. Results and Discussion

P-S and two G-S spacers were successfully printed, and one of the G-S spacers was
polarized to obtain an electrically polarized EG-S spacer. All three samples were examined
for pure water flux and reverse solute flux measurements. Flux performances of all three
spacers were relatively similar. More specifically, P-S, G-S, and EG-S exhibited water flux
of 13 ± 0.85 LMH, 12.8 ± 0.55, and 14.4 ± 0.69 LMH, respectively (Figure 3). In addition,
similar values for reverse solute fluxes were observed: 7.2 ± 1.8 gMH for P-S, 8.1 ± 1 gMH
for G-S, and 7.3 ± 2.2 gMH for EG-S (Figure 3). Marginal changes in the flux values were
attributed to the same structure of spacers.
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Figure 3. Water fluxes and reverse solute fluxes for P-S, G-S, and EG-S spacers.

Additional tests were performed to investigate the organic fouling performance of
P-S, G-S, and EG-S spacers. After 5 h of alginate-based fouling of membrane spacers,
the fouled membranes with P-S or G-S exhibited a water flux reduction of 31% or 33%,
respectively (Figure 4). This ratio was found to be 14% of the water flux for the fouled
membranes with the EG-S spacer. Even though graphene blending did not considerably
affect the performance of the PLA spacer for water flux reduction, the electric polarization
of the graphene-blended spacer was highly effective in preventing the water flux reduction
of the EG-S membrane.
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To understand the fouling phenomena, fouling characterization of the P-S, G-S,
and EG-S fouled membranes was further performed using the Surface Nano-profiler
via the analysis of the foulant volume and roughness, and representative images were
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obtained. The Surface Nano-profiler permitted the characterization of fouling in a larger
area compared to other topographic fouling characterization methods. Results obtained
from the surface nano-profiler also supported the data obtained from water flux reduction.
On a 500 × 500 µm2 area, P-S, G-S, and EG-S membranes exhibited 12,685 ± 759 µm3,
12,391 ± 848 µm3, and 3570 ± 824 µm3 foulant, respectively, from an average of 10 mea-
surements for each membrane (Figure 5). The membrane with the EG-S spacer exhibited
70% less foulant on its surface. The presence of Ca2+ in the fouling solution induces bridges
between the negatively charged alginate molecules [40,41], resulting in positively charged
Ca-alginate bridges [42,43]. That is, positive Ca2+ binds to negatively charged carboxylic
groups of alginate [44], which is defined as the egg-box model in literature to explain the in-
teraction between polysaccharides and divalent cations [45]. This generates aggregation as
well as a compact fouling layer on the membrane surface [46]. Hence, roughness of fouled
membranes is observed. Roughness (Ra) values of 1.25 µm, 1.28 µm, and 0.12 µm were ob-
tained for the P-S, G-S, and EG-S fouled membranes, respectively. In addition, the smooth
fouled surface of EG-S as well as rough fouled surfaces of P-S and G-S were observed in
the representative characterization images from the surface nano-profiler (Figure 6). Here,
the surfaces can be explained by the manipulation of a positively charged Ca-alginate
bridge and physically bonded Ca2+ by the EG-S electrostatic forces. In a previous study
reported by our group, the polarized spacer was found to exhibit dominating negative
charges [35]. Therefore, positively charged Ca-alginate bridges are readily deposited on
the negatively charged spacers. Furthermore, EG-S reduces the physical binding effect
of Ca2+ between alginate molecules, and the aggregation of alginate molecules is less
on the membrane surface, which can be understood from the lower roughness value of
the EG-S membrane. Hence, fouling on the EG-S membrane is less than that on the P-S and
G-S membranes.
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By considering the spacer fouling issue, the effect of electric polarization was further
investigated by measuring the total adsorbed foulant amount on the spacers G-S and EG-S.
After dipping the G-S and EG-S spacers for 12 h, 20 mg and 31 mg foulants were adsorbed,
respectively. After the cleaning process, both spacers exhibited the same amount of foulant
on the surface (20 mg) (Figure 7). In here, electric polarization permitted the deposition
of the foulant on EG-S with weaker adhesion, leading to a lower foulant deposition on
the EG-S membrane.
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4. Conclusions

In this article, the performance of electrically polarized graphene-blended poly(lactic
acid) spacer (EG-S) was analyzed for alginate fouling. Compared to P-S and G-S, EG-S ex-
hibited 70% less fouling on the membrane surface with a smoother fouling layer. Therefore,
only 14% water flux reduction ratio was observed for the membrane of EG-S, while it was
31% or 33% for the membranes of P-S or G-S, respectively. This EG-S performance was
attributed to the electrostatic manipulation of Ca-alginate bridges and Ca2+ ions which
are binding alginate molecules. Regarding to this, foulant adsorption test G-S and EG-S
also showed that EG-S can collect 55% more foulant on itself than G-S, and it was also
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investigated that this additional amount of foulant collected by the effect of electric polar-
ization is cleanable. However, this point should be extensively studied further in another
research. For future studies, high-pressure membrane systems such as NF or RO also
should be considered by utilizing various organic foulants such as humic acid or bovine
serum albumin.
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